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REGULAR VARIATION AND THE STABILITY OF MAXIMA!

By R. J. ToMKINS
University of Regina

The notion of regular variation of functions is generalized by defining .
{(t) = liminf, _,  L(&x)/L(x), t> 0, for any positive nondecreasing function
L. It is shown that [ must obey one of: (i) [(f) = +oc for every ¢t > 1;
(ii) {(t) > 1 for every t>1 and [(¢)}1 as t|1; or (iii) /(¢) = 1 for some
t > 1. Each of these classes is characterized in terms of the convergence or
divergence of the integral I(r, §) = [Xexp{rL(éx) — L(x)}dL(x) for r > 1,
8 <1.

Let X, X,,... be iid. random variables with distribution function F.
Define p, =F (1 —n '), M, =max(X,,...,X,), and L(x)= —log(l —
F(x)). {M,)} is almost surely stable iff M, /p, — 1 as., and this is known to
be equivalent to the convergence of I(1, 8) for every 8 < 1. Necessary and
sufficient conditions for ¥X_ , n“P[|(M,/p,) — 1| > €] < ¢ are presented,
where a > —1. In particular, that series converges iff I(a + 2,(1 + &) ') <
. Moreover, the series X%_ \n“P[|(M,,/p,) — 1| > €] converges for all ¢ > 0
and some a > —1 iff it converges for every a > —1 and every ¢ > 0.

1. Introduction. Consider a sequence X,, X,,... of independent, identically
distributed (i.i.d.) random variables (r.v.’s) with common distribution function
(d.f) F(x) = P[X, < x]. For n > 1, let M, = max(X,,..., X,).

If F(x) <1 for all x, Gnedenko (1943) called the sequence {M,} relatively
stable it M,/a, — 1 in probability for some real sequence {a,}, and proved that
relative stability is equivalent to

(1.1) lim (1 - F(tx))/(1 — F(x)) =0 foreveryt> 1.

More generally, {M,} is called almost surely (relatively) stable if M, /a, — 1
almost surely (a.s.). Barndorff-Nielsen (1963) showed that a.s. stability occurs if
and only if (iff)

(1.2) fx[l — F(8x)] "'dF(x) < o forevery § < 1.
1

This result was refined by Resnick and Tomkins (1973), who showed that a.s.
stability is guaranteed if limsup,_ M, /p, =1 as., where p, = F (1 —n"")
and F ! is defined by

F'(y) =inf{x: F(x) >y}, O0<y<l.
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With these results in mind, it is natural to seek necessary and sufficient
conditions for

(1.3) ;

and some sequence a, 1. Notice that M, /a, — 1 completely [in the sense of Hsu
and Robbins (1947)] if (1.3) holds, and that (1.3) implies a.s. stability by virtue of
the Borel-Cantelli lemma.

Section 3 will present some necessary and sufficient conditions for the more
general result

M,
— -1

’1

> e] < oo foreverye >0

(1.4) i n®P

n=1

Mn
—L -1

a,

> e} < oo foreverye >0,

where a > —1. In fact, if (1.4) holds for some a > —1 [in particular, if (1.3)
holds], then (1.4) must hold for every & > —1. Moreover, it may be assumed that
a, ~ p, (e, a,/n, = 1) in this case.

Section 3 will also establish a connection between the convergence or diver-
gence of the series in (1.4) and the behaviour of the function

I(t) =liminfL(tx)/L(x), t>0,

where L(x) = —log(l — F(x)). The definition of I(¢) is reminiscent of regular
variation: A positive, monotone function L is called regularly varying if

A(t) = xli:roch(tx)/L(x)

exists for all ¢ > 0; see, for example, Feller (1971), pages 275-279, or Seneta
(1976), page 1. Regular variation has been studied extensively and generalized;
two papers by Bingham and Goldie (1982a 1982b) are especially noteworthy in
this regard.

Connections between regular variation and limiting behaviour of M, have
been discovered (e.g., Feller (1971), page 278, or de Haan (1970)) and some results
of Section 3 extend this connection.

Section 2 investigates the properties of I(¢) for general, monotone positive
functions L. It will be shown (cf. Theorem 2.1) that any such L must satisfy
exactly one of: (i) I(t) = + oo for every ¢ > 1; (ii) I(t) > 1 for ¢ > 1 but inf, _ ,I(¢)
= 1; or (iii) /(t) = 1 for some ¢ > 1. Each of these three categories is then
characterized in terms of the integral [Pexp{rL(dx) — L(x)}dL(x) and the
difference L(x) — rL(8x), where0 < é <1and r > 1.

Finally, Section 4 will indicate how the results of Section 3 may be adapted to
produce convergence results in the case where F(x) = 1 for some x.

" 2. A generalization of reg‘ular variation. A positive monotone function L
defined on (0, o0) is called regularly varying if

(2.1) lim L(tx)/L(x) = A(£)
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exists for every t > 0. In fact, if L is regularly varying, then A(¢) = ¢* for all
t> 0and some p, —0 < p < +0oo0 (where t* =0if t < 1, t* = o0 if £ > 1), and
L is said to have exponent p. It is common to say that L is slowly varying if
p =0 [ie, A(¢) =1 for all ¢£> 0], and that L is rapidly varying if p = + 0.
These and other properties of regularly varying functions have been extensively
expounded; see, for example, de Haan (1970), Feller (1971), or Seneta (1976).
Several generalizations of regular variation have been studied by Bingham and
Goldie (1982a, 1982b). Because the limit in (2.1) need not exist for all ¢ > 0,
functions may exist which are not regularly varying (in this connection, see
Remark 2 following Theorem 2.2). This section will extend the notion of regular
variation so as to include every monotone function in exactly one of three classes
analogous to the cases p = + 00, 0 < |p| < o0 and p = 0 of regular variation.

Suppose L is a positive nondecreasing function defined on (0, ). For any
t > 0, define

(2.2) I(t) = lir_n'infL(l;x)/L(x).

Certain functions of this form have arisen in the study of stochastic compactness
[Maller (1981)] and domains of partial attraction [Maller (1980) and Goldie and
Seneta (1982)]. The function / has been studied in its own right by Bingham and
Goldie (1982a, 1982b) and Matuszewska (1962). The function [/ will be used in
Section 3 for L(x) = —log(l — F(x)) for certain distribution functions F.

Clearly [(t) is well defined for all ¢ > 0 and, trivially, /(1) = 1. Moreover, [ is
nondecreasing since L is nondecreasing.

The following theorem shows that every function [ defined by (2.2) falls into
exactly one of three categories not unlike the rapid, regular and slow variation
classifications. This result could be derived from work of Bingham and Goldie
(1982b) on Karamata indices, but a simple proof is presented here for complete-
ness.

THEOREM 2.1. For a nondecreasing positive function L on (0, o0), define | by
(2.2). Then exactly one of the following properties holds:

(1) I(t) = + oo for every t > 1,
(i) I(t) > 1 for every t > 1 but inf,_ |l(t) = 1;
(ii1) I(t) = 1 for some t > 1.

Proor. Clearly inf,_ I(¢t) = 1. If inf,_,Il(¢) = 1, then (ii) or (iii) must hold.

Now suppose 8 = inf,_,/(¢) > 1. It is easy to see [cf. Matuszewska (1962)]
that I(¢,t,) = I(t)I(L,) for ¢, t, > 0 and, by induction, I(¢") > [*(t). Therefore,
if t,> 1, l(t,) = I"(t{/") = B" = o0, 80 () = oo for all ¢ > 1 whenever 8 > 1.0

REMARKS.

1. Notice that (i) holds iff L and 1/L are rapidly varying iff [ is not
right-continuous at ¢ = 1.

2. It is easy to create a function which is not regularly varying for any p, but
which satisfies (ii) or (iii). If L, is regularly varying with exponent p, 0 < p < o0,
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then let L(x) = 2"L(x) if 2" < x < 2"*', n > 0. Then it is not hard to show
that I(¢) = 2™¢* and limsup, _, ,L(tx)/L(x) = 2™*'t* whenever 2™ < t < 2™*1,
So L obeys (ii) in this case. By defining L(x) = L,(2") for 2" <x <2"*! it
follows that L(#2")/L(2")=1if 1<t<2,s0 l(t)=1if 1 <¢t<2; thus L
obeys (iii). But L is not slowly varying because L(2"*')/L(2") - 2° > 1.

Each of the three categories in Theorem 2.1 can be characterized in terms of
functions of the form

(2.3) D(x;r,8) =L(x) — rL(6x), 0<8<1, r=1, x>0,

and integrals

(2.4) I(r,8) = fxexp{rL(Sx) ~L(x))dL(x), 0<8<1, r>L.
1
Since I(r,8) < o and lim, , , D(x; r,8) = + oo for every 6§ <1 if r <1, and
I(r,8) = + o and liminf, , _D(x; r,8) = —oo for every r > 1 if 6§ > 1, it will
be assumed that 0 <4 <land r > 1.
Consider, first, the following key lemma.

LEMMA 2.2. Fix r > 1 and 8 < 1. Define I(r, §) by (2.4).
(i) If I(r,8) < oo then
(2.5) lim {L(x) — rL(dx)} = + 0.

(ii) If (2.5) holds, then I(§ ') > r.
(iii) If (8~ ") > r then I(r,8) < .

PrROOF. Define D(x; r, 8) by (2.3). Since d(e”L*)) = —e L) dL(x),
exp{ —D(x; r,8)} =[ exp{rL(8x) — L(y)} dL(y)

<[ en(=Dlyr.8)dL(y) ~ 0

as x — oo if I(r,8) < o0, so (i) holds.

Note that (2.5) is equivalent to L(8x){L(x)/L(dx)—r} — o as x — oo.
Since L(8x) > 0 for all x, L(x)/L(8x) > r for all large x. Therefore [(§ ') > r,
so (ii) holds.

Now suppose {(8 ') > r. Choose s such that r < s < [(§!'). Then a number ¢
exists such that L(x) > sL(8x) for all x > c. Letting V=1-r/s > 0,

[ exp{rL(8x) - L(x)) dL(x) < fiexp(—VL(x)) dL(x)

=V 'exp(—VL(c)) < o,
so (iii) holds. O

With the aid of this lemma, a characterization of rapid variation can be
established.



988 R. J. TOMKINS

THEOREM 2.3. The following statements are equivalent:

(i) I(t) = + o0 for everyt > 1;

(ii) I(r,8) < oo for every 6 <1 and every r > 1;
(ili) I(r,8) < oo for every § < 1 and some r > 1;
(iv) (2.5) holds for every 6 < 1 and some r > 1;
(v) (2.5) holds for every 8§ < 1 and every r > 1.

Proor. Lemma 2.2(iii) ensures (ii) when (i) holds. Obviously, (ii) implies (iii),
which in turn implies (iv) by Lemma 2.2(i). But (ii) implies (v) by Lemma 2.2(i),
and (v) implies (iv), trivially. It remains only to observe that (iv) implies (i) by
Theorem 2.1 and Lemma 2.2(ii). O

The following theorem characterizes the functions L obeying I(¢) = 1 for some
t> 1.

THEOREM 2.4. The following assertions are equivalent:

(i) I(t) =1 for some t > 1;
(i1) for some 8§ < 1, I(r,8) = o for everyr > 1;
(iil) for some 8 < 1, (2.5) fails to hold for any r > 1; i.e.,
(2.6) liminf D(x; r,8) < oo

X —oC

for every r > 1.

ProoF. Suppose [(y) = 1 for some y > 1. Then I(y) < r for every r > 1, so
(2.6) holds with § = y~! for every r > 1 by Lemma 2.2(ii). Thus, (i) implies (iii).
By Lemma 2.2(i), (iii) implies (ii). Finally, if I(r,8) = oo for some § < 1 and
every r > 1, then [(§ ') < r forall r > 1 by Lemma 2.2(iii). Hence I(§ ') = 1, so
(ii) implies (i). O

Theorems 2.1, 2.3, and 2.4 combine to yield the following characterizations of
the case where I(t) > 1 for all £ > 1 and inf,_ I(¢) = 1.

THEOREM 2.5. The following statements are equivalent:

(i) I(t) > 1 for everyt > 1 and inf,_ [(t) = 1;
(ii) for every & < 1, there exists r > 1 such that (2.5) holds, and for each
r > 1, there exists § < 1 such that (2.6) holds;
(iii) for every & < 1, there exists r > 1 such that I(r,8) < oo, and for each
r > 1, there exists § < 1 such that I(r, §) = oo.

Finally, a line of reasoning similar to that used to prove Theorem 2.4 leads to a
characterization of those functions L for which /(¢) = 1 for all ¢ > 1.
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THEOREM 2.6. The following are equivalent:

(i) I(t) =1 for every t > 1;

(ii) for every r > 1, (2.6) holds for every § < 1,
(iii) for some r > 1, (2.6) holds for every § < 1,
(iv) for some r > 1, I(r,8) = co for every § < 1,
(v) for everyr > 1, I(r,8) = o for every 8§ < 1.

Proor. Supposel(t)=1forallt>1.Ifd<landr>1, U8 )=1<r,so
(2.6) holds for all r > 1, § <1 by Lemma 2.2(ii); thus, (i) implies (ii). Now, (ii)
implies (iii) trivially, while (iii) implies (iv) by Lemma 2.2(i). If (iv) holds, then
I(r,8) = oo for some r > 1 and all § <1, s0 [(§') < r for some r > 1 and all
8 <1 by Lemma 2.2(iii); thus sup,.,/(t) < r < . But then, for any ¢t > 1,
1 < IU(t) <1V"(t") < r'/* for every n > 1 (cf. the proof of Theorem 2.1). Since
r'/n - 1, I(t) = 1, i.e., (i) holds.

If (i) holds, then /(87 ') < r for all r > 1, § < 1, so (v) holds by Lemma 2.2.
Since (v) implies (iv), trivially, the theorem is proved. O

REMARK. It follows from Theorems 2.3 and 2.5 that I(1,8) < co and
lim, , D(x;1,8) = co for every § <1 whenever [(¢t) > 1 for all ¢ > 1. But if
I(t) =1 for some t > 1, even if L is slowly varying, it is possible that both of
these assertions hold, or that neither holds, or that only lim, _,  D(x;1,8) = .
[Note that I(1,8) < oo guarantees lim, , D(x;1,8) = oo by Lemma 2.2(i).]
For instance, L(x) = logx is slowly varying, but L(x) — L(éx) = —log 6 and
I(1,8) = 87 '/*dL(x) = oo for all § <1. But the slowly varying function
L(x) = (log x)* obeys I(1,8) < oo and, hence, lim, _,, D(x;1,8) = oo for every
8 < 1. Finally, if L(x) = clogxloglogx for x > e? and some c > 0, then
lim D(x;1,8) = oo forall § <1, but I(1,8) = oo if § > e~ ¢ [cf. Resnick and

X — C

Tomkins (1973)].

3. A generalization of stability. Throughout this section M, =
max(X,,..., X,), where X, X,,... are iid. rv.’s with common d.f. F with
F(x) < 1 for all x. Let p, = F (1 — n™"). This section focusses on establishing
necessary and sufficient conditions for

n

By

n" 2P
1

(3.1) -1

> e} < oo forevery ¢ > 0.

TiMx

The following lemma is due to Tomkins (1984); its proof is given here for
completeness.

LEMMA 3.1. Let {c,} be a real sequence such that c,? + oo. Suppose
—o <p<l.

(i) If Xr_,n"P[1 = F"(c,)] < oo then F"(c,) — 1.
(i) If X% ,n"PF"(c,) < oo then F"(c,) — 0.
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ProoFr. Because the summands of a convergent series necessarily converge to
zero, both parts are easy to prove if p < 0, so assume 0 < p < 1. Then

2n 2n
L= F'(ey) =2 L (2n) (1= F(e,)) <2 ¥ j?[1 - Ficy)].

Under the hypotheses of (i), clearly F*(c,,) — 1, so that F2"(c,,) - 1. But,
since ¢, 1, it follows that

1> F?"* ¢y, y) = Flegyy)F(cy,) = 1,
so (i) holds.

Similarly,
2n 2n )
F*(c,)=2 ¥ (2n) 'F(c,) <2 ¥ jFc),
J=n+1 Jj=n+1

so the hypothesis of (ii) guarantees F?*(c,) — 0 and hence, F"(c,) —» 0. O

Necessary and sufficient conditions for (3.1) will follow from the next theorem,
in conjunction with results from Section 2.

THEOREM 3.2. Let X, X,,... be i.i.d. r.v’s with common d.f. F with
F(x) <1 for all x. Define M, = max(X,,..., X,) and p,=F'(1 —n~ ). Let
r > 1 and € > 0. Then the following assertions are equivalent:

(i) "{_:ln"P Ir:_l >s}<oo;
(ii) i n"*P[M, > (1 + &)p,] < o;
(iif) i n" (1 - F((1 + e)p,)) < o;

n=1
(iv) ST = FGy/a+ )] dR(y) < .

ProOOF. Clearly (i) implies (ii). Now, by definition of p,, F*(1 + e)u,) >
(1 —n ") - e . If ea < 1, then there exists N > 0 such that F*((1 + e)u,) >
a for all n > N. It is well known [e.g., Feller (1968), page 66] that

(3.2) 1-t< —logt<(1—-t¢t)/t forO<t<l.
Letting ¢ = F"((1 + €)p,), it follows that
1-F"((1+¢&)p,) < —nlogF((1+e)p,) <a'(1—F*((1+e)n,)

for all n > N. But (y —1)/logy — 1, so —nlog F((1 + e)u,) ~ n[1 — F(1 +
e)u,,)]; thus the equivalence of (ii) and (iii) follows from the limit comparison test
for series.
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Now define § =(1+¢) !, x,=F '0) and p, = F '(1 — x~'). Then, for
r>1,

(n+ l)r_l[ F((1 +5)Pm+1)] <2 'n"" 1[1 - F((1 +8)H’n+l)]
<o [T L= B+ o)) d

<27 (n+1)""[1 - F((1+e)n,)]
<4 ' 1 - F((1 + e)u,)].

Summation over n yields the equivalence of (iii) and (iv), since

rfloox"l[l—-F((l+s)ux)]dx=rf°_O x"‘/w dF(y) dx

y=1+e)p,

- / f[_l F(éy)™! x"Vdx dF(y)

Y 1 - F(sy)] T dF(y) - 1.

Y=Xy

Finally, it will be shown that (iv) implies (i). In view of the established
equivalence of (ii) and (iv), it will suffice to show that (iv) implies

Y P M, < (1- ] = % (1 = ) < oo,

n=1 n=1

But 1l —e=(1-¢?)/(1+¢) < §, so it will be enough to show that (iv) implies

(3.3) Y n"TEF(8u,) < oo.
n=1
From the definition of p,, x[1 — F(8p,)] > 1. Moreover, let A >0 be a
constant such that y’e™ < A for all y > 1. Then a modification of a technique
of Resnick and Tomkins (1973) yields

r—1

r—2 "8 _
n"F(dpy) ~

TF" (Bwa)

Fx( 8p.) dx

x"%exp{ —x[1 — F(8p,)]} dx by (3.2)

IA

<[
fn x" %exp{x log F(8p,)} dx
[

< A/"Hx’?[l — F(dp,)] " dx

50 (3.3) holds if I = [*x 2[1 — F(8p,)] " dx < co. But the change of variable
y=p, yields I = [F.,[1 — F(8y)] " dF(y), so (iv) implies (3.3). O
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REMARK. Resnick and Tomkins (1973) showed that {M,)} is a.s. stable iff
limsup, ,  M,/u, =1 as. The equivalence of (i) and (ii) in Theorem 3.2 is
analogous.

COROLLARY 3.3. Let X,, X,,... be i.i.d. r.v. with common d.f. F with
F(x) <1 for all x. Define M, = max(X,,..., X,) and p,=F (1 —n~"'). Let
r > 1. Then a real sequence {a,} exists such that a, 1 co and

- _1

a,

(3.4) Y. n"%pP
n=1

> a] < o0 foreverye> 0

iff (3.1) holds.

Proor. If (3.4) holds, then F*((1 + ¢)a,) = 1 and F"(1 — ¢)a,) — 0 for
every ¢, 0 < & < 1, by Lemma 3.1. It follows readily that M, /a, — 1 in probabil-
ity. But then a, ~ u, by Lemma 2 of Resnick (1972), and (3.1) follows easily.
Since (3.1) obviously implies (3.4), the corollary is proved. O

In the special case r = 1, Theorem 3.2 leads to a new criterion for a.s. stability.

COROLLARY 3.4 [Tomkins (1984)]. Define M, and p, as in Theorem 3.2.
Then {M,} is a.s. stable iff

(3.5) i n”'P

n=1

" _1

>s] < oo foreverye> 0

n

and some real sequence {a,}. Moreover, when (3.5) holds, it may be assumed
without loss of generality that a, = p,,.

PrOOF. By Theorem 3.2 and Corollary 3.3, (3.5) is equivalent to the conver-
gence of the integral (1.2) for every § < 1, which is, in turn, tantamount to a.s.
stability [cf. Barndorff-Nielsen (1963) and Resnick and Tomkins (1973)]. That
one may take a, = p, in (3.5) is clear from Corollary 3.3. O

Turning now to the case where r > 1, the next theorem shows that the
complete convergence of M, /a,, is directly linked to the generalization of regular
variation discussed in Section 2.

THEOREM 3.5. Let X,, X,... be i.i.d. r.v’s with common d.f. F, where
F(x) <1 for all x. Define M, = max(X,,..., X,) and
(3.6) L(x) = —log(1 — F(x))
for all real x. Letr > 1. Then -

i n"2P[

n

-1

>s} < oo foreverye> 0

a

n=1 n
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for some sequence {a,}, a, 1 o, if and only if the function L is rapidly varying,
ie.,

i L(tx o1
—_— > .
| 1n§C ) + 00 forevery

Moreover, it may be assumed without loss of generality that a,, = .
ProoF. Theorem 3.2 and Corollary 3.3 show that (3.4) holds iff the integral
< -r
(3.7) | 1= F(x)] 7 dF(y)

converges for every 8 < 1. But 1 — F(y) = exp(—L(y)) and dF(y) =
exp(— L( y)) dL(y), from which it is easy to see that (3.7) holds iff I(r,8) < oo,
where I(r, 8) is defined by (2.4). Thus (3.4) holds iff I(r,8) < oo for every § <1
which, in turn, happens iff L is rapidly varying, by Theorem 2.3. Finally,
Corollary 3.3 indicates that one may assume a, = p,. O

Theorems 2.3, 3.2, and 3.5 combine to produce the following important and,
perhaps, surprising result.

THEOREM 3.6. Define M, and p, as in Theorem 35. Let {a,} be a real
sequence such that a, 1 co. If (3.4) holds for some r > 1, then (3.4) holds for

every r > 1.

REMARK. Theorems 3.5 and 3.6 answer the question raised in Section 1 about
the complete convergence [in the sense of Hsu and Robbins (1947)] of M,,/a,, to
1: Y%, P[(M,/a,) — 1| > €] < oo for every ¢ > 0 and some sequence a,, = oo iff
(3.4) holds for all r > 1 iff —log(1 — F(x)) is rapidly varying.

The final result completes the connection between the convergence or diver-
gence of the series in (3.4) and the generalization of regular variation in Section 2.

THEOREM 3.7. Let X, X,,... bei.i.d. withd.f. Fsuchthat F(x) <1 for all
x. For n > 1, let M, = max(X,,..., X,,) and p, = F'(1 — n™"); define L by
(3.6) and l by (2.2).

(i) For every 0 < & < 1, a number r, > 1 exists such that the series

|

converges when r = r,, and for every r > 1, there exists ¢ > 0 such that (3.8)
diverges iff I(t) > 1 for every t > 1 and inf, . I(t) = 1.

“(ii) There exists ¢ > 0 such that the series (3.8) diverges for all r > 1 iff
l(t,) =1 for some t, > 1.

(iii) The series (3.8) diverges for all r > 1 and all € > 0 iff I(t) =1 for all
t>1.

-2 _1

)

(3.8) Y nr?pP
n=1
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Proor. Define I(r, §) by (2.2). By Theorem 3.2, the convergence of the series
(3.8) is equivalent to the convergence of I(r,(1 + €)™ '). Then parts (i), (ii), and
(iii) follow from Theorems 2.8, 2.7, and 2.9, respectively. O

REMARKS.

1. Mindful of the last four theorems of Section 2, it is clear from Theorems 3.5
and 3.7 that the convergence properties of the series (3.8) can be derived from
examining lim inf, |, L(#x)/L(x), or the integrals I(r,§) = [°[1 —
F(8y)] "dF(y) or liminf, , (L(x)— rL(8x)), where L is defined by (3.6).
Notice, in particular, that lim, _, (L(x) — rL(8x)) = oo iff lim,_ (1 — F(x)/
[1 — F(8x)]") = 0; the special case r =1 is condition (1.1), tantamount to
relative stability of M, [cf. Gnedenko (1943)].

2. In view of Remark 1 at the end of Section 2, if {M,} is not a.s. stable then
I(t,) =1 for some t,> 1. Furthermore, if L(x)= —log(l — F(x)) is slowly
varying, then M, may be as. stable [e.g., L(x) = (log x)?], only relatively stable
[e.g., L(x) = clogxloglogx, ¢ > 0] or not stable in either sense [e.g., L(x) =
log x].

4. The bounded case. Again, let X, X,,... be iid. r.v.’s with d.f. F, but
this time suppose F(x) =1 for some x. Define M, = max(X,,..., X,) and
x, = F7'(1). Then M, < x, as. Moreover, it is easily shown that M, — x,
completely and, consequently, a.s. and in probability. One way of studying the
rate of this convergence is to ask: Under what circumstances does a real sequence
{a,) exist such that a,(x, — M,) = 1 as.? If one sets X* = (x; — X,,)”' and
M¥ = max(XJ¥,..., X}), then a,(x, — M,) = a,/M}, so the question becomes
equivalent to seeking criteria for M*/a, — 1 a.s. In view of Barndorff-Nielsen
(1963) and Resnick and Tomkins (1973), it follows that a,(x, — M,) — 1 as. iff
[Z[1 — F*(8y))] 'dF*(y) < o for all § <1, where F* is the d.f. of X}, i.e,,
F*x)=F(x,—x7'),0<x< .

Similarly, criteria for a,(x, — M,) — 1 in probability can be derived from
Theorem 2 of Gnedenko (1943), and criteria for ¥*_,n" " ?P[|a(x, — M,) — 1| >
¢] to converge may be derived from the results of Section 3.
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