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THE ASYMPTOTIC DISTRIBUTION OF SUMS OF EXTREME
VALUES FROM A REGULARLY VARYING DISTRIBUTION

BY SANDOR CSORGH' AND DaviD M. Mason?

University of California, San Diego and University of Munich .

Let X, , < -+ <X, , be the order statistics of n independent and
identically distributed positive random variables with common distribution
function F satisfying 1 — F(x) = x~“L*(x), x > 0, where a is any positive
number and L* is any function slowly varying at infinity. We give a complete
description of the asymptotic distribution of the sum of the top %, extreme
values X, 1 j. n» Xus2-h, ns++» Xu,n for any sequence of positive integers

k, such that k£, —» o and k,/n — 0 as n - .

1. The result. Let X,,..., X, be independent and identically distributed
positive random variables (rv’s) with common distribution function F(x) =
Pr{X < x}, —o < x < o, and quantile function

Q(u) = inf{x: F(x) 2u}, O<ucgl, Q(0) =Q(0+).

We assume that the upper tail of F is regularly varying with exponent —1/a,
le.,

(1.1) 1 - F(x) =x""VL*(x), x>0,

where a is an arbitrary positive number and L* is a function slowly varying at
infinity. This is equivalent to the condition that

(1.2) Q(1—-s)=s"L(s), 0<s<l,

where L is some function slowly varying at zero.
Let X, , < --- <X, , be the order statistics of X, ..., X,. In this paper, we

are interested in the asyfnptotic distribution of sums of extreme values
k
Tn(k) = Z Xn+l—j,n'
Jj=1

It is easy to show that if £ > 1 is any fixed integer then
k

k
Z Xn+l—j,n _’@Z (S]) a’
j=1

Jj=1

n°L(1/n)

where —, denotes convergence in distribution as n — o0, and S, =E, +
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SUMS OF EXTREME VALUES 975

<+ +E;, j=1,..., k where E,,..., E, are independent exponentially distrib-
uted rv’s with mean one.

Many statistical procedures concerning the tail behaviour of the underlying
distribution are based on an increasing number %, of upper order statistics such
that %k, — oo and k,/n — 0 as n = co. In fact, sums of the form 7,,(%,) play an
important role in these procedures. The prime examples are the estimation of the
tail index of a distribution [Hall (1982a), Mason (1982), and S. Cs6rgo6, Deheuvels,
and Mason (1985)] and the estimation of an endpoint of a distribution [Hall
(1982b) and S. Csorg6é and Mason (1984)]. Hence it is only natural to consider the
probabilistic problem concerning when such partial sums of an increasing number
of extreme values can be normalized and centralized such that they converge in
distribution to a nondegenerate rv. In S. Csérgé and Mason (1985) we proved
that if (1.1) holds, then for any a > 0 and for any sequence %,, of positive integers
such that k2, —» o0 and %k,/n — 0 as n — oo, we have

J

1 ke 1 ,

W{ =lloan+l—j,n_n_/; "/nlOgQ(s)dS} 9 N(072a2)’

where N(0, v) stands for a normal rv with mean 0 and variance v > 0. Assuming
the condition of regular variation in (1.1), the aim of this paper is to give a
complete solution to the problem posed above for the sums 7,,(%,,) of the extreme
values themselves rather than for those of their logarithms.

The case a > ;, when F is in the domain of attraction of a nonnormal stable
law, has been treated in S. Csorgo, Horvath, and Mason (1986). For the sake of
completeness we include this result in the theorem below.

For any a > ; let A, , denote a completely asymmetric stable rv with

characteristic function
D1/a.8.4.6(t) = exp{ift — y|t|'/*[1 — iBsgn(t)w(¢,1/a)]},
where

W .
tan— ifa=+#1,
a
w(t)]-/a) = 2

— “loglt| ifa=1,
m

given by the skewness parameter 8 = 1, scale parameter

1 7 .
F(l——)cos— ' ifa>1,
a 2a
W 3
v=v(1/a)= (3 ifa=1,
' 1/1 -1 1 T
—(——1) F(2——) cos—| ifl<ax<l,
al\a a 2a -
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and location parameter
0 ifa+#1,

0=06(1/a) = /x(sinx 1

- if @ = 1.
o |\ x2  x(1+x) de ifa

The complete description of the asymptotic distribution of sums of extreme
values under regular variation is given by the following results.

THEOREM. Let k, be any sequence of positive integers such that n + 1 —
“=n, k, > o, andk /n = 0.
(i) If a > §, then

k

1 k
W{Z n+l1—j,n C(k )} l/a’

where
0 ifa>1,

C(k,) = ) "Q(s)ds ifa=1,

nfl Q(s)ds ifj<a<l.
1-k,/n

(ii) If 0 < a < 3, then

1 1
—(a—k—){z n+1-,,.—nfl_k /nQ(S)dS} -4 N(0,1),
where
k 1/2—a k 2a2 1/2
) L("'l)(u “sa)i - )) #o<a<s
An(avkn) = " ¢ ¢

12 (Fn/n 172 2 . |

n (fl/ s L(s)ds) ifa=3.

The case (i) is contained as a special case in Theorem 3 of S. Csorgd, Horvath,
and Mason (1986), and for a more detailed discussion of this case the reader is
referred to this paper. Hence the content of the present paper is the proof of case
(ii) of the theorem. Just as in this former paper [and also in S. Csorgdé and Mason
(1984 1985) and in S. Csorgd, Deheuvels, and Mason (1985)], the proof is based
on a new Brownian bridge approx1mat10n to the uniform empirical process in
weighted supremum norms. This is described at the beginning of the proof in
Section 3, while Section 2 contains some technical lemmas concerning regularly
varying functions.
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REMARK. Very slight changes in the proof of the theorem show that
the asymptotic normality statement given in (ii) remains true when Q(1 — s) =
A — L(s)s @ for all s > 0 sufficiently close to zero, where —oc0 < A < o0 and
—ow <a<0.A,a,k,) and C(k,) in this case are defined in the same way as
above for the case 0 < a < §, but now inserting —oc0 < a < 0 into A,(a, &,).

2. Technical lemmas. In the following first four lemmas, L(s), 0 <s <1,
denotes any function slowly varying at zero. The proofs of the first two lemmas
are found in de Haan (1970), while Lemma 3 is proven in S. Cs6rgo, Horvath, and
Mason (1986) (cf. their Lemma 2).

LEmMMA 1. If 8> —1, then
1

lim SuBL(u)du/(sB“L(s)) =
51070 1

+

B b
while if B < —1 then there exists a 0 < § < 1 such that

" 1
. B B+1r, = i
ilil& Su L(u)du/(s (s)) T

LEMMA 2. Forall 0 <7 <7y < oo,
lim sup L(t)/L(s)=1

s10 T8ty
and
lim inf L(¢)/L(s)=1.

sl0 Tst<ys

LEMMA 3. Let k, be any sequence of positive integers such that k,, - o and
k,/n — 0. Then for any 0 < B < oo, we have

Tim ((k,/n)L(k,/m)} [{(1/n)P L)) = oo.

LEMMA 4. Let k, be any sequence of positive integers such that k, - o and
k,/n — 0. Then

(2.1) lim L(1/n)/fk"/ns“L(s)ds= 0
n—oc 1/n

and

(2.2) lim L(kn/n)/fk"/"s“L(s)ds= 0.
n—oc 1/n

ProoF. Choose any positive integer m. Notice that for all n large enough,
L(1/n)/f’“"/"s—m(s)’ dsgL(l/n)/fm/ns"L(s) ds
1/n 1/n

sup {L(1/n)/L(s)}/logm.

1/ngssm/n

IA
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Applying Lemma 2 we see that
limsupL(l/n)/fk"/ns‘ 'L(s)ds< 1/logm,
1/n

n—oc

which, since m can be made arbitrarily large, implies (2.1).
Next, observe that for all n sufficiently large,

,,/n)/f s 'L(s) ds < L(k,/n )/

Thus in exactly the same way as above we obtain (2.2). O

k"/n s 'L(s)ds.

k,/mn

In the following two lemmas @ denotes a nonnegative quantile function. Here
and in what follows we use the convention

['1w)dQ(u) = [ f(u)dQ(u)
a [a, b)

for any right-continuous f and for any 0 < a < b < 1. Since @ is left continuous,
the usual formula for integration by parts is valid whenever f is right continuous.
If a =0 and/or b= 1, then the corresponding integrals are interpreted as
improper Riemann-Stieltjes integrals.

LEMMA 5. Assume that for some 0<a< 3, Q1 —s)=s °L(s) for
0 <s <1, and let

o%(s) = fllwfll(u Ao — uo)dQ(u) dQ(v).

Then
limo?(s)/(s'"2°L?(s)) = 2a*/((1 — a)(1 — 2a)).

s10

Proor. It is easy to show that

o%(s) = fsu“z“L2(u) du + (1 — s)s' 2°L%(s)

S 2 S
—(/ u‘“L(u)du) 21— 8)s L(s) [ u "L(u) du.
0 0
The lemma now follows from Lemma 1. O

LEMMA 6. Assume that for some 0<a <, Q1 —s)=s °L(s) for
0<s<1, andlet

. 1- -1/n

HUDE B (u A v - uv) dQ(u) dQ(v),
1=k, /nY1=k,/n

where k, is a sequence of positive integers such that k, - o« and k,/n — 0.

Then whenever 0 < a < 3,

(2:3)  lim o}(k,)/((ky/n)'" " L¥(k,/n)) = 2a%/((1 = a)(1 = 20)),
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and when a = |

(2.4) hm o’(k, )// LN “IL%(s)ds=1.

ProoFr. First assume that 0 < a@ < ;. Notice that

(o(ky/n) = 0(1/n))" < 02(k,) < 0*(k,/n).
Applying Lemmas 3 and 5, we obtain

lim o(1/n)/((k,/n)""* “L(k,/n)) =

Therefore, by the above inequality and Lemma 5 we have (2.3).
Now we assume that a = ;. We can write

e, /n P kn :
o2(k,) = [""sL(s) ds + (1 - )L?(k,,/n) + L¥(1/n)
1/n

2
- [n“/2L(1/n) + fk"/ns“/2L(s) ds]
1/n

~2(1 —le—)(k /n) ?L(k /n)[ n~'2L(1/n) +f K “/2L(s)ds]

= [*"""s"1L%(s) ds + R + R® — R% — R
1/n

Hence to complete the proof of (2.4) it is enough to show that

(2.5) lim R“)/fk"/n s 'L*(s)ds=0 forj=1,...,4.
1

n—oxc

Since L? is slowly varying at zero, we see by Lemma 4 that (2.5) holds for
J = 1,2. Also, applying first the c,-inequality and Schwarz’s inequality, we see by
Lemma 4 again that (2.5) holds for j = 3. Similarly, Lemma 4 implies (2.5) for
J =4 after applying the Schwarz inequality and the fact that Q1 — s) =
s '/2L(s) is a nonincreasing function of s. O

3. Proof of the theorem (ii). M. Csorgd, S. Csorgd, Horvath, and Mason
(1986) have constructed a probability space (2, &/, P) carrying an infinite se-
quence U, U,,... of independent rv’s uniformly distributed on (0,1) and a
sequence of Brownian bridges B, (u), 0 cu <1, n=1,2,..., such that for the
empirical process

a,(u) = nG (1) ~u), Os<usxl,
where

G(u)=n""#{k:1<k<n,U,<u}
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we have

‘an(u) - Bn(u)l
3. v
(3.1) nzuet— 1n (w(1—u)*"

as n — o, where » is any fixed number such that 0 < » < . This is Corollary 2.2
in the above paper.
If for any n, U, , < --- < U, , denote the order statistics corresponding to
,U,, then

n’

= 0,(1)

ZXH+1—jn QZ Q( n+1—j, n)

for each n, where =, denotes equality in distribution. Therefore, from now on
we work without loss of generality with this representation of our sums of
extreme values, on the above space (£, 7, P).

Applying integration by parts we see that

1
An(a kll)

{ZQ( weroin) =1 Q(s)ds}

n/ N

1 1-1/n
-Dn(a, k,,) 1-k,/n

1 1
a,(8)dQ(s) ~ froa [ auls) dQ(s)

n 1-k,/n
An(a’ kn) l/n—k,,,n

1= 6() - 2] aats)

—: Al 2 3)
= A(n) + A(n) + A(n ,

where D,(a, k,) = A, (a, k,)/n'/?. We will show that for any 0 < a < 1,

AD = —;/‘*‘/"B (s)dQ(s) + o,(1)
" Dn(a k,,) 1—k,/n " P

(3.2)
=:Z, + 0,(1)
and
(3.3) AP -, 0, Jj=2,3.

Then we will verify that for 0 < a < |,
(3.4) VarZ, -1 asn — .

Since for each n =1,2,..., Z, is a normal rv with mean zero, (3.2), (3.3), and
(3.4) will imply case (ii) of the theorem.
+First consider (3.2). Choose any 0 < » < 1 Applymg (3.1) we have

‘ 1) _ _ _ lfl/n _ 1/2 »
(3.5) 40 = 2,1 = O)(n ") o k) I dQ(s).

D (a, k”) k,,/n

n
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Integrating by parts, we see that

VM- 6) 7 dQ(s)
1-k,/n

(3.6) = {(1/n)"?7" 7 L(1/n) = (k,/n)*" “L(k,/n))
+(L- v)/k"/ns"/z‘”“’L(s) ds.
1/n

When 0 < @ < § we choose » > 0 such that  + » + a < 1. Then we see by
Lemma 3 that the difference is eventually negatlve and an application of the first
statement of Lemma 1 to the integral shows that (3.2) follows from (3.5) and (3.6)
in this case. Applying the second statement of Lemma 1 and Lemma 4 and using
also that @ and hence L is nonnegative, it can be seen that (3.2) follows from
(3.5) and (3.6) also in the case when a = ;.

We turn to (3.3) in the case j = 2. Notice that

1/2

Mg [ (=) dQ(s) + 5—— [ (1= G,(s)) dQ(s)
N ‘Dn(aikn) —1/n Dn(a7 kn) 1-1/n
= A(;f),l + A(rzz),Z' '
By integrating by parts and using (1.2),
—(1/n)* “L(1/n n'/? n
w2/ L0/ (o)
Dn(a’ kn) D(a k ) 0
which by Lemma 1 is for all n sufficiently large
1 L/n)(1/n)""
<
“l-a D(a,k,)
When 0 < a < 1, the latter bound goes to zero by Lemma 3, and when a = 3, it
goes to zero by Lemma 4. Therefore, for all 0 <a <}, A, = o,(1). Slnce

EA?, = A?,, we see that A?); = 0,(1). Hence we have (3.3) for the case j = 2.
To prove (3.3) for the case j = 3 we need the following fact: Let %, be any
sequence of positive integers such that &, — oo and k&,/n — 0. Then

n

. k,
W(Un—k,,,n - (1 - _’;‘)) 9 N(O, 1).

[See Balkema and de Haan (1975).]
Choose any 0 < d < o0, and set

k.,
1- G,,(l - —)
) n

k 1/2 p1/2

and r'(d)=1-—+d—
n n n n

(3.7)

Td) - - ol QUi (@) - QU (@),

where
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Notice that since for all s in the closed interval formed by U,_, , and
1—(k,/n), 1 — G(s) — (k,/n)| <1 — G,1 — (k,/n)) — (k,/n)|, we have

k,
Un—k,,,n - (1 - —) é d})

n
where the lower bound equals one on account of (3.7). Hence to prove (3.3) for
J = 3, it is sufficient to show that for each 0 < d < o0,

(3.8) T,(d) —p0.
Choose any 1 < A < o0. We see that for all n sufficiently large

(k,/n)"* 1 Ak,
EL(d) = 5 (aky) {Q(l ‘E;) Q- )}

et el )

n
lim lim ian{|A‘3’| < T,,(d)} = lim limian{——

d—»x n—-x d—-x n—-x k:z/2

(3.9)

Assume that 0 < a < . In this case the latter bound is

(- 20)1 - a»'ﬂ} vrse ] -n )
(2a2)"? L(k/n)

)

the second factor of which, since L is slowly varying at zero, converges to
A“ — A% Since A > 1 can be chosen arbitrarily close to one, for 0 < a < | we

have
(3.10) ET(d) >0 asn— .

If @ = }, then the upper bound in (3.9) equals

k Ak n 1/2
{NﬂL(—i) —)\“”L(——ﬁ)}/(fk"/ s—‘L“'(s)ds) :
An n 1/n

This expression converges to zero on account of Lemma 4. Hence we have (3.10)
for the case a = | as well. This implies (3.8).

Finally, to finish the proof of the theorem we only have to verify that (3.4)
holds. But

VarZ, = o, (k,)/D;(a, k,)
and hence (3.4) follows directly from Lemma 6.
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