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Auburn University

There exist exponents of an operator stable measure which commute with
every operator in the measure’s symmetry group. These exponents together
with a new norm lead to some simplifications in the representation of the
Lévy measure.

0. Introduction. An operator-stable (OS) probability measure p on a finite-
dimensional real vector space V is the limit distribution of operator normed and
centered sums of a sequence of i.i.d. random vectors in V. The classical stable laws
on R' are a special case. If p is full and operator stable, then p is infinitely
divisible so if fi is the ch.f. of p, then for ¢ > 0, i’ is the ch.f. of an infinitely
divisible measure p’. The role of the index in the one-dimensional case is played
by an invertible linear operator B on V called the exponent of p. If we define
t” = exp{(Ln t)B} = % (Ln t)’B//j!, then B is an exponent for p if

(1) p=t%ux8(b(t)), t>0,

where 8(b(t)) is the unit mass at b(¢) € V and ¢8u = ut= 2. In [7] it was proved
that full OS distributions always have at least one exponent.

An exponent of a full OS law p determines much of its structure. (See [2] and
[7] for the results which are now described.) In general p has both a Gaussian
component p, and a Poisson component p,. These components are concentrated
on independent subspaces determined by the exponent B. To be precise let f(x)
denote the minimal polynomial of B. Then f(x) = g(x)h(x) where the roots of g
have real parts equal to § while those of & have real parts greater than }. The
Gaussian component p, is concentrated on V, = kernel(g(B)) while p p 1s con-
centrated on V, = kernel(A(B)). Furthermore, V=V, ® V,, u, and p p are full
and OS on V, and V,, respectively. The exponents of p, and p p are the
restrictions of B to V, and V,, respectively. Now let M denote the Lévy measure
of . The exponent determines a major part of the structure of M. From (1) upon
noting that ¢ - M is the Lévy measure of p’ and that ¢2M = Mt~ B is the Lévy
measure of ¢Pu, one sees that ¢ - M = tBM. This fact can be used to show that if
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OPERATOR STABLE PRGBABILITY MEASURES 1015
A is a Borel subset of V,, then
(2) M(A) = [ M(A)K (dr),

where K is a finite measure on a Borel subset L of the unit sphere U in V, and
M, is concentrated on the single orbit {¢2x: ¢ > 0} determined by x. The Lévy
measure M, also satisfies the condition that ¢ - M, = ¢t3M_ and as a result,

MA{t3x:t>s} =1/s, s>0

[i.e., M (A) = [L,(tBx)t~ 2 dt]. From (2) it follows that the support of M is the
union of orbits of ¢2. Each orbit begins at the origin and extends to infinity [i.e.,
lim,_, ,t®x = 0 and lim,_, ||¢Bx|| = c0]. The shape of these orbits is determined
by the exponent B. In particular cases orbits can be straight lines (B = AI), half

of a parabola [B = ((1) g),V= R?], or spirals [e.g., B = (: ‘})= I + @ where
Q + @* = 0 s0 t9 is a rotation]. The expression for M, above shows that the tail
behavior of M along orbits is determined by B. The measure K assigns weights
to the orbits and determines which orbits are included in the support of M.
Together B and K determine M. But, in general B and K are not unique. Is
there a reasonable way to choose a particular exponent and measure K ? The set
of exponents depends on the amount of symmetry possessed by p. Call a linear
operator A on V a symmetry of p if for some a € V, p = Ap * §(a). It is natural
to expect that a symmetry of p should take orbits into orbits while leaving K
invariant. (See Theorem 7 below.) In particular, if BA = AB, then AtBx = tBAx
(since t” is a power series in B) so orbits are taken by A into orbits. Further-
more, the requirement that B commutes with every symmetry tends to pick out
exponents with nice properties whenever possible. (See Theorems 4 and 5.)

EXAMPLE. Suppose that p is the standard Gaussian measure on R¢. If X and
Y are i.i.d. p, the measure corresponding to X + Y is p * p = 21724, One suspects
(and easily verifies) that {I is an exponent for pu. Suppose that S is a skew
operator, that is, that S+ S* = 0. For each ¢ > 0, % is orthogonal and so
t9 = p, ie., 5 is a symmetry of p. It follows that 11 + S is also an exponent for
u, for any skew operator S (see Theorem 1). Thus operator stable measures may
have many exponents; the number of exponents depends on the size of the
collection of symmetries of u. Does an operator stable measure have a “simplest”
exponent?

A lemma of Schur’s ([6], page 173) suggests a possible answer. This lemma
says: “Let F' be a family of linear operators on a Hilbert Space H and suppose
that the only closed subspaces which are invariant undet every operator in F are
{0} and H. If A is a self-adjoint linear operator on H that commutes with every
operator in F, then A = cI for some scalar ¢.” (As usual, I denotes the identity
operator.) Schur’s lemma suggests that the “simplest” exponent would be one
which commutes with a large collection of operators. In this example, 11 is the
only exponent of p which commutes with every symmetry of u. We will show
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below that there is always an exponent of p which commutes with all the
symmetries of u (Theorem 2).

Our results on commuting exponents are applied to simplify the representation
of the Lévy measure of an OS law in Section 3. There we define a new norm. The
unit sphere relative to this norm plays the role of L above. The coriesponding
mixing measure K does not depend on the choice of an exponent (Theorem 6).
This representation provides a simple relationship between the symmetries of p
and those of K. These results complement those of Kucharczak [5], Jurek [3],
and Hudson and Mason [2].

1. Preliminaries. Let p be a full OS probability measure on a finite dimen-
sional real vector space V. GL(V) denotes the set of all invertible operators on V.
For A € GL(V), we define Ap = o A~'. Two groups of interest in connection
with p are the symmetry group

S(p) ={A € GL(V): Ap*8(a) = p forsome a € V}
and
G = {A € GL(V): for some ¢t > 0, forsome a € V, ' = Ap+8(a)}.

It is known that S(p) is a compact, normal subgroup of G. For any closed group
H, TH will denote the tangent space of H. Thus A € TH if and only if
A =lim,_ (H,—I)/d, where {H,} C H and {d,,} is a real null sequence. We
recall that the exponential maps TH onto the connected component of I in H.
CH will denote the center of H, that is, those elements of H which commute
with every element of H. Recall that CH is a subgroup of H.

The collection of exponents of u, denoted E(u), is the set of all operators for

which (1) holds. The following result gives a basic fact about exponents.

THEOREM 1. Let B € E(p). Then

(i) every eigenvalue of B has real part > 3,

(i) E(p) = B + TS(p).
For a proof of this result see [1] and [7].

2. Commuting exponents. In this section we investigate the existence of an
exponent which commutes with every operator in S(p). Such exponents will be
called commuting and the collection of commuting exponents will be denoted by

E(p).

PROPOSITION 1. Let A € S(n) and B € E(p). Then ABA™' € E(p). More-
over, if S(p) is discrete, the unique exponent B is commuting.

Proor. We have Ap = p* 8(a) and
(Ap) = Ap' = A(tBu+8(b(t))) = AtPux8(Ab(t)) = t454 (Ap)=8(Ab(t)).
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Hence
pl=tAB4 'y« §( Ab(t) — ta + tAP4 ')

and ABA ' € E(p). Now if S(p) is discrete, TS(p) = 0 and B is the unique
exponent. Thus ABA™! = B and B is commuting. O

The following example shows that not all exponents are commuting.

EXAMPLE. Let p be the symmetric Cauchy distribution on R% Then I € E(p)
and S(p) is the full orthogonal group. Hence T'S(p) consists of the skew

symmetric operators. By Theorem 1, E(p) =1+ TS(p) so B = [_: 1] is an

exponent. Also A = [(‘) _(1’] € S(p). A direct computation shows that AB # BA.
Furthermore, A does not map orbits into other orbits.

The main result of this section is that commuting exponents always exist.

THEOREM 2. E(p) is nonempty.

ProOF. Let H be a Haar probability measure on the compact group S(u),
and let B € E(u). Define

M = sBs~ ' dH(s).
S(p)
Since E(p) is closed and convex by Theorem 1 and closed under conjugation by

elements of S(p) by Proposition 1, M € E(p). If A € S(p), then by the invari-
ance property of Haar measure

AMA™' = AsBs 'A"'dH(s)
S(p)

= f (As)B(As) ™' dH(s)
S(p)

= sBs 'dH(s) = M.
S(p)

Thus M € E(p). O

The collection of all commuting exponents is characterized in our next result.

THEOREM 3. Suppose B € E(p). Then E(p) = B + TCS(p).

PROOF. Assume B € E(p). Using the relation between groups and their
tangent spaces one readily verifies the equivalence of the following statements.

(i) B€ E(p), 3

(ii) B — B € TS(r) and B — B commutes with every element of S(p).
(iii) For all ¢, exp{t(B — B)} € CS(p), and

(iv) B— B e TCS(p). O
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COROLLARY. E(p) = E(p) if and only if TS(p) = TCS(u).

We now examine the extent to which the structure of a commuting exponent is
determined by the “size” of S(u).

THEOREM 4. Let B € E(p). If the only proper subspace of V invariant
under S(p) is 0, then B = NI + WQW ™, where W is positive definite and Qis
skew-symmetric. Furthermore, either @ = 0 or Q% = WQ?W~' = — B2[ for some
B> 0.

PROOF. Since S(p) is compact, there is a positive definite operator W and a
closed subgroup G of the orthogonal group such that
S(p) = WGW 1.
It follows that S(W~'w) = G. Since B€ E(p), B,= W 'BW € E(W ).
Write B, = B, + B, where B, = }(B, + Bf) is self-adjoint and B, = (B, —
By) is skew-symmetric. Since B, € E(W™ '), AB,= B,A for A € G. Take
adjoints to see that ByA* = A*B¥ for A € G. But every operator in G is
orthogonal so G = {A*: A € G}. Thus
ABF = BFA, AEQG.

It follows that every operator in G commutes with B, which is self-adjoint. Now
by hypothesis the only proper subspace of V invariant under S(p) and hence
under G is 0. By Schur’s lemma, B, = AT for some real number A. Now consider
B,. Since B, is skew-symmetric, it is normal and thus its minimal polynomial is
the product p,(x),..., p,(x) of distinct irreducible polynomials. If %2 > 1, then
ker p (B,) is a proper subspace of V which is invariant under G contrary to our
hypothesis. Thus £ = 1 and the minimal polynomial of B, is either x or x2 + 82
for some B > 0. (A skew-symmetric operator has purely imaginary eigenvalues.)
If it is x, then B, = 0; otherwise, B} = —B*I. From B, = B, + B, = Al + B,,
we obtain upon setting @ = B,,

W BW =+ Q

or B=AI + WQW . Finally B € E(p) so the real part of every eigenvalue of B
is not less than §,ie, A > . O

CoRrOLLARY. If in addition to the hypothesis of the theorem, either B is
diagonalizable or dimV is odd, then B = \1.

Proor. First suppose B is diagonalizable. Let v be an arbitrary eigenvector
of B so Bv = Ao for some real A,. By Theorem 4, B = Al + WQW ! so v is an
eigenvector of WQW~™'. In particular, WQW*'v = (A, — A)v. Hence
(WRQW ")2p = (A; — A\)%. But WQW™' =0 or (WQW™ 12 = —B2[. In either
case it follows that A, = A. Since B is diagonalizable, B = A\I. Now suppose
dim V is odd. Since @ is skew-symmetric,

det @ = det @* = det(— Q) = —det Q,
so Q is singular. Hence @* # — B[ and therefore @ = 0. O
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A slight refinement of the preceding theorem is given in

THEOREM 5. Suppose B € E(p) has p real eigenvalues A,,..., A, with
corresponding eigenvectors v,,...,v,. If {Av;: A € S(p),1 <i<p} spans V,
then B is diagonalizable with spectrum {\,,..., A }. Thusif Ay = -+ =\, = A,
B = AL .

Proor. For A € S(n), BAv, = ABv;, = A;Av,, so Av; is an eigenvector of B
with eigenvalue A ;. Hence there is a basis of V consisting of eigenvectors of B and
so B is diagonalizable. O

COorROLLARY. In R?if B € E(p) and if there is a reflection A € S(p), then B
is self-adjoint.

PrOOF. Select orthornormal vectors v, and v, so that Av, = v, and Av, =
—v,. Then ABv, = Bv, and ABv, = —Buv,, so Bv, = Ajv; and Buv, = A,v,
where A, and A, are real. O

3. The Lévy measure. In this section we discuss the relationship between
commuting exponents and the representation of the Lévy measure of u. Since p is
infinitely divisible, one can write the characteristic function of p in the canonical
form

B(5) = exp(iCy, @) = 13 2y + [l 9)M(dx)

where a € V, 2 is a nonnegative definite self-adjoint operator, M is a o-finite
measure satisfying

12 A 1M () < 0,
Vv

and

ix, 5)
1+ (x,x)’
For OS measures it has been shown that one can further decompose the Lévy
measure M as follows. For an exponent B of u set Ly = {||x|| = 1 and ||t%x|| > 1
for all ¢ > 1} and define the mixing measure K 5 on the Borel subsets A of L by

Kp(A) = M({tPx: x € A, t > 1}).
Thus K, assigns mass to the particular orbits {¢5x: ¢ > 0}. Note that both L,
and K, depend on the choice of exponent B. In terms of K the Lévy measure
M is given by
A oC

(3) M(S) = f Io(tPx)t 2 dtdK 4 x).

LYo

Y(x, y) = exp{i{x, y)} — 1 —

(See [2] and [3].) It was necessary to introduce the subset L, of U since for some
exponents, orbits may intersect the unit sphere more than once.
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We now introduce a new norm ||| - ||| which depends on the particular OS law
but not on the choice of exponent. The unit sphere U’ = {v: |||v]|| = 1} induced
by this norm will intersect each orbit once and so may play the role of Lg. As
above we define a mixing measure K on the Borel subsets A of U’ by
K(A) = M{tPx: x € A, ¢t > 1}. This measure K also does not depend on the
choice of exponent and the representation (3) of the Lévy measure M in terms of
K is still valid. The new norm leads to a system of “polar” coordinates with nice
properties (cf. Jurek [4]).

For x € V, and B € E(p) define ||x|| = [/s, gt x||H(dg)t "' dt where H
again denotes Haar measure on S(p) and || - || is the original norm on V.

ProPOSITION 2. If p is full and OS on V, then

@A) ||| - |l does not depend on the choice of B € E(u),
@di) ||| - ||| is @ norm on V,
(iii) for A € S(u), I Ax|| = llxll,
(iv) t - |||tBx|| is strictly increasing on (0, ) for each x # 0, and
(v) the map @z U’ X (0,00) > V\ {0} defined by ®y(x,t)=1tBx is a
homeomorphism when U’ X (0, ) has the product topology.

Proor. (i) Let B E(p) and let B, € E(p). By Theorem 1, B— B €
TS(p) so for all ¢ > 0, BytB8 B =¢B-BoB . Differentiate to see that B, com-

mutes with B — B, and consequently that ¢% = ¢t#~B¢Bs For x € V, use the
invariance property of Haar measure to obtain the equalities

1
x5 = fo L  Ngt"sle " H(dg) de
S(p

l - .
= ['[ gt PePex|it H(dg) dt = ||l 5,
0 YS(p)
This proves (i) and allows us to omit the subscript B.

(i1) This is obvious.
(iii) Let A € S(p). By (i) we may assume that B € E (). Then

1
Il Ax|| = f0 L  NgtAxile H(dg) dt
S(p

1
- fo L  NlgAt"slie” H(dg) dt = ||
S(p
(iv) Suppose that 0 < r < s. Then
1
Bl = fo L ( )||g(tr)”x||t“H(dg)dt
S(p

= [ [ lgu"xluH(dg) du
0 YS(p)

<[] leu"xuH(dg) du = ||s"x]|.
0 “S(p)
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(v) It follows from (iv) that @ is one-to-one. Since every point in V'\ {0} lies
on some orbit, ®, is “onto.” The continuity of ®, is well known and easily
checked. To show ®5! is continuous write ®;'(x) = ({(x), {(x)) so that l(x) €
U’ ¢x) > 0, and x = {(x)Bl(x). Suppose that x, > x # 0. Assume some subse-
quence {(x, ) tends to infinity. Then since the eigenvalues of B have positive real
parts, ||x, || = [|{(x,.)Bl(x,)|| = o contrary to the convergence of x,. It follows
that ({(x,), {(x,)) is a bounded sequence in U’ X (0, c0). Let ({(x,.), {(x,.)) be
any convergent subsequence and let ([, {,) = lim({(x,,), {(x,,)). Then

x = limx,, = lim ¢(x,) °I(x,) = ¢&L,.

Since ®, is one-to-one, {(x) = {, and I(x) = [,. Thus every convergent subse-
quence of (I(x,), {(x,)) has the same limit, namely (I(x), {(x)). This proves that
®,' is continuous. O

The proof that ®;' is continuous was given above for the sake of complete-
ness, cf. [4].

Part (iv) of Proposition 2 implies that each orbit intersects U’ exactly once.
The fact that U’ is closed and that ®5 is a homeomorphism is useful in proving
weak convergence results.

THEOREM 6. Let p. be full OS with Lévy measure M and let B € E(p). Let F
and E be any Borel subsets of V\ {0} and U, respectively. Then

(4) M(F) = '/;}//()ooII,(SBx)s‘stK(dx),

where K is a finite Borel measure on U’ and
(5) K(E)=M{(t;x:x € E, t > 1)}.
The measure K does not depend on the choice of B € E(p).
Proor. The proof of (4) and (5) is similar to that of (3) in [2] or [3] and is
therefore omitted.

The proof that K does not depend on the choice of exponent will involve an
easy lemma.

LEMMA 1. Letg € S(pn) and B € E(p). If gB = Bg, then gK = K.

Proor. Let D be any Borel subset of U’. Then
gK (D) = K ,(g~'(D))
= M{tPx: x € g7 (D), t > 1}
=M{tPg 'x:x €D, t>1}
= M(g '(tBx: x €D, t > 1})
= (gM)({tBx: x € D, t > 1}).
But g € S(p) and hence gM = M. Thus
gK,y(D)=M{t’x:x e D,t>1}) = KyD). O
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Now let A be any Borel subset of V'\ {0}. Then if B € E(p)
M(A) = [7 [ L(t%)t K y(dx) dt
0 U’

= fwKB((t-BA) nU')t2dt.
0

Let B, € E (p). It suffices to prove that Kz = K . So let D be any Borel subset
of U’, and put A = {sB: x € D, s > 1}. Then

ft<i1
B AU =% 1 g
( ) {D ift>1.

Hence
Ky(D) = M(A) = f0°°KBO((rB«»A) N U2t
But B, € E(p), so B, commutes with B — B,. Furthermore ¢2- 2> € S(u) and
tB-Boy’ = U’. It follows from Lemma 1 that
K,((tBA)nU’) = Ky ((¢8Bo(¢BA)) n U”)
=Kg((tBA)nU").
Therefore,
Ky(D) = meKB“((t*BA) N U')t 2 dt.

= ["Ku(D)t?dt = Ky (D). D
1

In the above, we have depended on the following “polar” representation.
Namely, for each x # 0 and for each B € E(p), there is a unique s > 0 and
u € U’ such that x = sBu. It can be shown that s does not depend on the choice
of B € E(p). To see this let B, € E (). Then for some ¢t € 0 and v € U’

x = sBu = tBoyp.

t B,
u=(—) sBo= By,

s
Now, B, — B € TS(n), so s3 8 U’. But u€ U’ so by Proposition 2(iv)
t=s.

Since B, commutes with B,

REMARK. There is a converse to Theorem 6. If B is an OS exponent, and if K
is a finite Borel measure on U’ N V,, then the measure M defined by

M(F) = fl/,fowIF(sBx)s”dsK(dx)

is the Lévy measure of some OS law with exponent B. Again see [2] or [3]. In [7]
Sharpe characterized the set of OS exponents, i.e., those operators which are the
exponent of some OS law.

We now consider the relationship between S(K ), the symmetry group of the
measure K in Theorem 6, and S(p).
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THEOREM 7. Let p be a full OS measure on V. Then S(p) € S(K).

Proor. Let A € S(p). Since by Proposition 2, ||Ax]|| = |||x||, AU’ = U".
Since K does not depend on the choice of an exponent, we may assume
B € E (p). Then S(p) € S(K) follows from Lemma 1. O

The following example shows that even if an OS measure p has no Gaussian
component, if the original norm on V is used and if M is defined as in (3), then
S(K ) may be much larger than S(u) even though K is full. (To see that in this
example p has no Gaussian component, note that no eigenvalue of B has real
part equal to }.)

ExXAMPLE. Take B = [(1) (2’] Then Ly is the unit circle in R Let K be the

Lebesgue measure on the circle. Then K is full and S(K) is the orthogonal
group. Define M (and hence p) in terms of K and B using equation (3). Then p is
a full OS measure with B € E(p) (see [2]). We now find S(p). First note that
S(p) is closed and V = R? so if S(n) were not discrete, S(p) would be conjugate
to the orthogonal group. Then by Theorem 4, B would have conjugate complex
eigenvalues. Hence S(u) is discrete, and B € E(p) by Proposition 1. Now
suppose D = [‘C' Z] € S(p). Then since B € E(p) BD = DB and so ¢ = b = 0.

Since S(p) is a compact group, the fact that D" € S(u) for all n shows
la| = |d| = 1. A direct computation now shows that S(p) = S(M) =

(xn[3 0o 2]y

Added in proof. Instead of the norm ||| - |||, introduced in Section 3, one can
~also use the norm induced by the following inner product, (x, y), =
" JoJsu(8tPx, gtBy)H(dg)t " dt where ( -, -) is the original inner product on V.
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