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C> DENSITIES FOR WEIGHTED SUMS OF INDEPENDENT
RANDOM VARIABLES!

By JakoB 1. REICH
Baruch College, CUNY

Let {X,} be a sequence of independent random variables and {a,} a
square summable, positive nonincreasing sequence of real numbers such that
Ya,X, is a random variable. We show that the condition lim, .
atlog(a,)/S¥_p+1 @ = 0 implies that the distribution measure F(dx) =
P(Xa, X, € dx) has an infinitely differentiable density for every range-split-
ting sequence {X,,}. The class of range-splitting sequences includes all non-
trivial i.i.d. sequences with mean 0 and finite second moments. Consequences
and examples are discussed.

1. Introduction. Let {X,} be a sequence of independent random variables.
We say that {X,} is range splitting if there exist A > 0 and a sequence of
numbers {x,} such that

infP(X,—x,>\) >0,
n

1.1
(1.1) infP(X, - x,< —A) >0

and
supE|X,| < o0.

Note that every nontrivial i.i.d. sequence with E|X,| < oo is range splitting.
Let {a,} be a square summable sequence of real numbers such that {|a,|} is
nonincreasing and assume the series

(1.2) X=Ya,X,

converges in L.
In this paper we study sufficient conditions on the sequence {a,} such that the
distribution measure of X

(1.3) F(dx) = P(Ya,X, € dx)

has a density for every range-splitting sequence {X,,}.
When we say for every range-splitting sequence, we mean for every range-split-
ting sequence for which (1.2) is well defined, and since {a,} is square summable,
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this class contains

(a) all i.i.d. sequences with E(X,) = 0 and E(X?) < oo,

(b) if X|a,| < oo, all range-splitting sequences [since in (1.1) we assumed
sup, E|X,| < oo},

(c) if X|a,] = oo, all range-splitting sequences for which sup, E(X?) < oo and
Ya,E(X,) is well defined. '

Some results and examples on (1.3) appeared in [2] and [3]. In particular, we
showed in [3], Theorem 1 that a necessary condition for (1.3) to hold is

a2

lim ————— =0.
n—x 2730=n +1 a/%
In this paper we shall prove that the slightly stronger condition
aylog(la,|)

1m
0 2
n—oxc Zk=n+l aj

not only is a sufficient condition for (1.3), but in fact proves the following
stronger result.

THEOREM. If {a,)?_, is a square summable sequence such that {|a,|}y_, is
nonincreasing and

azlog(la,l)

00 2 ’
n—oc z"Ie=n+1 aj

then the distribution measure
F(dx) = P( Y a,X,€ dx)
n=1

has an infinitely differentiable density for every range-splitting sequence { X, }%_,.

REMARK. The condition that {|a,|} is nonincreasing is no real restriction if
EX, = 0 and sup EX? < oo, since any rearrangement of {a,X,} alters ¥a,X, on
a set of probability 0. For general information see Garsia [1] and Reich [2], [3].

2. Proof of the theorem. To prove the theorem we will need Lemma 2 from
Reich [3], which states:

LEmMMA R. Let {X,) be a range-splitting sequence. Then there exist §, A > 0
such that :

IE(eiuX,,) < e*)\u2

for all 0 < |u| < 8 and all n.
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We also need

LEmMMA 1. Let {x,}7_, be a sequence of positive numbers such that

1 21
lim — ) —=
n—-x X, j=1 X,
Then
oC
Z e—)\x,, < o0
n=1
for all A > 0.

Proor. Clearly, it follows from the assumption that lim,_,  x, = o. Thus
we can rearrange the sequence {x,} in nondecreasing order, {x, }.
Since {x,, } is simply a rearrangement of {x,,},

oc oc
Z e—Ax,, - Z e—kxk”'
=1 n=1

With [, = max, _,_, k;, we have

n 1 no ]
Z =< ]
P R R R
and since x; < x,,
1 21 1 =k
— Y —x—3
xkn j=1 xkj xln J=1 x.]

1 1 n
On(l) = ;_ 2 2
kn j=1 k/ kn

the last inequality since {x, } is nondecreasing. This implies x, > Vn for large
n, and the lemma is proved. O

In proving our theorem we may assume a, > 0 for all n, since any negative
sign can be transferred to the corresponding X, without changing its range-split-
ting property. So from now on {a,} will be a nonincreasing sequence of positive
numbers.

DEeFINITION 1. To a given square summable sequence {a,}, we associate a
positive, nonincreasing continuous function defined on [0, o) with f(n) = a,, for
n > 1. We now define

H(x) = —logf:cf2(t)dt
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and
o
R(n)=a,;? )Y, adi.
k=n+1

By multiplying @, and f by a fixed constant, we may without loss of
generality assume that [¢° f2(¢)dt = 1, or, equivalently, that H(0) = 0. Thus
H(x) is nonnegative and increasing.

LEMMA 2. Let {a,} be a square summable sequence. Then

(a) ap= Y aj|R(n) II 1+ (1/RG)I|  forn>2,
Jj=2
x 1
(b) = 0.
L R(n)
ProOF. From the definition of R(n) we get R(n — 1)a2_, — R(n)a? = a2,
which implies
a: R(n-1) ; 0
= > .
a’, R(n)+1 orm=
Therefore
a, R(1)R(2)--- R(n—-1)

ai  (R(2) + 1)(R(3) +1) -+~ (R(n) + 1)

- R(l)[ Ifl [1+ 1/R(J))]]

1

and from here it follows that

o

- %o [ze(n)n[u 1/R<J>)1] ,

since afR(1) = £%, a}.
To prove (b) we simply observe that

3 at=aiR(n) - i[n 1+ /R

If 25 ,1/R(j) were ﬁmte the product [17_,(1 +'1/R(j)) would converge to a
finite llmlt and so X¥_,., a; would not tend to zero, which is a contradiction. O

ProPOSITION 1. Let {an} be a square summable sequence such that {|a,|} is
nonincreasing and
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Then the distribution measure

F(dx) = P( Y a X, e dx)

n=1

has an infinitely differentiable density for every range-splitting sequence { X, }.

Proor. We fix a range-splitting sequence {X,}. The Fourier transform of
F(dx) is given by

F(u) = TT E(e™*)
n=1

and therefore

o0
(2.1) [F(u)|< T1 |E(e )]
n=N
for every N > 1. By Lemma R,
|E(eiua,,X,,) < e—)xuzaf,
for |ua,| < 8. And since the sequence {a,} is nonincreasing, this implies
(2.2) ‘E(eiuajxj) l < e Ml

for |ua,| < & and j > n.
Now (2.1) and (2.2) imply that

(2.3) |ﬁ'(u)|$exp(-—)\u2 i af)

J=n+l

for 8/a, < |u| <é/a,.,;-
We will prove that

(2.4) foc " B(u)| du < o
for all positive integers k, which proves the proposition.
By (2.3)
kB o [3/ana g 2 v 2
f lul*| F(u)|du < 2(8/ay) +2 ), / u exp(—)\u Y aj) du
% N=2"8/ay J=N+1
e o]
=2(8/ay) +2 Y Iy.
N=2
Now
I, < foc u*exp(—Aa%R(N)u?) du
8/an .
= ! foo thet dt
(Aa;ZVR(N))l/Z(kH) SOANR(N))'/?
1
2
<G, (a%]R(N))l/2(k+l)exp(_— sA8%(R(N)),

since [” the " dt < Che /2 if a > 0.
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By Lemma 2, with ¥¥_, a? = 1, and the assumption [1/R(N)IEY., 1/R(j) —
0, hence also R(N) — oo, it follows that for N large enough

Iy < Cexp{i(k + 1)logay® — AR(N)}

= Cexp{%(k + 1)log R(N) + 3(k+ 1) }ZV: log(1 + 1/R()) —XR(N)}

Jj=2

_ YEk+1logR(N) Lk+1) N 1

TR RN 5 RG)

A
< exp( - ER(N))
Finally, Lemma 1 implies (2.4). O

LEMMA 3. Let {a,} be a square summable sequence such that {|a,|} is
nonincreasing. Then the following statements are equivalent:

1 i 1

@ ' 5 RG)
(b) ‘ lim H(x)H'(x) =0,
(© azlog(la,l) _

n—oo LE_ 40 @

ProOOF. (a) = (b). Let n be a positive integer and n < x < n + 1. Since
f(x) is nonincreasing, f *(x) < f %(n), and

[Fryae= [T de- [ de= L fAk) - fi(n).
X n n k=n+1
Therefore
f2(x) f*(n) 1 2
= < < < .
[EfA(t)dt ~ Ep i (k) = f*(n) T R(n) -1~ R(n)
The last inequality follows since by (a) lim, _,, R(n) = o« and therefore is

true for n sufficiently large. We may assume this for all n without loss of
generality. Now write

(2.5) H'(x)

H(x) = H(1) + H(x) ~ H(n) + £ H(j+1) = H())

Jj=1

(2.6) .
: =H(1) + ZH’(xj).

j=1
This equality uses the mean value theorem and x; € [j,7+1]for j=1,2,...,
n—1and x, € [n, x].
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Now we use (2.5) and (2.6) to obtain

H/(x)H(x) < — | H(1) + z

R() R()

hence lim . _, . H(x)H(x) = 0 by (a).
(b) = (a). Let g(x)=2H'(x)H(x). Since we assume H(0) =0, H%x) =
/i &(¢)dt and

(2.7) [

x 1/2
2(¢) dt = exp(— H(x)) = exp(—(f g(t)dt) )
x 0
Since by (b) g(x) = 0, x = o0, (2.7) implies
i [ f2(t) dt
im sup ————~—— =
X0 |yl<r fx+y 2(“') dt

for all r > 0.
Hence, if n < x < n + 1, and n is sufficiently large,

(2.8) f f2(t)dt<2/ f2(¢)dt <2 2 f2(k).
k=n+2
We will assume (2.8) for all n. Hence
f2(x) 2(n +1) 1

@9 H) S e w1k 2R D)
Together with (2.6) this implies
1 ntl 1
H’(x)H(x) > m[fl(l) + ng m:l,

which proves (a).
(b) = (c). By (2.8)

foof2(t)dt <2f%(n + 1)R(n + 1).

Together with (2.9) this implies
|log[2f2(n + 1)R(n + 1)] |
2R(n + 1)
[log(2) + log R(n + 1) + 2log f(n + 1)|
N 2R(n + 1)

and since log(2)/2 R(n + 1) and log R(n + 1)/R(n + 1) converge to 0 as n — oo,
it follows that

H(x)H'(x) >

b

i log f(n+1)
poe R(n+1)

which proves (c).
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(c) = (b). Note that
ajlog(a,) log(a,)
(I)ec=n+1al22 R(n) ’

Hence, assuming (c) implies lim,, _, ., R(n) = o0, so (2.5) holds.
Now

H(x) = —log( 120y at) < ~log[ [ 1*(0) ]
< —log[k_i f2(k) —f*(n+ 1)]
= —log{ f2(n)[R(n) = (f%(n + 1)/i%(n))])
< —log[ f2(n)(R(n) - 1)]
< —log[ f%(n)27'R(n)],

the last inequality for n sufficiently large. Together with (2.5) this implies
4|log f(n) + 2log2 + 2log R(n)|
R(n) ’

H(x)H'(x) <
from which (b) follows. O
The theorem follows now from Proposition 1 and Lemma 3.

3. Examples.

ExamMPLE 1. Let 8> a> j and B — a < §. Then if {a,} is a sequence such
that {|a,|} is nonincreasing and

Cn*<la, <Cn
for some C, C > 0, then
. aylog(la,|)
lim ———— =
n—oc Z<I)zo=r1+l aj

Hence, the conclusion of the theorem follows.
The proof is obvious. The condition 8 — a < § is sharp as was shown in [3].

In the following example we show how part (b) of Lemma 3 can be used to
construct sequences {a,} which satisfy the hypothesis of our theorem.

ExampLE 2. Let p(x), x > 0 be a positive nonincreasing function such that
lim,_  p(x)=0and [§° p(x)dx = .
" For any number C > 0, let

. Cp(n) L 1/2
(3.1) a. = 200 p(0) dt)l/zexp( ([} p(t) dt) )
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Then the sequence {a,} satisfies the assumption, and hence also the conclusion of
the theorem.
To prove this define f by

fo 2(t)dt = Cexp(—(j:p(t) dt)lﬂ).

Then f(n) = a,, so f is associated to {a,} in the sense of Definition 1. Also since
[ p(x)dx = o0, f € L%0, o0), and so a,, is square summable.

Now H(x) = —log [ f%(t)dt, and thus H'(x)H(x) = Cp(x) = 0, x = oo,
and the result follows by Lemma 3.

By taking p(n) > 0%(1), where o,(1) is an arbitrary sequence of positive
numbers tending to zero, the sequence {a,} given by (3.1) satisfies a, < e "V,
Thus a sequence can decay much faster than polynomially and still satisfy the
hypothesis of the theorem.
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