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RANDOM /-EXPANSIONS!

BY JON. AARONSON

University of Tel Aviv
We consider the asymptotic distribution properties of f-expansion digits. -
In particular, if x = 1/@y(x) — 1/¢(x) — - -- etc., then
1 n—1
— Z ¢, — 3 in measure.
k=0

0. Introduction. In[12] Lévy showed thatif x = 1/¢y(x) + 1/@(x) + - -
etc. (¢, € N) is the continued fraction expansion of x € [0,1] and ¢(n)1 oo is
regularly varying with index 1/y as n 100 (0 < y < 1), then

1 n
o(@,) =, distY,,
b(n) kz=:1 ( k v

where Y, is the nonnegative random variable satisfying

dist

-p — p-T@-v)p” ~ ! dx
E(e %) = e "% and b(n) nfow([l/x])Ab(n>>1+x/logz.

For Z a random variable defined on the probability space (2, &, P), P-dist Z
denotes the measure on R defined by (P-dist Z) (A) = P({w € Q: Z(w) € A}).
When there is no danger of confusion, we write P-dist = dist. The convergence is
the usual weak convergence of measures.

Indeed the random variables {¢,} are considered as defined on the probabil-
ity space ([0,1], &, \) where d\(x) = dx and % denotes the Lebesgue meas-
urable sets, and dist(1/b(n))L?_,¢(¢,) may be considered to mean
A-dist(1/b(n)L}_¢(¢,)- In fact the A is omitted in the statement of Lévy’s
theorem because (see below) it may be replaced by any A-absolutely continuous
probability.

If A is replaced by the equivalent Gauss measure p (du(x) =
(log,2(1 + x))~!dx) then (g, ¢y, . ..) becomes an ergodic stationary process with
{@r)F-0 “almost” independent random variables. This is the “reason” for Lévy’s
result.

The purpose of this paper is to study the asymptotic distribution properties of
other f-expansion digits (see [13] for an introduction to f-expansions). For
example, if x = 1/py(x) — 1/@,(x) — --- etc. (¢, €N), then there is no A-
absolutely continuous probability with respect to which (¢, ¢;,...) is
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1038 J. AARONSON

stationary; moreover, [ @, dA = oo, but nevertheless (see the corollary in Sec-
tion 3):

1 n—1

— Y ¢, —> 3 inmeasure.

no_o

The continued fraction process (¢, ¢;,...), where x = 1/@\(x) + 1/¢,(x)

+ - -+, considered with respect to the Gauss measure p satisfies a very strong
mixing condition [12]: There exist L < o0, 0 < § < 1 so that for every m, n € N,
A€o{p,:0<k<m}, BeEo({p, k=m+ n}),

|p(A N B) — p(A)u(B)|< L"u(A)u(B).

We shall need a generalisation of Lévy’s result (which follows from a more
general result of Davis—see [7], Theorem 2) to stationary processes with this
mixing property, which we call continued fraction-mixing (and which is stronger
than the *-mixing of [4]).

A stationary process {@,}*_, defined on the probability space (L, o7, P) is
called continued fraction- (cf.-) mixing if there exist 0 < ¢, < 0 (n €N),
e, >0 as n — oo such that for every m,n €N, A €o({p, 0<k<m)}),
B € o({9,: k> m + n}),

|P(A N B) — P(A)P(B)| < ¢,P(A)P(B).

. THEOREM 1 (Davis [7]). Suppose that {¢,}>_, is a nonnegative c.f.-mixing
stationary process defined on (R, &, P), that E(¢,) = o, and that L(x) =
E(¢, A x) is regularly varying with index 1 — y asx 100 (0 <y < 1). Then

1 n
p = poeedistY )
b(n) kz=:1 k Y

where Y, is as before and b(n) ~ nL(b(n)).

dist

Here dist (1,/b(n))X}_,¢, can be considered with respect to any P-absolutely
continuous probability. This is because of a well-known fact concerning the type
of distributional convergence considered in this paper: If (¢,, ¢,,...) is a stochas-
tic process defined on the (minimal) probability space (2, =7, P) whose shift map
(®os Py Poy---) = (@, Py, ...) is P-nonsingular, conservative, and ergodic,
n, — o, d;, — o0, and

1
Po-distd— Z @ = oo disty,
k j=0
where Y is some random variable and P, is some P-absolutely continuous
probability, then
1
Pl-distd— Y g —>distY
] k j=0
for every P-absolutely continuous probability P,. (A proof of this fact can be
abstracted from the proof of proposition 0 in [1].)
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It is possible that Theorem 1 can be proved by the methods of [12]. As
mentioned above, it follows from Davis’ result which is proved by studying the
order statistics of (¢, ¢, - - . ). We prove Theorem 1 by studying the tower T over
the shift of (¢, ¢,,...) with height function [¢,] (see Section 1), showing that
the base of the tower has a very special property (and is what we call a
Darling-Kac set for T') by means of the main lemma. We then prove Theorem 1
using the Darling-Kac distributional limit theorem [6] and an asymptotic
renewal equation. All of this is done in Section 1.

In Section 2 we apply Theorem 1 and obtain a result (Theorem 2) on the
distributional limit properties of some asymptotically stationary f-expansion
digits. Here a theorem of Adler establishes c.f.-mixing.

In Section 3 we study nonstationary f-expansions whose shifts have infinite
invariant measures (see Theorem 4, whence our advertised corollary). To do this
we need to prove also that transformations satisfying Thaler’s conditions [16] are
pointwise dual ergodic [1]. Theorem 3 (using Thaler’s theorem) identifies the
asymptotic types of these transformations.

In fact, our methods yield functional distributional convergence. Functional
versions of Theorems 1, 2, and 4 are stated in Section 3.

1. Darling-Kac sets and the main lemma. Let (X, %, m,T) be a con-
servative ergodic measure preserving transformation of a o-finite nonatomic
measure space and let T' be the operator of L'(X, #, m) dual to T,

[ Tigdm = [ fg-Tdm, feL(X,8,m), geLl™(X, %8, m).
X X

Aset A e %,0 <m(A) < oo, will be called a Darling-Kac (DK ) set for T if
there are constants a,, > 0 such that
1 i ~h
— T*1, — 1
Ay p=1 4

- n — oc 0 :
L*(A)
Clearly, in this case, a, ~ X7_,m(A N T *A)/m(A) as n - . Any trans-
formation T' having DK sets is pointwise dual ergodic (see [1]); that is, there are
constants a, such that

n
L Y Tk —>n_,oof fdm ae.Vfe L\(X,%,m).
a, k=1 X
(We prove this at the end of Section 1.)
It is not known whether every pointwise dual ergodic transformation has a
DK set.
We are now in a position to state and prove the

MAIN LEMMA. Let (X, #, m, T) be a conservative ergodic measure preserv-
ing transformation of a o-finite nonatomic measure space.

Suppose that A € #,0 < m(A) < oo, and let ¢ be the return time function of
T on A: ¢(x) =min{n > 1: T"x € A} and Tyx = T%x the induced trans-
formation on A.
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If there is a measurable function ¢: A - R such that

(i) ¢ = f(¢) some f: R > N,
(i) o({peTf: k>0}))=BNA,
(ili) the process {¢p°TL)¥_, defined on (A, 2N A, my,) (myuB) =
m(A N B)/m(A)) is c. f.-mixing, then
A isa DK set for T.

PrOOF. Let 0 <¢, < o0 (n €N), g, > 0 be such that for m,n €N, B &
o({9oTH: 0 < j < m))= o), C € o({$oTh: k> m + n})= o, )
|ma(B N C)—myu(B)my(C)|< e,mu(B)my(C).
Setting ¢, = L;- i o Tk, and denoting by T, the operator on L'(A) dual to
Ta(f ATA fedm = [, fg o T, dm), we have that

n

/T"1A dn=m(AnT "B)= Y m([g,=n] N T;*B)
B k=1

/ Z Tl 0y, -y A
Br=1

Hence
n
Ty = Y Tilgy,-n
k=1

and

n n n

k; Th ; [‘P/.<"]'
Suppose now that m € N and B € ¢*. Then for n>1and C€ ZN A we

have

fTAn+m1,, dmy = mu(B N Ty "™C) = (1 £ e,)mu(B)m,(C)

since T, "*™C € o2, ,,. (Here, and throughout, A = (1 + €)B means (1 — ¢)B <
A < (1 + ¢)B when A, B > 0.) Thus,

T ™M p=muB)(1+e,)ae. Vn>1.
The proof of the lemma is based on this fact and goes via two inequalities.

INEQUALITY 1. Foreveryl <p <n

n n
A <p+ + & m B a.e.onA.
THs, <p 1+e,,., A(T7*A A
k=1 k=1
INEQUALITY 2. Foreveryl<p<g<n-1

Z TklA (1 —g,,— (1 + el)QmA([(pp > q]))

k=1

n
X Y mT ") — (1 +¢)°g—p a.e.onA.
k=1
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PROOF OF INEQUALITY 1.

+
Z T, = Z TAl[q)k<n] = z_: Lig, <nl

k=1 k=1
n
Nk+p
sp+ LT, on
k=1
n
Nk +
Sp ETA 1[cp,,sn]
k=1

n
<p+(1+ €p+l) > mu([¢,<n]) since[p,<n]eof’
k=1

=p+(1+ £p+1) 2 my(T~*A).0
k=1
PROOF OF INEQUALITY 2.

n n n
Z TklA = z TAkl[q),,Sn] = kE
1 =

k=1 k= 1
n n
Tk + _ Mk +
= Y T g cm = 2 T g, cnegy
k=1 k=1
As above
n n
~k h
Ty +p1[¢;f5n] = (1 - £p+l) Z m4(T~"A).
k=1 k=1
Also

n n
Z T“(e+p1[q’ksn<¢1”p] < (1 + 81) E mA([qu <n< q)k+p])
rei k=1

since [ < n < @y,,] € off 7"

=(1+¢) 2 ZmA(w=z,qo,,oT:>n—l)
k=1l=1

n

<1+ 81)2 > ; my(@, = l)mA(‘Pp >n-1)

since [q)k =1l]eqt!

n n—gq

=(1+e) Y ¥ +(1+e) > Z

k=1 [=1 k=1Il=n—q+1

=1+ 1I.
Now

I<(1+e)my(e,> q)kZ IZ m (@, =1)

C (14 e)ma@,> q) 3 ma(T*4)

k=1
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and

Hs(1+el)2ZmA(n—q+1s<kan)
k=1

n n—q
<(1+ 51)2[ Ymulpp<n)— Y myle,<n—gq)
k=1 k=1

_(+e) Y my(T*A) < q(1+e)

k=n—qg+1
Putting all this together proves inequality 2. O
To finish the proof of the main lemma, let ¢ > 0. Choose p > 1 so that

e, < ¢&/4. Then choose ¢ >p so that (1 + £I)2mA([(pp > q]) < ¢/4. Lastly,
choose n, > q so large that

(1+¢)q/ Y myT *A) <e/4 Vn=>n,.
k=1
It follows from the inequalities that for n > n,

5 m/ 5 mA(TH4) - 1
k=1 k=1

<e. O
L*(A)

Next, some properties of DK sets. For A € 4,0 < m(A) < o0, and p > 0, let

e

0 n—1
u,(p)= Y m(AnT "A)e P, ca(p) =3 m(T"‘A - U T‘kA)e"’".
n=0 n=0 k=0

The first property we shall need is

THE ASYMPTOTIC RENEWAL EQUATION. If A is a DK set for T, then
pus(p)ea(p) = p10 m(A)>.

Proor. (taken from [1], page 229).

Let A € % be a DK set for T, and let ¢: A — N be the first return time
function of Ton A.Forn>1

n—1

m(ANT ") =Y m(AnT *An[¢=n-Fk])
k=0

>

k=0

1 .
Lgon T, dm.

Hence, for p > 0
oc oC
Y m(AnT "A)e Pr =/ Y e P*T*1 e P? dm
Ak=0

n=1
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and

/ Y e P*Pk (1 — e P?) dm = m(A).
Ap=0

Now, since A is a DK set

oL R 1 .
Y e kTR, Ju,(p) _)”“’m(—A)— uniformly on A (mod m),

k=0

whence
_ »—P® 2
ua(p) [ (1= er?)dm =, m(A)"

The proof of the asymptotic renewal equation is completed by the easy
Ja(1 — e ") dm ~ pey(p) as p L0. O

The other property is

THE DARLING-KAC DISTRIBUTIONAL LIMIT THEOREM. Suppose that A is a
DK set for T and that a(n) = Li_,m (T *A) is regularly varying with index
y € [0,1]. Then

m ,-dist—— ZIAOTk—>dlstZ

( ) &z
where

E(e%y) = ¥ T(1+7)"2"/T(1 + yn),

n=0

and, for 0 <y <1, Y, =[T@2-v)I1+y)Z,] "/

This theorem (in honour of which DK sets were introduced) is proven in [6]. It
is proved for pointwise dual ergodic transformations, without recourse to the
existence of DK sets in [1]. A functional version of the theorem was proven by
Bingham [3)]. (This is applied in Section 3.) We take the opportunity to remark
here that Bingham’s functional theorem remains true under the assumptions
1 — 1(b) of [1], Section 1.

Using these results, we can now give a proof of Theorem 1. There is no loss of
generality in assuming that

9, €Nae.Vn =0,

since

k}i:l([wk] +1) - élwk <n=o(b(n) asn- oo,

Q=N"={w=(wy,w,...): w, EN, n > 0}
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and (P"(LO) = W,. If nOt, define 7: @ > N* by
(@) = (9(®@), 9:(@),...),  # = {ACN* s A},
and
P;: 7, - [0,1] by P(A) = P(x7'A).

The map S: Q — @ defined by S(w,, w;,...) = (@, w,,...) IS a measure
preserving transformation and is known as the shift of (¢, ¢,,...). It is not hard
to show, using the c.f.-mixing of (¢,, ¢,,...), that S is ergodic.

The tower transformation over S with height function ¢ = ¢, is defined on
X = {(w, n): p(w) = n} by

(w,n+1) ife(w)=n+1,

T(w,n) = {(Sw,l) if p(w) = n.

The transformation T preserves the measure m, defined on the o-algebra %,
generated by sets of form (A, n) = {(w,n): w € A} where A € &/, A C [ = n]
by m(A, n) = P(A). The transformation T is also ergodic [11] and m(X) =
E(9) = 0 [10]. Clearly, Tg(w,1) = (Sw, 1) and the conditions of the main lemma
are satisfied with ¢ = ¢, f = id. _

Thus, as advertised in the introduction, Q is a DK set for T. Since L(n) =
E(p A n) = mU}_ T *Q) is regularly varying with index 1 — y, we have by
Karamata’s Tauberian theorem [8] that

1
calp) <12 - )L| 5| wspio

The asymptotic renewal equation gives that

= g 2] 2] i

which is regularly varying with index y as p | 0; whence, again by Karamata’s
Tauberian theorem
n — 1 n
a(n) = mg(T~*Q) ~
L malT8) ~ 5 = 1) L(n)

k=1

asntoo.

This latter is regularly varying with index y as ntoo and so by the
Darling-Kac limit theorem

P-dist

1s o T* - dist Z..
a(n) &, tne T = dist 2,

From this follows Theorem 1 by Proposition 1 of [1]. O
To conclude this section, we show that any conservative, ergodic, measure

preserving transformation which has DK sets is pointwise dual ergodic. Let
(X, %, m,T) be the transformation and let A € Z,0 < m(A) < 0.
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Set A,=A and A,, = A\UF_ T *A for m > 1. It can be verified that for
every Be #

(8) Y m(A,nT"B)=m(B),

n=0
N N N-k
(b) Y m(ANT "B)=Y Y m(AnT "A,nT "*kB),
n=0 k=0 n=0

which imply

(a") > T"IA,,=1 a.e.on X,
n=0
N N N-k

(b’) Y Tr,= ) Tk(lAk Y T”lA) a.e.on X.
n=0 k=0 n=0

If A is a DK set for T, then there are constants a(n)? o, a(n) ~ a(n + 1)
such that
N A
Y T", ~a(N) uniformlyon A as N — oo.
n=0
From (a’) and (b’) it now follows that
N N .
Y T, ~ Y a(N-k)T*1, ~a(N) ae.on X,
n=0 k=0
and the pointwise dual ergodicity of T follows from the Chacon-Ornstein
theorem.
It can also be shown that a conservative ergodic measure preserving trans-
formation (X, 4, m, T) is pointwise dual ergodic iff there are sets A, B € # of
positive finite measure, and constants a(n) so that

1 no.
Y T"1, > 1 a..on B.
a(n) 2, 4

2. f-expansions with finite invariant measures. Let f: (1, 0) — (0,1) be
onto and strictly monotone of class C2. Given x € [0,1] one can find ¢,, ¢,,... €
N so that

x:f((P()+f((P1 + f(py+ - etc.))).

In this case we say that (@,, ¢,,...) is the f-(+)-expansion of x.
Alternatively, we may find ¢,, ¢,... € N so that

x=f((P0_f((P1 — gy — -+ etC.)))

" in which case we say that (g,, ¢,,...) is the f-(—)-expansion of x.

Either way, we shall regard (¢, ¢,,...) as a stochastic process on the prob-
ability space ([0,1], Z, A\) and attempt to study the asymptotic distributional
behaviour of sums £} _ p(¢,) for ¢: N - R ,.
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To do this, we use the shift map T on (¢, ¢,,...) defined by T(¢,, ¢,...) =
(@, @y, ... ). This shift map can be written explicitly as a map of [0, 1]:
In the case of f-(+)-expansions, set

Tx=((f"'(x))) and o(x)=[f"'(x)].
Then
x=f(e(x)+ Tx) = f((p(x) + f(o(Tx) + T2x)) = ... etc,
SO
pi(x) = 9(T"x).
In the case of f-(—)-expansions, set
Tx=1-((/""(x)) and ¢(x)=[F"(x)] +1,
then
x = f(p(x) = Tx) = f(p(x) — f(¢(Tx) — T?x)) = - etc.
SO again
pi(x) = o(T"x).
For example, if f(x) = 1/x, then for f-(+)-expansions

T ( 1 [1]
X = x) : q>(x)—_x_,
and for f-(—)-expansions
1 (1]
Tx=1—((—)), p(x)=|—|+1
x | x ]
The maps T have the property that for every n € N

T: (f(n+1), f(n)) > (0,1) xesp. T: (f(n), {(n+1)) - (0,1)

is a C? diffeomorphism.
We shall need the following theorem which is due to Adler [2].

ADLER’S THEOREM. Suppose that A is a countable set, « = {I,: a € A} isa
collection of disjoint open subintervals of [0,1] so that U =U, I, has full
A-measure in [0,1], and suppose that T: U — [0,1] is such that

(i) For every a € A, T is a C? diffeomorphism of I, onto (0,1).
(il) For some m > 1 there is a A > 1 such that |T™(x)| >\ for every
x € NP T~ *U. .
(iii) There exists M < oo so that |T"(x)/T"(x)?| < M for every x € U.

Then there is a T-invariant probability measure pu ~ X such that
ess supllog(dp/dM)| < co and there exist L < oo and 0 < 0 < 1 such that for
everym,n>1, A € 6({T *a: 0 < k < m)), B€ o({T *a: k > m + n}))

(A N B) = p(A)u(B)| < L7 u(A)u(B).
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It has also been proved that under these conditions, du/dA has a continuous
version. This was proved by Halfant [9] in case |A| < oo, and in general by
Thaler [16]. We remark here that under the same conditions, du/dA in fact has
an absolutely continuous version, with bounded derivative. To see this, examine
Thaler’s proof of the existence of a continuous version ([16], page 82).

Define

ho= X |f |-

by -y
Thaler shows that a subsequence of any subsequence of g, = (1/n)Xi_ih,
converges uniformly to A, the continuous version. But for every n, A, is
differentiable and

h,n = Z sgn fk,, ok, fk,,,m k, (Sgn fk,, ek, is constant),
kyooky

whence

< X 1) <K X 1)
Ry ky, Ry ky

<Ke¥ ¥ inflff )< Ke¥[ ¥ | .4ldA
ky ek, ! 0,1k, - &, "
= KeX.
There is a subsequence g/, — g weak * in L>*([0,1]). Clearly, for this g:
lg] < Ke¥ and

h(x) = const + /xg(t) dt.
0

Using these results, we now extend Lévy’s result to other f-expansion digits
with finite invariant measures.

THEOREM 2. Suppose that f: (1, 0) — (0,1) is strictly monotone, onto, and
of class C2.

Consider the f-expansion (¢y(x), ¢,(x),...) of x € [0,1] ( plus or minus), and
suppose that the associated transformation T of [0,1] [Tx = ((f~Y(x))) or
1 — ((f " '(x)))] satisfies the conditions of Adler’s theorem.

If ¢: N — R, is such that [j¢ o @, dX = o0 and L(x) = [J(d(@y(t)) A x)dt is
regularly varying with index 1 — vy (0 <y < 1) as x 1 o0, and b(n) = nL(b(n)),
then

Ly dist cY.
=
b(n) kglqb((pk) n—oo lSt‘C y?

dist

where
0<ec< .

Proor. It follows from Adler’s theorem that there is a T-invariant measure
p ~ A under which the stochastic process (¢, ¢,,...) is c.f.-mixing. In order to
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apply Theorem 1, we must examine L,(x) = [J(¢(@y(¢)) A x) du(t). Let h be the
continuous version of dp/dA.

If f is monotone increasing, then @y (¢) = [f '(¢)] or [ '(¢)] + 1 tends to
infinity as £ 11~ whence L (x) = [J(¢(py(£)) A x)h(t) dt ~ h(1)L(x) as x 1 0.

Similarly if f is monotone decreasing, then ¢, (¢)1 00 as ¢t |0 and Ll(x)
h(0)L(x) as x 1 o0.

Either way, for A, = h(0) or A(1), L (x) ~ h,L(x) is regularly varying with
index1 — y as x = oo, and if b,(n) = hY/"b(n), then b,(n) ~ nL (b,(n)), whence
by Theorem 1

dist

- dist Y, .
by(n) ’Eltb(tpk) Y

Thus

dist Z o( @) — dist Ay"Y,.O

1
b(n) 4=

Note that the calculation of the constant ¢ in this theorem involves the
calculation of certain values of the continuous T-invariant density.

EXAMPLES. f(x)=1/x'% a > 1. For f-(+)-expansions, Tx = ((1/x*)), and
the conditions of Adler’s theorem are satisfied withm = 1, A = q,and M = a + 1
fora > 1and,by[2lm =2, A =4,and M = 2 for a = 1.

For f-(—)-expansions, Tx = 1 — ((1/x*)) and the conditions of Adler’s theo-
rem are satisfied for a > 1 with m =1, A=a, and M =a + 1. For a = 1 the
conditions of Adler’s theorem are not satisfied as T(1) = 1, T/(1) = 1, and indeed,
a different treatment is needed.

3. f-expansions with infinite invariant measures. Here we study some
f-expansions whose associated maps do not satisfy the conditions of Adler’s
theorem, and have infinite invariant measures. Maps of this type have been
studied by Thaler in [15] and [16].

Suppose that A is a countable set, a = {I,: a € A} a collection of disjoint
open intervals in [0,1] whose union U has full measure in [0,1]. We consider
maps T: U — [0, 1] which map each I,,, C2-diffeomorphically onto (0, 1) in such a
way that for each a, T extends to a C1 diffeomorphism of I, onto [0,1]. We
denote the inverse of T: I, — [0,1] by f, and the unique point of I, fixed by T,
by x,,

We also assume that

(i) Foreverya, x € I; (T)|7,)(x)| = 1 with equality only when x = x, and
T(x,) = 1. .
(ii) The set A, = {a@ € A: T’(x,) = 1} is finite.
(iii) There is an M < oo so that |T"(x)/T"(x)% < M for all x € U.
* (iv) For every &> 0 there is a p(g) > 1 such that |T"(x)| = p(¢) for all
x€U-U,e\(x,—&x,+e) N1,
(v) There is an ¢ > 0 such that for every a € A, f/(x) increases on I, N
(x,— & x,) and decreases on I, N (x,, x, + €).
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THALER’S THEOREM. ([16]) If T satisfies conditions (i), (i), (iii), (iv), and (v),
then

(a) There is an infinite o-finite measure m ~ A withm - T~ ! = m, and
dm -1
—(x) =h(x) TT (x — x,)(x — f,(x)) for X a.e. x,
dA acel,

where h: [0,1] — R, is continuous (in fact, h is absolutely continuous).

(b) T is a conservative rationally ergodic, exact endomorphism,

(¢) T has minimal wandering rates, in the sense that there is an L(n)?1 o
such that

1

m(nL_J T‘kA) ~L(n) asn- o
k=0

for any measurable set A bounded away from {x, a € A} [that is,
A C[0,1]\U, e (x, — & x, + €) for some & > 0].

(@ L)~ T e X (140 - £0),

where

¢ = hlx) TT (50 = x,)(x, - fo(xq)) "
baéaI

We shall need

THEOREM 3. Let T satisfy the conditions of Thaler’s theorem. Then T has
DK sets, and indeed, the following sets are DK sets for T

(i) I,a& A,
) I, n T 'I,,a,be Ay, a+b.

Hence, T is pointwise dual ergodic and if the asymptotic type of T is
a,(T)=Yj;_u,, then

S wyen ~ (-i;) f( Y el i) = f0)]|e " asp 0.

n=0 n=0‘ae\,

Proor. We consider a transformation like Schweiger’s [14] jump transforma-
tion:
Define a: U - Abyx € I, ,,,

¢: YT "U->N
n=0 '

by
[1 ifa(x) €A, “and/or a(x) # a(Tx) (A,=A\A,),
| min{n > 1: a(T"*'%) # a(x)}, a(x) € A(T), a(x)=a(Tx),

and Sx = T*Wx,

o(x) =
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Clearly if n > 1 and a(T"x) € A, [or a(T"x) # a(T""'x)] then ¢(x) < n.
Moreover, in this case there is an m > 1 so that S™x = T"x. To see this, write
S™x = T*"™x where k(m) = O‘qb(Sfx) If S™x + T"x for every m there
exists m, so that k(m,) <n < k(mo + 1), and setting y = T*™o)x we have
that a(T" *moyy e A, [or a(T" *moy) % q(T" *km)*+1y)] but ¢(y) =
k(m, + 1) — k(m,) > n — k(m,)—a contradiction.

This means that for a € A (or a # b), the transformation induced by Ton I,
(or I,N\T'I,) is identical to that induced by S.

We show that oJ = I(a€ Ay)or I, N T ', (a+#b),is a DK set for T by
showing that T, = S, satisfies the conditions of Adler’s theorem. This is done by
studying S, which, although not piecewise onto, does satisfy conditions (ii) and
(iii) of Adler’s theorem. (The idea of finding intervals JJ for which T, satisfies the
conditions of Adler’s theorem seems to originate in [5].)

For a € A|(T), S is a diffeomorphism of I, onto (0,1). For a € A(T),
a#be A(T) and n > 1, setting ([a],, b) = (a,..., a, b) where a appears n
times and [, ,, = NpZoT~ kI, N T~"I,, we have that S is a diffeomorphism of
ILa,, ») Onto I(a o =1, ﬁ T 1I,, when n > 2, and onto I, when n = 1.

Under Thaler’s assumptions, there exists A > 1 so that |T’(f2(y))| = A for
y&I,,ac A(T)and [T (y)|=Aforye I, ac A(T).

If yel,, aeAjor yel,, (a+Db), then IS =T(y)I=A. If ye
Lia,..5p(n=1) b#a€ A(T) then writing x = TSy = T"*'y € I, we have
that "S’(y) = T™(y) = ;ZeT(T*y) = TI{ T/ £+ (x)), whence |S/(y)| 2
IT’( f2(x))| = A since x & I,. Thus S satisfies condition (ii) of Adler’s theorem.

Clearly |S"(x)/S"(x)*| <M forx €I, a € Ay, or x €1, 4, a # b, (Sx =
Tx). Suppose x € I, ) some n, a, b, then Sx = T"x and

l@lns
S"(x)/S"(x) = :go(Tk’(x)/T’“(x))(T"(Tkx)/T’(Tkx)),

whence
n—1
|87(x)/8"(x)*| < M L |T*(x)T(Th) || ()|
k=0
=M Y 1/|T"*(T*)|
k=1
n—1
=M Y 1/|T*(T" *x)|.
k=0
Setting y = T"*'x € I, we have T" *(x) = f**!(y) and

S"({)/S'(x)zl < Méol () -

It is not hard to show, ﬁsing the lemma on page 305 of [15], that
SUP; e 4, SUPx e I‘,E?zo=0| fan,(x)l =A < o, whence

|S7(x)/8"(x)| < MA = M, < .
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Next, suppose that a € A(T)(ora # b, a € A,)andset J = I, (or I, N T '1,).
Then T, =S,: J — J is piecewise onto. Clearly inf, |Sj(x)|>A > 1 and an
argument proposed by Adler in his afterword to [5] shows that |S}(x)/Sj(x)?| <
M A/(A — 1). Thus S, satisfies the conditions of Adler’s theorem and hence, if
a*: I > A(T)) is defined by x € I,.,,, then the process {a* o T}}¥_, is c.f.-mix-
ing. The first return time function of T on </ depends only on a* and so by the
main lemma, < is a DK set for T

We have shown that T always has DK sets. Now suppose that A is a DK set
for T and that A is bounded away from {x,: @ € A}, as are I, (a € A) and
I,NT 'I,(a#+b).

We have that T is pointwise dual ergodic (hence rationally ergodic). Sup-
pose the asymptotic type of T is given by a, (T)=X}_,u,, u, = 0. Then
YX_ ue P ~ u,u(p)/m(A)? and so by the asymptotic renewal equation:

il%é”"~(%)/%(p)

n=0

2]/ £ £ ediz - z@)er

P/ n=0'\aea,

by (c¢) of Thaler’s theorem. O

REMARK. The maps T for which Thaler’s theorem and Theorem 3 have been
stated have been assumed to increase on intervals with critical fixed points, (that
is, T increases on I, for a € A,). This assumption can be dropped provided
T’ (x), and f/(x) are replaced by their absolute values in assumptions (i), (ii), and
(v). Indeed the proof of the existence of DK sets for such transformations (the
first part of Theorem 3) proceeds as written. Also, as mentioned in [16], if T is
such a transformation, then T'? satisfies the assumptions for Thaler’s theorem
(unmodified), so T'? (and hence T') is conservative, exact and rationally ergodic.
The asymptotic type of T can be calculated from that of 7’2 by the relationship
a,(T) ~ 2ag, ,(T?).

We can now state and prove our results on the distributional convergence of
f-expansions with infinite invariant measures.

THEOREM 4. Suppose that f: (1,0) = (0,1) is strictly increasing (de-
creasing), onto, C? and |f"(x)| <1 forx > 1, |f ()| =1, f"(1) < 0(> 0), and
there is an M < oo so that |f (x)/f (x)| < M for x € [1, o).

If (@)(x),@,(x),...) is the f-(+)-expansion ( f-(—)-expansion) of x € (0,1),
¢: N - R, is such that

5(1) = 0(6(2) = 0) and L(x) = ['(elan(t) A x)

1
0

is regularly varying with index 1 —y (0 <y <1l)asxToo and b(t) = tL(b(1)),
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then

dist Y o(g,) —distcY, (0<c< o).

1
b(n/logn) =,

ProOF. We shall prove the theorem for the case of f-(+)-expansions with f
increasing. The other case [of f-(—)-expansions with f decreasing] is analogous.

The associated transformation for the f-(+ )-expansion is Tx = (( f~'(x))) and
this satisfies the conditions of Thaler’s theorem:

A=N, L=(f(n),f(n+1), A={1}, flx)=f(x+1),

and x, = 0.
There is a T-invariant o-finite measure p ~ A whose density satisfies

du x hy(x)
- = h = R
d\ (x) (x)x—fl(x) x
where A, h,: [0,1] = R are continuous.
By Theorem 3 T is pointwise dual ergodic and a, (T) = £}_,u,, where

£ wer = (1) £ norpre
n=0 PJ| n=0
Now v, = f"(1)10 and v,,, = f(v,) = v, + ({(0)/2)v; + o(v;) as n — oo,
whence v, ~ const/n.
Thus, by Karamata’s Tauberian theorem (see [8]) a,(T') ~ cn/logn, and by
Theorem 1 of [1]
n—1
Y goT*/a, (T) —>/gdu in measure Vge L'.
k=0 X
Next let I=(f(2),1) and S (x)=X}_,1,(T*x). Then S,/a,(T) - u(I) in
measure [0 < u(I) < oo] and, since ¢(1) = 0

n S,
Y popeTk= 3 ¢ogoT} onl
k=1 k=1
The induced transformation T) is readily seen to be piecewise onto. Moreover,
if S is the jump transformation considered in the proof of Theorem 3, then
T, = S;. An argument identical to the first part of the proof of Theorem 3 shows
that T satisfies the conditions of Adler’s theorem. So, if a: I — A(T}) is defined
by x € I, then the process {a ° TF: k > 0} is c.f.-mixing. Moreover, on I, ¢
depends only on a, hence the process {p°T/: k > 0} is c.f.-mixing and by
Theorem 1 if b(n) ~ nL(b(n)) then

1 n
distm— /z—:l dpo@oTf — dist ¢,Y,, where0 < ¢, < oo.
To finish recall that

n S,

Y popoeTh= 3 ¢poqoT)

k=1 k=1
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and
S,/(n/logn) - ¢, inmeasure (0 <c, < ).

Let p < Al, p ([0,1]) =1, and ¢ > 0.
Writing Y(n) = Lf_,po@o T} and m(n) = (1 + €)c,(n/log n), we have for
0<x<o

pl Y ¢opoT* < xb(n/logn)

k=1

p(X(8,) < xb(n/logn))

p(Z(Sn) < xb(n/logn), S, < m(n))

p(E(m(n)) < 2b(m(n)/(1 +e)c,), S, < m(n))

> p( X (m(n)) < xb(m(n)/(1 + €)¢,) - p(S, > m(n))

Now, p(S, > m(n)) = ,_.,0 and b(m(n)/(1 + €)c;) ~ b(m(n))/(1 + &)/ 7c/”
as n — 0. Thus

%

v

liminfp( Y popoTh< xb(n/logn))
K

> linginfp(Z(m(n)) <xb(m(n))/(1 + e)l/yc}”)

= Prob(coYY <x/c/"(1+ e)l/y),

since dist Y, is continuous.
This is true for every ¢ > 0, so

liminfp( Y popoTk< xb(n/logn)) > Prob((coc{/y)YY < x).

k=1

Similarly,
limsupp( Y popoT* < xb(n/log n))
k=1
< Prob(coc‘l/VYy < x)
and

1 n
dist ———— opoT* — dist c,cl/7Y,.O
8 b( n/log n) kzj:] d) ® o v

More precise information is available for our advertised example, the 1 /x(—)-
expansion.

COROLLARY. Ifx=1/p\(x)—1/9,(x)— --- etc., then
1 n
— Y ¢, 3 inmeasure.
nog—
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ProoF. Here Tx =1 — ((1/x)), A = N,

In:( 1 1)’ Ar={1}, w(x)=[%

Z = (0.
n+1’n +1, I (0’2)’

s ! d a(T ]
ﬁ(x)—l_x and a,(T) ~ n/logn.

Hence S,/(n/logn) =, p(0, ;) = log2.
Set ¢(k) =k — 2, then ¢ op = 0 on I,. We have that
L(x) = /]/2(¢°<p A x)dp/log2 ~ log x /log2.
0

Thus
b(t) ~ tL(b(t)) = tlog b(t)/log?2
=b(t) ~ tlogt/log2.

From Theorem 1
Y, popoTl/b(n) > 1=1Y, inmeasure,
k=1

whence

Y ¢o@oTk/b(n/logn) — (log2)”' in measure.
k=1
Now b(n/logn) ~ n/log2. So

- Y ¢o@oeT*—>1 inmeasure,
k=1

since

1 n
e=2+¢op: — ) ¢oT* >3 inmeasure.O
n g

Now suppose that
f:[1,0) — [0,1) is increasing, C?,
ffA)y=1, fi(x)<1
for x > 1, f’(x) is decreasing near 1, f(1 + x) =x — cxP?*! + o(x?*!) when
x10,(c>0, p>1)and |f"(x)/f (%) < M.
The associated transformation T for f-(+ )-expansionsis Tx = (( f~'(x))) which
satisfies the conditions of Thaler’s theorem with A = N, I, = (f(n), f(n + 1)),

A, = {1}. Here (dp/dA)(x) = h(x)/x? where h is continuous. The transforma-
tion T is pointwise dual ergodic and a,(T) ~ const n'/? whence

. 1 n
: o Tk : -1/ 1
dlStnl/p k§=1g T* > dlstconstj;(gdp.Yl/p” forg € L'(pn).
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Given ¢: N - R, ¢#(1) = 0 one may ask about the distributional behaviour of

Y pogoTh

k=1

THEOREM 5. In this situation, if [}(¢° ¢ A x)dX = L(x) is slowly varying
as x T oo and if b(n) = nL(b(n)) then

Z poqpoTh - distCOnSt( YI/P) o

dist ————
is b(n77) &,

PROOF. As in the proof of Theorem 4, setting

n

I=(f(2)71)7 Z(n) = ¢°q)°TIk and Sn = Z 11' Tk,
k=1 k=1

we have that
{¢ oo Ty } is a c.f. mixing process, and so by Theorem 1:
Y (n)/b(n) - ¢ inmeasure on I

where 0 < ¢ < 0.
Choose p < A, a probability measure on I. On I, ¥}_¢oq@oT* = 3(S,).
Choose x € R, and x”” < x < x’. Then

p i popoTk < cxb(n'/?) =p(z(sn) < cxb(n‘/l’))
k=1
= p(X(8,) < cxb(n'/?), S, < x'n'/?)
+P(Z(S,,) < exb(n'/?), S, > xfnl/p).

Now ~

p(X(8S,) < exb(n'/?),S, > x’nl/”) Sp(Z(x'n‘/”) < cxb(nl/”))
= p(Z(x’nl/”) < ci,b(x’n‘/”)) -0
x

because ¥(n)/b(n) = ¢ in measure and b(n) is regularly varying with index 1.
Thus

| 5 oonoTt s ()| = p(L(S) < xb(nl7), 5, < xn'”)
k=1
<p(8, <x'n"?) > Prob((y,/p)_l/p < kx’),

where 0 < & < o0.
Thus

limsupp( Y po@oTk < xb(n‘/”)) < Prob((Y,/p)_l/p < kx’).
k=1

n—x
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Next,
p(X(8S,) < exb(n/?)) = p(XL(S,) < cxb(n'/?), S, < x"n'/?)
ZP(Z(x”nl/l”) < cexb(n'/?), S, < xunl/p)
> p(8, <x'n'/?) = p(L(x"nV/7) > cxb(n'/7))
- Prob((Yl/p)_l/” < kx"),

as

p(L(x"n/?) > exb(n'/7)) = p| L(x"n'/?) > e b(an'/7)|

- 0.
[This again because X(n)/b(n) — ¢ in measure and b(n) is regularly varying
with index 1.]
Thus

liminf p(¥(8,) < exb(n'/7)) > Prob((Y,,,) /" < kx).

The continuity of Prob((Y,,,)”'/” < x) now shows that p(X7_,¢poqpoT* <
exb(n'/?)) - Prob((Y,,,)” "7 < kx). O

CONJECTURE. If L(x)= [}(¢o@ A x)dA is regularly varying with index
1 — v (0 <y<1)and b(¢) = tL(b(t)) then

dist ¢pogoTk - distconst Y,(Y, ,) /",

1
b(n'/?) kz=:1
where Y, and Y, , are independent.

Lastly, we note the following functional versions of Theorems 1, 2, 4, and 5,
which follow from the main lemma and Bingham’s theorem (mentioned above):

THEOREM 1. Under the conditions of Theorem 1,
[nt]
dist— Y ¢(g,) — dist Y.(2),
b(n) k=0 * Y
where Y (t) is the stable subordinator of index y, and the convergence is that of
finite dimensional distributions.

THEOREM 2. Under the conditions of Theorem 2,

[nt]

o(p,) = dist cY.(t), where0 < ¢ < .
b(n) kz=:0 k) 'y( )

THEOREM 4’. Under the conditions of Theorem 4,

[nt]

oAy o(p,) — distcY.(t), where 0 < c < oo.
b(n/logn) ,E’O (92) (2)

dist

dist
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THEOREM 5’. Under the conditions of Theorem 5,

1 [nt] .
. -1
mk§l¢°¢°T —>dlStCY1/p(t),

where 0 < ¢ < oo and Yf/}, is the inverse of the stable subordinator of index 1/p.

dist
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