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THE EXPECTED VALUE OF AN EVERYWHERE
STOPPED MARTINGALE

By S. RAMAKRISHNAN AND W. D. SUDDERTH!

University of Miami and University of Minnesota

If the coordinate random variables { X,} on either C[0, o) or D[0, oo) form
a martingale, then for every stopping time 7 which is everywhere finite,
E(X,), if defined, equals E(X,). This version of the optional sampling
theorem is not covered by Doob’s classical result [1].

In this paper, € may be thought of as either C[0, o), the space of real-valued
continuous functions on [0, 00), or as D[0, c0), the space of real-valued, right-con-
tinuous functions on [0, co) which have finite left limits. It is well known that &,
equipped with a suitable metric, is a complete, separable metric space. (See
Section 1.3 of [3] and Section 2 of [4] for example.) Let .# be the Borel o-field on
Q. For a nonnegative real number ¢, let X, be the coordinate map on  defined
by X,(w) = w(t), @ € Q, and let %, be the o-field generated by the collection of
random variables {X,,0 < s < t}. Let 7 be the collection of .#-adapted stop-
ping times 7 on @ which are everywhere finite; i.e., all functions 7 on & such that
0 < 7(w) < oo for all we€ Q and [r < t] €%, for all ¢t > 0. Here is the main
result of the paper.

THEOREM. Let P be a probability measure on (R, %) under which {X,} is
an Zadapted martingale. Then, for every = € 7, either

(a) ENX,) = EN(X,)

or

(b) E™(X,) is not defined, i.e., E[max(X,,0)] = E”[max(-X,,0)] = oo.
(E " denotes the expected value under the probability measure P.)

The main technique used in the proof of this theorem is an adaptation to the
continuous-time case of the stop rule induction method of Dubins and Savage [2].
Some additional notation is needed for the formulation.

Let ©* be the collection of all initial segments of paths in Q; i.e., p € Q* iff for
some positive real number ¢ and some w € Q, p is the restriction of w to [0, ¢).
By the length of an element in @* we shall mean the length of its domain. For
P, P, € Q* with lengths ¢, t,, respectively, p,p, will stand for the function on
[0, ¢, + ¢,) defined by

P1po(8) = pi(s), 0<s<t,
=py(s—1t), t<s<t +t,
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For p € @* of length ¢t and w € @, pw will stand for the function on [0, «)
defined by

pw(s) = p(s), 0<s<t,
=w(s—t), s>t

If © is D[O0, o0), then p,p, € @* and pw € Q. However, this is not necessarily
true when @ is C[0, o) because p, p, may have a discontinuity at ¢, and pw
may have a discontinuity at t.
For p € @* of length t and 7 € 7, let 7[ p] be the stopping time in .7 defined
by
[pl(w) =7(pw) —t if po € Qand 7(pw) > ¢,
=0 if pw € Qand 7(pw) < ¢,
=0 if pow & Q.

One can regard 7[ p] as the additional time to wait given that the segment p has
already occurred.
INDUCTION LEMMA. Let ¢(7) be a proposition for every T € I . Assume

1. ¢(7) holds if 1 =0,
2. ¢(7) holds if ¢(7[ p]) holds for every p € Q* of length 1.

Then ¢(7) holds for all r € T .
PROOF. Suppose thereis a 7 € 7 for which ¢(7) is false. By assumption 2 of

the lemma, there exists a sequence { p,,} of elements in @* each of length 1, and a
sequence {7,} of stopping times in ~ such that

(a) 71 =T[p1] and Tn+1 =Tn[pn+1]) n=> ]-)
(b) ¢(,) is false for all n.

Consider two cases. (The first case does not arise when Q is D[0, «0).)

CasE (i). For some n, p,... p, &€ Q*.

In this case, p,... p,w & Q for any w € Q. It is straightforward to check that
7, = 0. So, by (b), we have a contradiction to assumption 1.

CAsE (ii). For every n, p,...p, € Q*.

Let w be the function on [0, c0) defined by
w(s)=p(s—n+1) ifn-1<s<n

for n =1,2,.... Because Q is either C[0, o) or D[0, oc), the w defined above
belongs to Q2. Because 7 is everywhere finite, 7(w) < co. Let n be the positive
integer such that n — 1 < 7(w) < n. Plainly, 7, = 0 and we get a contradiction in
this case too.
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The proof of the lemma is now complete.

PrROOF OF THE THEOREM. For 7€ .7, let ¢(7) be the proposition that,
whenever P is a probability measure on ({2, %) under which { X,} is an %,-adapted
martingale, either (a) Ef(X,) = Ef(X,) or (b) Ef(X,) is undefined.

The theorem will be proved once we verify the assumptions of the induction
lemma.

Obviously, ¢(7) holds if 7 = 0. To verify assumption 2, suppose that r € I is
such that ¢(7[p]) holds for every p in Q* of length 1 and suppose P is a
probability measure on (£, %) under which {X,} is an %, adapted martingale.

Define 7’ = min(7,1) and let %’ =%, be the o-field generated by the
collection of random variables {X, ., ), s = 0}. From the right continuity of
every w, it is easy to see that %’ is a countably generated sub o-field of %#. Let
{@.) be a regular conditional probability distribution of P given %’ which is
proper in the sense that @ (A) = 1,(w) forall A € %’ and w € Q. The existence
of such a regular conditional distribution is well known (see, for example, 1.1.6,
1.1.7, and 1.1.8 of [3]). Since 7’ is a bounded stopping time, it follows from Doob’s
optional sampling theorem that

ET(X,) = EN(X,).

Assume now that E#(X)) is well defined. Then Ef(X,) = EX(E"(X,|#")), and
the theorem can be proved by showing that
EAX |F)=X_.

T

as.[P].

Now the function w — E9(X,) is a version of E #(X,|.% ") and so it will suffice to
show

E%(X,) = X, (w)

except for a set of w’s having P-probability zero. Notice that the existence of
E(X,) implies there is a P-null set N, such that E9+( X)) exists for & N,.

By Theorem 1.2.10 of [3], there exists another P-null set N, such that, for
w & N,, {X,, t > 7"(w)}is an Fradapted martingale under @, . Hence, for w & N,,
{X, t >0} is an % adapted martingale under the probability measure P, =
Q. °T,., where, for s > 0, T, is the transformation on Q defined by (T,w)(t) =
w(s + t). For w € NJUN,, let p_(w) denote the restriction of w to [0, 7'(w)) and
let A, = {0 w'(s) = w(s)for0 < s < 7'(w)}. Because @, is proper, Q (A,) = 1.
Furthermore, on the set A,

T,

T(w)*

X=X pqon®
Hence, .
EQ“(XT) = EP“(Xr[p,r(w)])'

If 7(w) < 1, then 7(w) = 7'(w) and 7[ p.(w)] = 0. If 7'(w) = 1, then p_(w) has
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length 1 and ¢(7[ p,(w)]) is true. So, in either case,
EP”(Xr[p,«w)]) = E™(X,)

= E%(X,)
=X (w).

The last equality uses the fact that @, is proper.
The proof of the theorem is now complete.

Here is an example to show that condition (b) of the theorem can occur.

ExamPLE. Let {X,} be a standard Brownian motion process under P. Define
T(w)=1+ e2Xi(w)’

. . . . . 2
Then, given X, = x, X — X, is Gaussian with mean zero and variance e?*".
Hence,

E|X, - X||= E(E(|Xr - X1||X1))

_' 2 Xt
—EE(Q )

= 0.

Hence, E|X,| = oo. But X, is symmetrically distributed about 0. So E(X,) is
undefined.

REMARKS.

1. The proof above also works if @ is any collection of right-continuous
functions on [0, c0) such that (a) Q is a complete, separable metric space and (b)
whenever {p,} is a sequence of elements in Q* each of length 1, such that
py...p, €Q* for all n, w defined by w(s) =p (s —n+1),if n—1<s<n,
n > 1, belongs to Q.

An example of such an @, besides C[0, o) and D[0, c0), is the collection of all
right-continuous functions on [0, o) which are constant on intervals of the form
[n — 1, n) where n is a positive integer.

2. A discrete-time version of our theorem holds on @ = R*, the countably

infinite product of the real line, for nonnegative integer valued stop rules. This
could be proved the same way by using discrete-time analogues of the induction
lemma and Theorem 1.2.10 of [3]. We could alternatively obtain it as a corollary
of our theorem in the continuous case by identifying R® with the collection of all
right-continuous functions on [0, co) which are constant on intervals of the form
[n — 1, n), where n is a positive integer.
. 3. It is possible to obtain in an obvious way a version of our theorem where
the random variables forming the martingale are not necessarily coordinate
random variables. Such a version would be proved by reducing it to the coordi-
nate variables case by a change of variable.
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