C[∞] DENSITIES FOR WEIGHTED SUMS OF INDEPENDENT RANDOM VARIABLES¹

By JAKOB I. REICH

Baruch College, CUNY

Let $\{X_n\}$ be a sequence of independent random variables and $\{a_n\}$ a square summable, positive nonincreasing sequence of real numbers such that $\sum a_n X_n$ is a random variable. We show that the condition $\lim_{n\to\infty} a_n^2 \log(a_n)/\sum_{k=n+1}^{\infty} a_k^2 = 0$ implies that the distribution measure $F(dx) = P(\sum a_n X_n \in dx)$ has an infinitely differentiable density for every range-splitting sequence $\{X_n\}$. The class of range-splitting sequences includes all nontrivial i.i.d. sequences with mean 0 and finite second moments. Consequences and examples are discussed.

1. Introduction. Let $\{X_n\}$ be a sequence of independent random variables. We say that $\{X_n\}$ is range splitting if there exist $\lambda > 0$ and a sequence of numbers $\{x_n\}$ such that

(1.1)
$$\inf_{n} P(X_{n} - x_{n} \ge \lambda) > 0,$$

$$\inf_{n} P(X_{n} - x_{n} \le -\lambda) > 0$$

and

$$\sup_{n} E|X_{n}| < \infty.$$

Note that every nontrivial i.i.d. sequence with $E|X_1| < \infty$ is range splitting.

Let $\{a_n\}$ be a square summable sequence of real numbers such that $\{|a_n|\}$ is nonincreasing and assume the series

$$(1.2) X = \sum a_n X_n$$

converges in L_1 .

In this paper we study sufficient conditions on the sequence $\{a_n\}$ such that the distribution measure of X

(1.3)
$$F(dx) = P(\sum a_n X_n \in dx)$$

has a density for every range-splitting sequence $\{X_n\}$.

When we say for every range-splitting sequence, we mean for every range-splitting sequence for which (1.2) is well defined, and since $\{a_n\}$ is square summable,

Received September 1984; revised February 1985.

¹Research partially supported by a PSC-CUNY research award.

AMS1980 $subject\ classifications.$ Primary E
05, G30, G50; secondary E10.

Key words and phrases. Range-splitting sequences of independent random variables, weighted sums of range-splitting sequences, infinitely differentiable densities.

this class contains

(a) all i.i.d. sequences with $E(X_n) = 0$ and $E(X_n^2) < \infty$,

- (b) if $\Sigma |a_n| < \infty$, all range-splitting sequences [since in (1.1) we assumed $\sup_n E|X_n| < \infty$],
- (c) if $\Sigma |a_n| = \infty$, all range-splitting sequences for which $\sup_n E(X_n^2) < \infty$ and $\sum a_n E(X_n)$ is well defined.

Some results and examples on (1.3) appeared in [2] and [3]. In particular, we showed in [3], Theorem 1 that a necessary condition for (1.3) to hold is

$$\lim_{n\to\infty}\frac{a_n^2}{\sum_{k=n+1}^{\infty}a_k^2}=0.$$

In this paper we shall prove that the slightly stronger condition

$$\lim_{n \to \infty} \frac{a_n^2 \log(|a_n|)}{\sum_{k=n+1}^{\infty} a_k^2} = 0$$

not only is a sufficient condition for (1.3), but in fact proves the following stronger result.

THEOREM. If $\{a_n\}_{n=1}^{\infty}$ is a square summable sequence such that $\{|a_n|\}_{n=1}^{\infty}$ is nonincreasing and

$$\lim_{n\to\infty} \frac{a_n^2 \log(|a_n|)}{\sum_{h=n+1}^{\infty} a_h^2} = 0,$$

then the distribution measure

$$F(dx) = P\left(\sum_{n=1}^{\infty} a_n X_n \in dx\right)$$

has an infinitely differentiable density for every range-splitting sequence $\{X_n\}_{n=1}^{\infty}$.

REMARK. The condition that $\{|a_n|\}$ is nonincreasing is no real restriction if $EX_n = 0$ and $\sup EX_n^2 < \infty$, since any rearrangement of $\{a_nX_n\}$ alters $\sum a_nX_n$ on a set of probability 0. For general information see Garsia [1] and Reich [2], [3].

2. Proof of the theorem. To prove the theorem we will need Lemma 2 from Reich [3], which states:

Lemma R. Let $\{X_n\}$ be a range-splitting sequence. Then there exist δ , $\lambda > 0$ such that

$$\left| E(e^{iuX_n}) \right| \le e^{-\lambda u^2}$$

for all $0 \le |u| \le \delta$ and all n.

We also need

LEMMA 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of positive numbers such that

$$\lim_{n\to\infty}\frac{1}{x_n}\sum_{j=1}^n\frac{1}{x_j}=0.$$

Then

$$\sum_{n=1}^{\infty} e^{-\lambda x_n} < \infty$$

for all $\lambda > 0$.

PROOF. Clearly, it follows from the assumption that $\lim_{n\to\infty} x_n = \infty$. Thus we can rearrange the sequence $\{x_n\}$ in nondecreasing order, $\{x_{k_n}\}$.

Since $\{x_k\}$ is simply a rearrangement of $\{x_n\}$,

$$\sum_{n=1}^{\infty} e^{-\lambda x_n} = \sum_{n=1}^{\infty} e^{-\lambda x_{k_n}}.$$

With $l_n = \max_{1 \le j \le n} k_j$, we have

$$\sum_{j=1}^{n} \frac{1}{x_{k_{j}}} \le \sum_{j=1}^{l_{n}} \frac{1}{x_{j}},$$

and since $x_{l_n} \leq x_{k_n}$,

$$\frac{1}{x_{k_n}} \sum_{j=1}^n \frac{1}{x_{k_j}} \le \frac{1}{x_{l_n}} \sum_{j=1}^{l_n} \frac{1}{x_j}.$$

But the right-hand side goes to 0 by the hypothesis; therefore we get that

$$o_n(1) = \frac{1}{x_{k_n}} \sum_{j=1}^n \frac{1}{x_{k_j}} \ge \frac{n}{x_{k_n}^2},$$

the last inequality since $\{x_{k_n}\}$ is nondecreasing. This implies $x_{k_n} \geq \sqrt{n}$ for large n, and the lemma is proved. \square

In proving our theorem we may assume $a_n > 0$ for all n, since any negative sign can be transferred to the corresponding X_n without changing its range-splitting property. So from now on $\{a_n\}$ will be a nonincreasing sequence of positive numbers.

DEFINITION 1. To a given square summable sequence $\{a_n\}$, we associate a positive, nonincreasing continuous function defined on $[0,\infty)$ with $f(n)=a_n$ for $n\geq 1$. We now define

$$H(x) = -\log \int_{x}^{\infty} f^{2}(t) dt$$

and

$$R(n) = a_n^{-2} \sum_{k=n+1}^{\infty} a_k^2.$$

By multiplying a_n and f by a fixed constant, we may without loss of generality assume that $\int_0^\infty f^2(t) dt = 1$, or, equivalently, that H(0) = 0. Thus H(x) is nonnegative and increasing.

LEMMA 2. Let $\{a_n\}$ be a square summable sequence. Then

(a)
$$a_n^2 = \sum_{j=2}^{\infty} a_j^2 \left[R(n) \prod_{j=2}^n \left[1 + (1/R(j)) \right] \right]^{-1}$$
 for $n \ge 2$,

$$\sum_{n=1}^{\infty} \frac{1}{R(n)} = \infty.$$

Proof. From the definition of R(n) we get $R(n-1)a_{n-1}^2 - R(n)a_n^2 = a_n^2$, which implies

$$\frac{a_n^2}{a_{n-1}^2} = \frac{R(n-1)}{R(n)+1} \quad \text{for } n \ge 2.$$

Therefore

$$\frac{a_n^2}{a_1^2} = \frac{R(1)R(2)\cdots R(n-1)}{(R(2)+1)(R(3)+1)\cdots (R(n)+1)}$$
$$= R(1) \left[R(n) \prod_{j=2}^n \left[1 + (1/R(j)) \right] \right]^{-1}$$

and from here it follows that

$$a_n^2 = \sum_{j=2}^{\infty} a_j^2 \left[R(n) \prod_{j=2}^n \left[1 + (1/R(j)) \right] \right]^{-1}$$
,

since $a_1^2 R(1) = \sum_{j=2}^{\infty} a_j^2$. To prove (b) we simply observe that

$$\sum_{k=n+1}^{\infty} a_k^2 = a_n^2 R(n) = \sum_{j=2}^{\infty} a_j^2 \left[\prod_{j=2}^{n} \left[1 + 1/R(j) \right] \right]^{-1}.$$

If $\sum_{j=1}^{\infty} 1/R(j)$ were finite, the product $\prod_{j=2}^{n} (1+1/R(j))$ would converge to a finite limit and so $\sum_{k=n+1}^{\infty} a_k^2$ would not tend to zero, which is a contradiction. \Box

Proposition 1. Let $\{a_n\}$ be a square summable sequence such that $\{|a_n|\}$ is nonincreasing and

$$\lim_{n\to\infty}\frac{1}{R(n)}\sum_{j=1}^n\frac{1}{R(j)}=0.$$

Then the distribution measure

$$F(dx) = P\left(\sum_{n=1}^{\infty} a_n X_n \in dx\right)$$

has an infinitely differentiable density for every range-splitting sequence $\{X_n\}$.

PROOF. We fix a range-splitting sequence $\{X_n\}$. The Fourier transform of F(dx) is given by

$$\hat{F}(u) = \prod_{n=1}^{\infty} E(e^{iua_n X_n})$$

and therefore

$$|\hat{F}(u)| \leq \prod_{n=N}^{\infty} |E(e^{iua_n X_n})|$$

for every $N \ge 1$. By Lemma R,

$$\left| E(e^{iua_n X_n}) \right| \le e^{-\lambda u^2 a_n^2}$$

for $|ua_n| \leq \delta$. And since the sequence $\{a_n\}$ is nonincreasing, this implies

$$(2.2) |E(e^{iua_jX_j})| \le e^{-\lambda u^2 a_j^2}$$

for $|ua_n| \le \delta$ and $j \ge n$.

Now (2.1) and (2.2) imply that

$$|\hat{F}(u)| \le \exp\left(-\lambda u^2 \sum_{j=n+1}^{\infty} \alpha_j^2\right)$$

for $\delta/a_n \leq |u| \leq \delta/a_{n+1}$.

We will prove that

(2.4)
$$\int_{-\infty}^{\infty} |u|^k |\hat{F}(u)| du < \infty$$

for all positive integers k, which proves the proposition.

By (2.3)

$$\begin{split} \int_{-\infty}^{\infty} |u|^k |\hat{F}(u)| \, du &\leq 2(\delta/a_2) + 2 \sum_{N=2}^{\infty} \int_{\delta/a_N}^{\delta/a_{N+1}} u^k \exp\left(-\lambda u^2 \sum_{j=N+1}^{\infty} a_j^2\right) \, du \\ &= 2(\delta/a_2) + 2 \sum_{N=2}^{\infty} I_N. \end{split}$$

Now

$$egin{aligned} I_N &\leq \int_{\delta/a_N}^\infty u^k ext{exp}ig(-\lambda a_N^2 R(N) u^2ig) \, du \ &= rac{1}{ig(\lambda a_N^2 R(N)ig)^{1/2(k+1)}} \int_{\delta(\lambda R(N))^{1/2}}^\infty t^k e^{-t^2} \, dt \ &\leq C_k rac{1}{ig(a_N^2 R(N)ig)^{1/2(k+1)}} ext{exp}ig(-rac{1}{2}\lambda \delta^2(R(N)), \end{aligned}$$

since $\int_{\alpha}^{\infty} t^k e^{-t^2} dt \le C_k e^{-\alpha^2/2}$ if $\alpha > 0$.

By Lemma 2, with $\sum_{k=2}^{\infty} a_k^2 = 1$, and the assumption $[1/R(N)]\sum_{j=1}^{N} 1/R(j) \to 0$, hence also $R(N) \to \infty$, it follows that for N large enough

$$\begin{split} I_{N} &\leq C \exp \Big\{ \tfrac{1}{2} (k+1) \log a_{N}^{-2} - \overline{\lambda} R(N) \Big\} \\ &= C \exp \Big\{ \tfrac{1}{2} (k+1) \log R(N) + \tfrac{1}{2} (k+1) \sum_{j=2}^{N} \log (1+1/R(j)) - \overline{\lambda} R(N) \Big\} \\ &\leq C \exp \Big(-R(N) \bigg[\overline{\lambda} - \frac{\tfrac{1}{2} (k+1) \log R(N)}{R(N)} - \frac{\tfrac{1}{2} (k+1)}{R(N)} \sum_{j=2}^{N} \frac{1}{R(j)} \bigg] \bigg) \\ &\leq \exp \bigg(- \frac{\overline{\lambda}}{2} R(N) \bigg). \end{split}$$

Finally, Lemma 1 implies (2.4). \square

LEMMA 3. Let $\{a_n\}$ be a square summable sequence such that $\{|a_n|\}$ is nonincreasing. Then the following statements are equivalent:

(a)
$$\lim_{n \to \infty} \frac{1}{R(n)} \sum_{i=1}^{n} \frac{1}{R(i)} = 0,$$

$$\lim_{x\to\infty}H(x)H'(x)=0,$$

(c)
$$\lim_{n \to \infty} \frac{a_n^2 \log(|a_n|)}{\sum_{k=n+1}^{\infty} a_k^2} = 0.$$

PROOF. (a) \Rightarrow (b). Let *n* be a positive integer and $n \le x \le n+1$. Since f(x) is nonincreasing, $f^2(x) \le f^2(n)$, and

$$\int_{x}^{\infty} f^{2}(t) dt = \int_{n}^{\infty} f^{2}(t) dt - \int_{n}^{x} f^{2}(t) dt \ge \sum_{k=n+1}^{\infty} f^{2}(k) - f^{2}(n).$$

Therefore

$$(2.5) \ \ H'(x) = \frac{f^2(x)}{\int_x^\infty f^2(t) \, dt} \le \frac{f^2(n)}{\sum_{k=n+1}^\infty f^2(k) - f^2(n)} \le \frac{1}{R(n) - 1} \le \frac{2}{R(n)}.$$

The last inequality follows since by (a) $\lim_{n\to\infty} R(n) = \infty$ and therefore is true for n sufficiently large. We may assume this for all n without loss of generality. Now write

(2.6)
$$H(x) = H(1) + H(x) - H(n) + \sum_{j=1}^{n-1} H(j+1) - H(j)$$
$$= H(1) + \sum_{j=1}^{n} H'(x_j).$$

This equality uses the mean value theorem and $x_j \in [j, j+1]$ for $j=1,2,\ldots, n-1$ and $x_n \in [n, x]$.

Now we use (2.5) and (2.6) to obtain

$$H'(x)H(x) \le \frac{2}{R(n)} \left[H(1) + \sum_{j=1}^{n} \frac{2}{R(j)} \right],$$

hence $\lim_{x\to\infty} H'(x)H(x) = 0$ by (a).

(b) \Rightarrow (a). Let g(x) = 2H'(x)H(x). Since we assume H(0) = 0, $H^2(x) = \int_0^x g(t) dt$ and

(2.7)
$$\int_{x}^{\infty} f^{2}(t) dt = \exp(-H(x)) = \exp\left(-\left(\int_{0}^{x} g(t) dt\right)^{1/2}\right).$$

Since by (b) $g(x) \to 0$, $x \to \infty$, (2.7) implies

$$\lim_{x \to \infty} \sup_{|y| \le r} \frac{\int_x^\infty f^2(t) dt}{\int_{x+y}^\infty f^2(t) dt} = 1$$

for all r > 0.

Hence, if $n \le x \le n + 1$, and n is sufficiently large,

(2.8)
$$\int_{x}^{\infty} f^{2}(t) dt \leq 2 \int_{n+1}^{\infty} f^{2}(t) dt \leq 2 \sum_{k=n+2}^{\infty} f^{2}(k).$$

We will assume (2.8) for all n. Hence

(2.9)
$$H'(x) = \frac{f^{2}(x)}{\int_{x}^{\infty} f^{2}(t) dt} \ge \frac{f^{2}(n+1)}{2\sum_{k=n+2}^{\infty} f^{2}(k)} = \frac{1}{2R(n+1)}.$$

Together with (2.6) this implies

$$H'(x)H(x) \ge \frac{1}{2R(n+1)} \left[H(1) + \sum_{j=2}^{n+1} \frac{1}{2R(j)} \right],$$

which proves (a).

(b) \Rightarrow (c). By (2.8)

$$\int_{x}^{\infty} f^{2}(t) dt \leq 2 f^{2}(n+1) R(n+1).$$

Together with (2.9) this implies

$$H(x)H'(x) \ge \frac{\left|\log[2f^{2}(n+1)R(n+1)]\right|}{2R(n+1)}$$

$$= \frac{\left|\log(2) + \log R(n+1) + 2\log f(n+1)\right|}{2R(n+1)},$$

and since $\log(2)/2$ R(n+1) and $\log R(n+1)/R(n+1)$ converge to 0 as $n \to \infty$, it follows that

$$\lim_{n\to\infty} \frac{\log f(n+1)}{R(n+1)} = 0$$

which proves (c).

 $(c) \Rightarrow (b)$. Note that

$$\frac{a_n^2 \log(a_n)}{\sum_{k=n+1}^{\infty} a_k^2} = \frac{\log(a_n)}{R(n)}.$$

Hence, assuming (c) implies $\lim_{n\to\infty} R(n) = \infty$, so (2.5) holds.

$$H(x) = -\log \left(\int_{x}^{\infty} f^{2}(t) dt \right) \le -\log \left(\int_{n+1}^{\infty} f^{2}(t) dt \right)$$

$$\le -\log \left[\sum_{k=n+1}^{\infty} f^{2}(k) - f^{2}(n+1) \right]$$

$$= -\log \left\{ f^{2}(n) \left[R(n) - \left(f^{2}(n+1) / f^{2}(n) \right) \right] \right\}$$

$$\le -\log \left[f^{2}(n) (R(n) - 1) \right]$$

$$\le -\log \left[f^{2}(n) 2^{-1} R(n) \right],$$

the last inequality for n sufficiently large. Together with (2.5) this implies

$$H(x)H'(x) \le \frac{4|\log f(n) + 2\log 2 + 2\log R(n)|}{R(n)},$$

from which (b) follows. \Box

The theorem follows now from Proposition 1 and Lemma 3.

3. Examples.

Example 1. Let $\beta \ge \alpha > \frac{1}{2}$ and $\beta - \alpha < \frac{1}{2}$. Then if $\{a_n\}$ is a sequence such that $\{|a_n|\}$ is nonincreasing and

$$\underline{C}n^{-\beta} \le |a_n| \le \overline{C}n^{-\alpha}$$

for some \underline{C} , $\overline{C} > 0$, then

$$\lim_{n\to\infty}\frac{a_n^2\log(|a_n|)}{\sum_{k=n+1}^\infty a_k^2}=0.$$

Hence, the conclusion of the theorem follows.

The proof is obvious. The condition $\beta - \alpha < \frac{1}{2}$ is sharp as was shown in [3].

In the following example we show how part (b) of Lemma 3 can be used to construct sequences $\{a_n\}$ which satisfy the hypothesis of our theorem.

EXAMPLE 2. Let p(x), $x \ge 0$ be a positive nonincreasing function such that $\lim_{x \to \infty} p(x) = 0 \text{ and } \int_0^\infty p(x) \, dx = \infty.$ For any number C > 0, let

(3.1)
$$a_n^2 = \frac{Cp(n)}{2(\int_0^n p(t) dt)^{1/2}} \exp\left(-\left(\int_0^n p(t) dt\right)^{1/2}\right).$$

Then the sequence $\{a_n\}$ satisfies the assumption, and hence also the conclusion of the theorem.

To prove this define f by

$$\int_{x}^{\infty} f^{2}(t) dt = C \exp\left(-\left(\int_{0}^{x} p(t) dt\right)^{1/2}\right).$$

Then $f(n) = a_n$, so f is associated to $\{a_n\}$ in the sense of Definition 1. Also since $\int_0^\infty p(x) dx = \infty$, $f \in L^2(0, \infty)$, and so a_n is square summable.

Now $H(x) = -\log \int_x^\infty f^2(t) dt$, and thus $H'(x)H(x) = Cp(x) \to 0$, $x \to \infty$, and the result follows by Lemma 3.

By taking $p(n) \ge o_n^2(1)$, where $o_n(1)$ is an arbitrary sequence of positive numbers tending to zero, the sequence $\{a_n\}$ given by (3.1) satisfies $a_n \le e^{-o_n(1)\sqrt{n}}$. Thus a sequence can decay much faster than polynomially and still satisfy the hypothesis of the theorem.

Acknowledgments. I would like to thank the referee for his many suggestions to bring this paper into readable form, and Talbot Katz for several stimulating conversations.

REFERENCES

- [1] GARSIA, A. (1962). Arithmetic properties of Bernoulli convolutions. Trans. Amer. Math. Soc. 102 409-432.
- [2] REICH, J. I. (1982). Some results on distributions arising from coin tossing. Ann. Probab. 10 780-786.
- [3] Reich, J. I. (1982). When do weighted sums of independent random variables have a density—some results and examples. Ann. Probab. 10 787-798.

DEPARTMENT OF MATHEMATICS BARUCH COLLEGE, CUNY 17 LEXINGTON AVENUE NEW YORK, NEW YORK 10010