THE EXPECTED VALUE OF AN EVERYWHERE STOPPED MARTINGALE

By S. Ramakrishnan and W. D. Sudderth¹

University of Miami and University of Minnesota

If the coordinate random variables $\{X_t\}$ on either $C[0,\infty)$ or $D[0,\infty)$ form a martingale, then for every stopping time τ which is *everywhere* finite, $E(X_\tau)$, if defined, equals $E(X_0)$. This version of the optional sampling theorem is not covered by Doob's classical result [1].

In this paper, Ω may be thought of as either $C[0,\infty)$, the space of real-valued continuous functions on $[0,\infty)$, or as $D[0,\infty)$, the space of real-valued, right-continuous functions on $[0,\infty)$ which have finite left limits. It is well known that Ω , equipped with a suitable metric, is a complete, separable metric space. (See Section 1.3 of [3] and Section 2 of [4] for example.) Let $\mathscr F$ be the Borel σ -field on Ω . For a nonnegative real number t, let X_t be the coordinate map on Ω defined by $X_t(\omega) = \omega(t)$, $\omega \in \Omega$, and let $\mathscr F_t$ be the σ -field generated by the collection of random variables $\{X_s, 0 \le s \le t\}$. Let $\mathscr F$ be the collection of $\mathscr F_t$ -adapted stopping times τ on Ω which are everywhere finite; i.e., all functions τ on Ω such that $0 \le \tau(\omega) < \infty$ for all $\omega \in \Omega$ and $[\tau \le t] \in \mathscr F_t$ for all $t \ge 0$. Here is the main result of the paper.

THEOREM. Let P be a probability measure on (Ω, \mathcal{F}) under which $\{X_t\}$ is an \mathcal{F}_t -adapted martingale. Then, for every $\tau \in \mathcal{F}$, either

(a)
$$E^{P}(X_{\tau}) = E^{P}(X_{0})$$

or

(b) $E^P(X_\tau)$ is not defined, i.e., $E^P[\max(X_\tau,0)] = E^P[\max(-X_\tau,0)] = \infty$.

 $(E^{P} denotes the expected value under the probability measure P.)$

The main technique used in the proof of this theorem is an adaptation to the continuous-time case of the stop rule induction method of Dubins and Savage [2]. Some additional notation is needed for the formulation.

Let Ω^* be the collection of all initial segments of paths in Ω ; i.e., $p \in \Omega^*$ iff for some positive real number t and some $\omega \in \Omega$, p is the restriction of ω to [0, t). By the *length* of an element in Ω^* we shall mean the length of its domain. For $p_1, p_2 \in \Omega^*$ with lengths t_1, t_2 , respectively, $p_1 p_2$ will stand for the function on $[0, t_1 + t_2)$ defined by

$$p_1 p_2(s) = p_1(s), \quad 0 \le s < t_1,.$$

= $p_2(s - t_1), \quad t_1 \le s < t_1 + t_2.$

Received September 1984.

¹Research supported by National Science Foundation Grant MCS 8100789. AMS 1980 subject classifications. Primary 60G44; secondary 60G40, 60G42. Key words and phrases. Martingale, optional sampling, stop rule induction.

For $p \in \Omega^*$ of length t and $\omega \in \Omega$, $p\omega$ will stand for the function on $[0, \infty)$ defined by

$$p\omega(s) = p(s),$$
 $0 \le s < t,$
= $\omega(s-t),$ $s \ge t.$

If Ω is $D[0,\infty)$, then $p_1p_2 \in \Omega^*$ and $p\omega \in \Omega$. However, this is not necessarily true when Ω is $C[0,\infty)$ because p_1p_2 may have a discontinuity at t_1 and $p\omega$ may have a discontinuity at t.

For $p \in \Omega^*$ of length t and $\tau \in \mathcal{T}$, let $\tau[p]$ be the stopping time in \mathcal{T} defined by

$$\tau[p](\omega) = \tau(p\omega) - t \text{ if } p\omega \in \Omega \text{ and } \tau(p\omega) \ge t,$$

$$= 0 \text{ if } p\omega \in \Omega \text{ and } \tau(p\omega) < t,$$

$$= 0 \text{ if } p\omega \notin \Omega.$$

One can regard $\tau[p]$ as the additional time to wait given that the segment p has already occurred.

INDUCTION LEMMA. Let $\phi(\tau)$ be a proposition for every $\tau \in \mathcal{T}$. Assume

- 1. $\phi(\tau)$ holds if $\tau \equiv 0$,
- 2. $\phi(\tau)$ holds if $\phi(\tau[p])$ holds for every $p \in \Omega^*$ of length 1.

Then $\phi(\tau)$ holds for all $\tau \in \mathcal{F}$.

PROOF. Suppose there is a $\tau \in \mathcal{T}$ for which $\phi(\tau)$ is false. By assumption 2 of the lemma, there exists a sequence $\{p_n\}$ of elements in Ω^* each of length 1, and a sequence $\{\tau_n\}$ of stopping times in \mathcal{T} such that

(a)
$$au_1 = \tau[p_1]$$
 and $au_{n+1} = \tau_n[p_{n+1}], au_n \ge 1,$

(b)
$$\phi(\tau_n)$$
 is false for all n .

Consider two cases. (The first case does not arise when Ω is $D[0, \infty)$.)

Case (i). For some $n, p_1 \dots p_n \notin \Omega^*$.

In this case, $p_1 \dots p_n \omega \notin \Omega$ for any $\omega \in \Omega$. It is straightforward to check that $\tau_n \equiv 0$. So, by (b), we have a contradiction to assumption 1.

Case (ii). For every $n, p_1 \dots p_n \in \Omega^*$.

Let ω be the function on $[0, \infty)$ defined by

$$\omega(s) = p_n(s - n + 1) \quad \text{if } n - 1 \le s < n$$

for $n=1,2,\ldots$. Because Ω is either $C[0,\infty)$ or $D[0,\infty)$, the ω defined above belongs to Ω . Because τ is everywhere finite, $\tau(\omega)<\infty$. Let n be the positive integer such that $n-1\leq \tau(\omega)< n$. Plainly, $\tau_n\equiv 0$ and we get a contradiction in this case too.

The proof of the lemma is now complete.

PROOF OF THE THEOREM. For $\tau \in \mathcal{F}$, let $\phi(\tau)$ be the proposition that, whenever P is a probability measure on (Ω, \mathcal{F}) under which $\{X_t\}$ is an \mathcal{F}_t -adapted martingale, either (a) $E^P(X_\tau) = E^P(X_0)$ or (b) $E^P(X_\tau)$ is undefined.

The theorem will be proved once we verify the assumptions of the induction lemma.

Obviously, $\phi(\tau)$ holds if $\tau \equiv 0$. To verify assumption 2, suppose that $\tau \in \mathcal{F}$ is such that $\phi(\tau[p])$ holds for every p in Ω^* of length 1 and suppose P is a probability measure on (Ω, \mathcal{F}) under which $\{X_t\}$ is an \mathcal{F}_r -adapted martingale.

Define $\tau'=\min(\tau,1)$ and let $\mathscr{F}'=\mathscr{F}_{\tau'}$ be the σ -field generated by the collection of random variables $\{X_{\min(\tau',s)},s\geq 0\}$. From the right continuity of every ω , it is easy to see that \mathscr{F}' is a countably generated sub σ -field of \mathscr{F} . Let $\{Q_{\omega}\}$ be a regular conditional probability distribution of P given \mathscr{F}' which is proper in the sense that $Q_{\omega}(A)=1_A(\omega)$ for all $A\in\mathscr{F}'$ and $\omega\in\Omega$. The existence of such a regular conditional distribution is well known (see, for example, 1.1.6, 1.1.7, and 1.1.8 of [3]). Since τ' is a bounded stopping time, it follows from Doob's optional sampling theorem that

$$E^{P}(X_{\tau'}) = E^{P}(X_{0}).$$

Assume now that $E^P(X_\tau)$ is well defined. Then $E^P(X_\tau) = E^P(E^P(X_\tau | \mathscr{F}'))$, and the theorem can be proved by showing that

$$E^{P}(X_{\tau}|\mathscr{F}') = X_{\tau'}$$
 a.s. $[P]$.

Now the function $\omega \to E^{Q_\omega}(X_\tau)$ is a version of $E^P(X_\tau|\mathscr{F}')$ and so it will suffice to show

$$E^{Q_{\omega}}(X_{\tau}) = X_{\tau'}(\omega)$$

except for a set of ω 's having P-probability zero. Notice that the existence of $E^P(X_\tau)$ implies there is a P-null set N_1 such that $E^{Q_\omega}(X_\tau)$ exists for $\omega \notin N_1$.

By Theorem 1.2.10 of [3], there exists another P-null set N_2 such that, for $\omega \notin N_2$, $\{X_t, t > \tau'(\omega)\}$ is an \mathscr{F}_t -adapted martingale under Q_ω . Hence, for $\omega \notin N_2$, $\{X_t, t \geq 0\}$ is an \mathscr{F}_t -adapted martingale under the probability measure $P_\omega = Q_\omega \circ T_{\tau(\omega)}^{-1}$ where, for $s \geq 0$, T_s is the transformation on Ω defined by $(T_s\omega)(t) = \omega(s+t)$. For $\omega \notin N_1 U N_2$, let $p_{\tau}(\omega)$ denote the restriction of ω to $[0,\tau'(\omega))$ and let $A_\omega = \{\omega' : \omega'(s) = \omega(s) \text{ for } 0 \leq s \leq \tau'(\omega)\}$. Because Q_ω is proper, $Q_\omega(A_\omega) = 1$. Furthermore, on the set A_ω ,

$$X_{\tau} = X_{\tau[p_{\tau'}(\omega)]} \circ T_{\tau'(\omega)}. \qquad .$$

Hence,

$$E^{Q_{\omega}}(X_{\tau}) = E^{P_{\omega}}(X_{\tau \lceil p_{\tau'}(\omega) \rceil}).$$

If $\tau'(\omega) < 1$, then $\tau(\omega) = \tau'(\omega)$ and $\tau[p_{\tau'}(\omega)] = 0$. If $\tau'(\omega) = 1$, then $p_{\tau'}(\omega)$ has

length 1 and $\phi(\tau[p_{\tau'}(\omega)])$ is true. So, in either case,

$$\begin{split} E^{P_{\omega}}\!\!\left(X_{\tau[\,p_{\tau'}(\omega)]}\right) &= E^{P_{\omega}}\!\!\left(X_0\right) \\ &= E^{Q_{\omega}}\!\!\left(X_{\tau'}\right) \\ &= X_{\tau'}\!\!\left(\omega\right). \end{split}$$

The last equality uses the fact that Q_{ω} is proper.

The proof of the theorem is now complete.

Here is an example to show that condition (b) of the theorem can occur.

Example. Let $\{X_t\}$ be a standard Brownian motion process under \mathcal{P} . Define

$$\tau(\omega) = 1 + e^{2X_1(\omega)^2}.$$

Then, given $X_1 = x$, $X_{\tau} - X_1$ is Gaussian with mean zero and variance e^{2x^2} . Hence,

$$\begin{aligned} E|X_{\tau} - X_{1}| &= E\left(E\left(|X_{\tau} - X_{1}||X_{1}\right)\right) \\ &= \frac{2}{\sqrt{2\pi}}E\left(e^{X_{1}^{2}}\right) \\ &= \infty. \end{aligned}$$

Hence, $E|X_{\tau}| = \infty$. But X_{τ} is symmetrically distributed about 0. So $E(X_{\tau})$ is undefined.

REMARKS.

1. The proof above also works if Ω is any collection of right-continuous functions on $[0,\infty)$ such that (a) Ω is a complete, separable metric space and (b) whenever $\{p_n\}$ is a sequence of elements in Ω^* , each of length 1, such that $p_1 \ldots p_n \in \Omega^*$ for all n, ω defined by $\omega(s) = p_n(s-n+1)$, if $n-1 \le s < n$, $n \ge 1$, belongs to Ω .

An example of such an Ω , besides $C[0, \infty)$ and $D[0, \infty)$, is the collection of all right-continuous functions on $[0, \infty)$ which are constant on intervals of the form [n-1, n) where n is a positive integer.

- 2. A discrete-time version of our theorem holds on $\Omega = \mathbb{R}^{\infty}$, the countably infinite product of the real line, for nonnegative integer valued stop rules. This could be proved the same way by using discrete-time analogues of the induction lemma and Theorem 1.2.10 of [3]. We could alternatively obtain it as a corollary of our theorem in the continuous case by identifying \mathbb{R}^{∞} with the collection of all right-continuous functions on $[0, \infty)$ which are constant on intervals of the form [n-1, n), where n is a positive integer.
- 3. It is possible to obtain in an obvious way a version of our theorem where the random variables forming the martingale are not necessarily coordinate random variables. Such a version would be proved by reducing it to the coordinate variables case by a change of variable.

REFERENCES

- [1] DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] DUBINS, L. E. and SAVAGE, L. J. (1965). How to Gamble If You Must: Inequalities for Stochastic Processes. McGraw-Hill, New York.
- [3] STROOCK, D. W. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes. Springer, New York.
- [4] Whitt, W. (1980). Some useful functions for functional limit theorems. *Math. Oper*: Res. 5 67-85.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF MIAMI CORAL GABLES, FLORIDA 33124 SCHOOL OF STATISTICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455