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THE CONTINUOUS AND DIFFERENTIABLE DOMAINS OF
ATTRACTION OF THE EXTREME VALUE DISTRIBUTIONS!

BY JAMES PickANDSs II1

University of Pennsylvania

The domains of attraction of the univariate extreme value distributions
are characterized using inverse cumulative hazard functions. The results are
much simpler than those using cumulative distribution functions. We also
characterize the differentiable domains of attraction. A particularly simple
characterization is given for the twice differentiable domain of attraction.

1. Introduction. Let {X;}? , be mutually independent with common CDF
(cumulative distribution function) F(x) = p{X < x}. Now let Z, = V?_, X,, the
maximum among the first n observations. Clearly Z, - x_, = lub{x|F(x) < 1}
in probability as n — co. We say that A(x) is an “extreme value CDF” and that
F(x) lies in its “domain of attraction” if and only if A(x) and F(x) are
nondegenerate and there exist nonrandom sequences (a,, b,)?_, with a, > 0,
such that
(1.1) lim p{Z, <a,x +b,} = lim F(a,x + b,) = A(x)
for all x at which A(x) is continuous. We say that F(x) lies in the “L times
differentiable domain of attraction” if and only if F(x) and A(x) are nondegener-
ate and L times differentiable for all sufficiently large x < x_ and

lim al(F*)"(a,x + b,) = AO(x),

uniformly for all x in any finite interval for all /= 0,1,2,..., L, where (1)
denotes the /th derivative of the function with respect to its argument. From
here on we will assume nondegeneracy without mentioning it.

In particular, F(x) lies in the (once) differentiable domain of attraction of
A(x) if and only if

12) lim a,(F*)"(a,x +b,) = lim na,F* (a,x + b,)f(a,x +b,)
1.2 n—oc n—oo

AMx) = AD(x),

uniformly for all x in any finite interval where the density function f(x) := F®(x)
exists for all sufficiently large x < x_. Notice that (1.2) implies (1.1).
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Gnedenko (1943) proved that a cumulative distribution function is an extreme
value one if and only if it belongs to one of three families. See Galambos (1978),
pages 51-57. See also Leadbetter, Lindgren, and Rootzen (1983), page 10. These
three families can actually be written as a single three-parameter family. This
was shown by von Mises (1936). Statistical applications are discussed in the book
by Gumbel (1958). The domains of attraction are characterized in the monograph
by de Haan (1970). For a thorough study of characterizations involving exponen-
tial distributions see the book by Galambos and Kotz (1978). In this work we
characterize the domains of attraction in terms of the ICHF (inverse cumulative
hazard function) and we use the von Mises one-family parametrization. The
results seem to be much simpler and more unified. The preliminaries are in
Section 2. The limiting ICHF’s are derived in Section 3. It is shown there that
the results for extreme order statistics are equivalent to the known ones for
maxima. In Section 4 we characterize the differentiable domains of attraction.
We show by counterexamples that the differentiable domains of attraction are
strictly smaller than the domains of attraction. Falk (1984) discusses uniform
convergence to the limiting joint distribution of the extreme order statistics.
Weissman (1984) gives sufficient conditions for uniform convergence when the
number of extreme order statistics may be increasing as n — co. Resnick (1985)
gives exact uniform bounds. In Section 5 we characterize the twice differentiable
domains of attraction. We show, again using counterexamples, that these are still
smaller. We give a simple characterization in Theorem 5.2. Most textbook
continuous distributions satisfy this condition.

de Haan and Resnick (1982) studied the continuous and once differentiable
domains of attraction in depth. They gave sufficient conditions and rates of
convergence. They also gave results concerning L, convergence. See also the
more recent paper by Sweeting (1985).

2. Preliminaries. Any random variable can be represented as a function of
a standard uniform random variable. That is, X := F~YU) where U ~ U(0,1)
and F~! is an inverse function for F(x) = p{X < x}. Let

F~'(u) = lub{x|F(x) < u} = glb{x|F(x) > u}.

Let { X ,,}%-, be the descending order statistics from a sample of size n. Clearly,

(2.1) X(k)=F_1(U(k))>
where {(U,,,}i-, are the descending order statistics from a standard uniform
sample.

We call the function
H(x) = —log(1 - F(x))

the CHF or “cumulative hazard function” for the random variable X. Its inverse
function is

H Y(u)=F1'Y1-e").

Recall that a random variable Z has a standard negative exponential distribution
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if and only if 1 — e~Z has a standard uniform one. Thus any scalar variable can
be written

X=H"(2),

where Z ~ e(1). That is, Z has a standard negative exponential distribution. The
descending order statistics are {X,, = H™'(Z,,)}i-,, where Z,, are the de-
scending order statistics for an e(1) sample. Suppose {X,}}_, are mutually
independent random variables with common CDF F(x). If F is continuous then
{F(X},)}s-, constitute a standard uniform random sample. It follows that the
limit distribution as n - o of n(l — F(X,,) and {(n — k) (F(X,,) —
F(X 1))}k, is that of K + 1 mutually independent standard negative ex-
ponential random variables. Consequently, the same is true for {n(F(X,,) —
F(X i1))}h-0 where F(X ) = 1. But Z,, are the order statistics from an e(1)
sample and so F(x)=1— e * It follows that {n(e %« — e %uw)}K_  are
mutually independent and e(1), asymptotically, where Z,, := oo and so e~ %» = 0.
It follows that {T},)X_, have as n » oo the same limiting joint distribution as
that of the first K event times of a homogeneous one-dimensional Poisson process
where

(22) Tk = ne “%m
or, equivalently,

(2.3) Z = —log(T,/n).

Since F(x) = 1 — e~ * has continuous derivatives of all orders, it follows that the
limits of derivatives of all orders of the joint distribution function are the
corresponding derivatives of the limiting joint distribution. The normalized
extreme order statistics are {( X, — b,)/a,}k_,, where

(X — b,)/a, = (H '(logn — log T},) — b,)/a,

= (H™'(~log(Ty/n)) - b,)/a,.
A limiting joint distribution exists as n — oo if and only if

(2.4) lim (H '(logn — logt) — b,)/a, = ¢~ (—logt)

n—oc
for all ¢ at which ¢~ !(—logt) is continuous. Because H™! and ¢! are both
monotone, convergence is uniform on finite intervals. The limiting joint distribu-
tion of the K largest order statistics then is that of {y~!(—logT},)}¥X_,, where
(T,}%_, are the first K event times of a standard one-dimensional Poisson
process.

The function H~(-)is nondecreasing by definition. Thus the limit  ~'(—log ¢),
if:it exists [that is, if it is finite for all ¢ € (0, 00)], is also nondecreasing as a
function of —log ¢. Thus its discontinuity set is at most countable and so that set
has measure 0. Suppose we replace n in (2.4) by n + 1. Notice that log(n + 1) —
logn =log(l + 1/n) ~1/n - 0 as n = . The limit is the same for any ¢ at
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which ¢~ !(—log t) is continuous, that is, for almost all ¢£. We can, without loss of
generality, replace n; or log n, in (2.4) by a real argument.

If (2.4) holds (with n not necessarily integer valued) and if ¢ ~'(u) is nonde-
generate, we say that the ICHF ¢~ '(u) is an extreme value one and that the
ICHF H ™ '(u) lies in its domain of attraction. By “nondegenerate,” here, we
mean that ¢~ '(u) is finite for all u € (0, ) and not everywhere constant. If, in
addition, the first L derivatives of the expression on the left side of (2.4) converge
to the corresponding derivatives of the limiting expression on the right side of
(2.4), uniformly on all finite intervals, we say that H ™ (u) lies in the L times
differentiable domain of attraction of ¥ ~!(u). It is well known that the limiting
extreme value distributions are continuous everywhere. Furthermore, between
x . = glb{x|A(x) > 0} and x_, all derivatives exist and they are finite. See, for
example, Galambos (1978), pages 51-57. Derivatives of inverse functions are
continuously related to the corresponding derivatives of the original functions.
The following theorem results.

THEOREM 2.1. A distribution function F(x) lies in the L times differentiable
domain of attraction of A(x) if and only if the corresponding ICHF H™'(u) lies
in the L times differentiable domain of attraction of the corresponding function

¥ (u).

REMARK. Since a CHF increases from 0 to co an ICHF is a function from R,
into R'. The referee has pointed out that ¢ '(u):= A !(exp — e *). Since
¢ !(u) is defined even for u < 0 it is not, strictly speaking, an ICHF.

3. Domains of attraction. In this section we characterize the limiting
ICHF’s and their domains of attraction.

LEMMA 3.1. A nonconstant finite function ~' is a limiting extreme value
ICHF if and only if

(v (y+a) =y '(3)/ (W (ry+b) —47()

= (¢ (a) = ¢70)/(¥71(b) = ¥71(0))

forall a, b, y € (—o0,©). An ICHF H™'(u) lies in its domain of attraction if
and only if

(3.1)

lim (H W (z+a)-H '(2))/(H (z+b)— H \(2))
(3.2) S

= (¥7'(a) =¥70)/(¥71(8) = ¥7'(0))
forall a, b € (— o0, ). '
ProoF. Recall (2.4). Replace H (u) in (3.2) by (H '(u) — b(2))/a(z2).

Notice that the scale and location terms, a(z) and b(z), respectively, cancel in
(3.2). By continuity the result (3.2) follows if and only if (2.4) does. For all
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a, b, y € (—o0, ),
(¢~ (a) = ¥7%0))/(¥~1(b) — y~Y(0))

(33) zlinolo(H“(z+y+a)—H‘l(z+y))/
. (H_l(z+y+b)—H_1(z+y))

=¥ y+a) =4 U(»)/ (¥ (v +b) =¥ (),

substituting z + y for z in the limit. Thus (3.1) is true and the necessity part of
the theorem is proved. To prove sufficiency we need only observe that, by (3.1)
and (3.2), ¥~ '(u) lies in its own domain of attraction. O

DEFINITION. A “type” is any equivalence class of nondecreasing functions
connected by the affine group. That is ¢ '(«) and ¢ (u) are equivalent if and
only if

Yo ') = ayy(u) + b
for some a > 0 and b € (— o0, 0).
LEmMMA 3.2. If Y, u) is a limiting ICHF  \(u) satisfying (2.4), then
¥, '(u) is such, for the same ICHF H™\(u), if and only if ¥;' and 7' are of

the same type. Furthermore, for any ¢ '(u), if a function H™'(u) lies in its
domain of attraction then so does aH (u) + b for any a > 0 and b € (— o0, ).

REMARK. By Lemma 3.2 we can speak of limiting types and the domains of
attraction as disjoint families of types. By Lemma 3.1 each limiting type is a
member of its own domain of attraction.

ProOF oF LEMMA 3.2. This result is fairly well known and intuitively
appealing. See the proof of Lemma 1 in de Haan (1976). O

LeEmMMA 3.3. A nonconstant function () is such that (3.1) holds for all y
if and only if
(3.4) v (u)=g+f[evds,
0

where 0 < f < 00, —00 < g, ¢ < 00.

PrROOF. Let A € (0,0). Let {q,, := ¢ (kA)}¥_,. By (3.1)

(9 = 9,-1)/(Gr-1 = Qu2) =p
for all £ where 0 <p < o independently of k. It follows that for all %,
qr — 4i - =Pk_1f* where f, =g, — g, and so g, =g, + Ef=l(qj_ q,.,) =
g+ f+«Xk_ p/~" where g = g,. In closed form
G =8+f(p*-1)/(p-1), p=*1
=g+ [ 4k, p=1
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Whether or not p = 1 we can write
kA A u
=y (kA) =g+ e“ds/ | e*ds=g+ e“ds
a, =y (k) =g+ 1 [ /fo g+ff

for all u = kA, where ¢ = A" 'log p, and f =f,/[fe ds. So ¥ (u) is of the
form (3.4) with the same values of f, g, ¢ for all u of the form k/2”. That is, (3.4)
holds throughout the dyadic set. By continuity of (3.4) and the requirement that
¢ '(u) be nondecreasing, the function ¢~ '(u) is of the form (3.4) for all real .
The necessity part of the lemma is proved.

Now suppose ¢~ '(u) is of the form (3.4). Notice that in (3.1) g and f will
cancel. It is easy to verify that (3.1) holds. The sufficiency part of the lemma is
proved. O

Lemmas 3.1, 3.2, and 3.3 combine to prove the following:

THEOREM 3.1. A nonconstant finite function ¥~ Yu) is a limiting (extreme
value) ICHF if and only if

u
(3.5) : ¢“(u)=b+af e ds

0
for some a € (0, 0), b, c € (—0,00). The ICHF H™Y(u) lies in its domain of
attraction if and only if for all A € (0, c0),

(3.6) lim (H Y (z2+20)-H Y(z+A))/(H(z2+A) —H '(2)) =e.

REMARK. We could say, in place of (3.5), that the limiting type is the one
that contains f‘e“* ds.

This characterization of the domains of attraction is equivalent, through a
logarithmic transformation, to de Haan (1970), Theorem 2.4.1, page 76. This
result is due to Mejzler (1949).

Now the limiting joint distribution of the K largest order statistics is that of
(b + af, ¢ Tre s ds)}X_, where T}, are the first K event times of a homogeneous
one-dimensional Poisson process. Consider the limiting distribution of largest
values. Now T, has the standard negative exponential distribution. We can easily
verify that b + af, '°¢T'e“* ds has an extreme value distribution with shape
parameter ¢ in the von Mises (1936) parametrization.

The author showed (1968), implicitly, that convergence is uniform to the right.

4. Differentiable domains of attraction. Notice that (3.2) in Lemma 3.1
can be written, equivalently,

lim (H'(z+y+8) = H (2 +))/(H (2 +4) - H\(2))

= (v Ny+A)—¢ () (47 (A) =¥ 1(0))

for all y € (—0,0), A>0. Now H! lies in the differentiable domain of
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attraction of ¢~ '(u) if and only if
lim (H-")"(z +y)/(H")"(2) = (¥7)"(2)/(v7)"™(0),

z—> e
where (1) denotes the first derivative with respect to the argument. By Theorems
2.1 and 3.1 the following is immediate.

THEOREM 4.1. In order that H™ \(u) lie in the differentiable domain of
attraction of ¥~ \(u), given by (3.4), it is necessary and sufficient that H™ '(u) be
differentiable for all sufficiently large u and that

(4.1) lim (H )"z +y)/(H ")"(z) = e

zZ—oC

forall y € (— 0, ).

REMARK. A referee has pointed out that (4.1) is equivalent to the condition
that H '(log t) varies regularly with exponent ¢ as ¢ - c0. See Sweeting (1985)
for the case ¢ = 0.

We show that some distributions lie in a domain of attraction but not in the
corresponding differentiable one. Let

(42) H Y(u) = '/(;u(ecs +p(s))ds=c Y(e*—1)+ [)up(s)ds, c#0.

Notice that H™'(u) is an ICHF if p(s) > 0 for all s. Now

(H W (u+y)—H Y(u))/e"= '[)y(e“ + p(s+ u)e ") ds

(4.3) )
> [fesds = (e = 1) /e
0

as u — oo if and only if

(4.4) e"""/oyp(s+u)ds—>0 asu — oo forall y € (— o0, ).

For differentiable convergence it is necessary and sufficient that the derivative of
the left side of (4.3) converge as u — oo to the derivative of the right side. But it
does if and only if

e “p(u+y)—0

as u — o for all y € (— 0, o). Equivalently,

(4.5) lim e ““p(u) = 0.

u—xc
Let {d,}7_, be such that d, € (0,1) and £_,d, < o and let
(4.6) p(u) = e, n<u<n+d,,

for each integer n and let it ==’O, otherwise. Now (4.4) is true but (4.5) is not.
Consequently, the convergence (4.3) takes place but not differentiably.

Sweeting (1985) showed, in effect, that differentiable convergence is uniform to
the right.
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5. Twice differentiable domains of attraction. By Theorem 4.1, if and
only if H '(u) lies in the differentiable domain of attraction of ¢ ~'(u), given by
(3.5), then

lim (H™)"(z + 8)/(H")(2) = e
and so
lim ((H™)"(2 +8) = (H)"(2))/(H ) "(2) = (e = 1),

The following theorem is immediate:

THEOREM 5.1. In order that H™ '(u) lie in the twice differentiable domain of
attraction of ~'(u) it is necessary and sufficient that

(1) lim (H™)®(2)/(H")"(2) = lim (log(H"")")"(2) = c.

THEOREM 5.2. In order that a distribution function F(x) lie in the twice
differentiable domain of attraction of the extreme value distribution A(x|c),
— 00 < ¢ < 0, it is necessary and sufficient that F(x) be twice differentiable for
all sufficiently large x < x_, = lub{x|F(x) < 1} and that

(5:2) lim d((1 ~ F(x)/i(x))/dx = e,

where the density
f(x) = FN(x).

REMARKS. It is known that the condition (5.2) is equivalent to the von Mises
condition, which is sufficient for the domain of attraction. For the case ¢ = 0 see
Marcus and Pinsky (1969). More generally, for all values of ¢ see de Haan (1970),
pages 108-113. The author (1984) considered nonparametric estimation of the
“Pareto function” (5.2). Notice that convergence here is uniform to the right.

ProoF oF THEOREM 5.2. Recall Theorem 2.1. We show that the term whose
limit is ¢ in (5.1) is the same as the term in (5.2) with the same limit. Let
z = H(x) = —log(l — F(x)) or, equivalently, x := H™!(z). Now

(log(H ")) (2) = (H ")?(2)/(H ) "(2) = d(H ")"(2) /dH"(2)
=d(dH '(z)/dz)/dx
= d(1/H'(x))/dx = d((1 — F(x))/f(x))/dx.

The theorem is proved. O

It is easily verified that all *textbook” continuous distributions satisfy this
condition.

Some distributions lie in a once differentiable domain of attraction but not in
the corresponding twice differentiable one. Recall H '(u) given by (4.2). It
converges twice differentiably if and only if p(u) is differentiable for all
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sufficiently large u and
e “p(u+y)—0
as u — oo for all y. Equivalently,
(5.3) lim e~ “%’(u) = 0.
u—oc

Let p(u) be defined as is p(«) in (4.6). Then (4.5) is true but (5.3) is not. So the
convergence is differentiable but not twice differentiable.
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