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DECOUPLING INEQUALITIES FOR MULTILINEAR FORMS IN
INDEPENDENT SYMMETRIC RANDOM VARIABLES

By TERRY R. MCCONNELL' AND MURAD S. TAaqQu?

Cornell University

Let X', X2,... be independent copies of a sequence X = (X, X,,...) of
independent symmetric random variables. l.et M be a symmetric multilinear
form of rank s on RN whose components a,. .., relative to the standard
basis of RN satisfy a,..... =0 for all but finitely many multi-indices and
whenever two indices agree. If ¢ is nondecreasing, convex, ¢(0) = 0 and ¢

satisfies a A, growth condition then
) ’

Eo(IM(X,..., X)|) < cEs(|M(X',..., X*)

where ¢ depends only on ¢ and s.

1. Introduction. Let X = (X,, X,,...) be an independent sequence of real-
valued symmetric random variables. Let .#, denote the space of symmetric
bilinear forms B on RN whose matrix a = (q; ;) with respect to the standard
basis of R™ satisfies a;; = 0 for all i and a;; = 0 for all but finitely many pairs
(, J)- The quantity B(X, X) = ¥, ;a,;;X,X; is then a well-defined random vari-
able.

Let X = (X b 5(2,...) be an independent copy of X (assume both X and X
are defined on the same probability space). The goal of this paper is to establish
the inequalities

(1.1) cE|B(X, X)|" < E|B(X, X)["

for 1 < p < o0 and B € #,, and more general results. The precise statements
are given below. We call relations such as (1.1) decoupling inequalities because
there is less dependence among the terms of B(X, X) than among the terms of
B(X, X).

Inequalities (1.1) continue to hold for bilinear forms B whose associated
matrices contain infinitely many nonzero entries provided that we have almost
sure convergence of the expressions

f= ¥ a,XX,.

1, Jj<n

[This follows from (1.1), Fatou’s lemma, and the observation that the f, form a
martingale.] It is not straightforward to formulate conditions on the a,; for such
convergence to take place, even if the X, are i.i.d. See Varberg (1966) fos the finite
variance case and Cambanis et al. (1985) for the symmetric stable case.
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944 T. R. McCONNELL AND M. S. TAQQU

Inequalities (1.1) are a useful tool in the study of multiple stochastic integra-
tion since, if the X; are i.i.d. symmetric stable random variables of index a, then
B(X, X) may be viewed as the double stochastic integral of an appropriate step
function with respect to the Lévy symmetric stable process of index a. [See
McConnell and Taqqu (1986) for this application.] In this special case Pisier has
noted that (1.1) with ¢ = (2%/~! — 1)~! follows from the polarization identity,

2B(X,X)=B(X+X,X+X)-B(X,X)-B(X, X),

and the triangle inequality together with the observation that X + X has the
same distribution as 2!/°X.

To state the results of the present paper in their full generality, let ./, denote
the space of symmetric multilinear forms of rank s on RN whose components
a,,...,, relative to the standard basis of RN vanish for all but finitely many
multi-indices, and also vanish whenever two multi-indices agree. Let %(8) denote
the collection of nondecreasing convex functions ¢ which satisfy ¢(0) = 0 and the
A, condition

(1.2) ¢(2x) < Bo(x), x> 0.
(This class is empty unless 8 > 2.) Our main result is then the following.

THEOREM 1. Let X = (X, X,,...) be a sequence of independent, symmetric
random variables. For each k = 1,2, ..., let X* = (X}, X}, ...) be an indepen-
dent copy of X. Then for each ¢ € €(B) and M € M, there is a constant
¢ = c(B, s) such that

(1.3) E¢(IM(X,..., X)|) < cE¢(|M(X',..., X*)]|).

One source of technical difficulty in the proof of results like (1.3) is that the
quantities on either side of the inequality sign do not define norms on o
However, the theory of Orlicz spaces suggests several methods of constructing
related norms. In particular, we follow Luxemburg (1955) and define seminorms
| I, and | |, on 4, by

|M|; = inf{e > 0: §,(M/e) < 1}
for i = 1 and 2, where

§(M)=E0(|M(X,..., X)|)
and

8,(M) =Eo(|M(X',..., X*)|).

The relations

(1.4) |M|, < max{B8,(M)""*" 5(M)}
and
(1.5) 8,(M) < max{B|M|%F, | M|}

follow from the definition and the extension, ¢(cx) < B'*!e:Clp(x), of (1.2).
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Inequality (1.3) then yields

COROLLARY 1. There is a constant c, such that
(1.6) c|M|y < |M],.
The constant ¢, depends only on B and s.
All of these results hold also for certain asymmetric multilinear forms. The

following result contains an instance of this which is useful in the study of
multiple stochastic integration. We shall use the notation

to mean that there are positive constants ¢, and c, independent of M such that
o Es(|M(X,..., X)|) < Eg(|M(X",..., X*)])
< Eo(|M(X,..., X)|).

THEOREM 2. Let M € M ; with components a; . . Let ¢ € €(B). Then

= E¢(|M(X‘,...,X“‘)|),

where the constant ¢ and the constants in = depend only on 3 and s.

.....

Z al. ,,,,, z,Xt, T Xi_s )

L<iy< o <l

E¢(|M(X,...,X)|)qu>(

Y a Xlll...Xs

[N i, N

< cEqb(

L<iy< o <t

All the results described above continue to hold in a more general setting, for
example, for random variables valued in {-convex Banach algebras. Details will
appear elsewhere.

The paper is divided into three sections. In the second section we collect some
preliminary inequalities for Rademacher functions which will be used in the proof
of Theorem 1. This theorem, together with Corollary 1, is proved in Section 3.

For notational convenience we shall consider only the rank 2 case (s = 2) in
the remainder. All proofs and preliminary results have natural extensions to the
case of arbitrary finite rank.

Throughout the paper X will denote a symmetric sequence of random vari-
ables and X an independent copy of X. The letter C will denote a constant,
perhaps different from line to line.

2. Inequalities for Rademacher functions.

LEMMA 2.1.  Let {X,} be a symmetric sequence of random variables and let
{X,} be an independent copy of {X,}. Then for any ¢ € €(B), we have

< E(;b(l ZainlXj{) < ,3E¢(l Zaleszll)7

1#j i<y

CE¢( Ya, XX

1</

where the a,; are symmetric and finitely many of them are nonzero.
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Proor. The inequality on the right-hand side follows from the A, inequality
(1.2) and Jensen’s inequality.

To prove the inequality on the left-hand side, it is enough to consider the case
of the Rademacher functions (see below) since the X, are symmetric. By the
Burkholder-Davis—Gundy square function inequalities (see, e.g., Burkholder
(1973), Theorem 15.1), and Lévy’s inequality,

© < 9\ 1/2
E‘i’( > ( Zaijri)f}') =~ Eo|| 3 (Zaijri) ) )
J=1%i#j J=1"‘i#j
(2.1) = E¢ 4 > (Zaijrz)ej )
J=1Yi#j 12
=E¢ Z(Zaijej)rl ’
i=1"j#1i 12

where e; denotes the standard basis of /2. Since the square function inequalities
hold also for Hilbert space-valued martingales (with the same proof) we obtain

o o 2\ 1/2
> (Zaijej)ri ) =o|| X Zaijej ) )
1=1"\j#1i 12 =11 #i 12

TS za?,)l/z)

i=1j+i

E¢

SAIB> a?j)l/2)~

=1 >1
The desired left-hand inequality now follows by twice again applying the square

function inequalities. O

Let r, r,,... be the Rademacher functions, or more generally i.i.d. random
variables satisfying

P(r,=1) = P(r,= -1) = 3.
Let r = (r|, ry,...) and let 7 be an independent copy of r.
PropPosSITION 2.1. Let B € 4, and ¢ € ¥(B). Then
(2.2) E¢(|B(r,7)]) = E¢(|B(r, F)]).

Proor. We prove first that E¢(|B(r, r))) is majorized by E¢(|B(r, 7*))).
Now, if 7 differs from r by having some of its components equal to zero, then
E(r,r|#) = 1F; and therefore, by Jensen’s inequality,

Es(|B(#, 7)) = Es(|E(B(r, r)IF)|)
(2.3) < EE(¢(|B(r,7)|)|?)
= E¢(|B(r,r)]).
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We may suppose that r = (r, 1y, ..., ry) for large enough N since all but finitely
many of the a,; are zero, and we shall let 7 be an independent copy of
r=(r,ry...,ry).

Let J be a subset of {1,..., N} and let 7, be r with r; = 0 if and only if
i € J. Consider now (r + 7)/2 and note that its components take values —1,0, 1.
Let A,= {(r;+7#)/2=0 iff i €J}. Then the conditional distribution of
(r + #)/2 given A, is identical to the distribution of #,. Hence

sl ) Al e
= ¥ Eo(|BG,7))P(A,)

< E¢(|B(r, 1))

by (2.3). By using the polarization identity,
ar 5y 2 Mgt T THT
(r,1) = {48 5= 5

5 ) —B(r,r)—B(F,f")}

1 r+7% r+r 3 3
=—{6B( , )——B(r,r) ——B(F,F)},
3 2 2 2 2

the triangle inequality, the convexity of ¢, and (1.2), we get

B("‘; r ’";’7) + 2E¢(§|B(",")|)}

E¢(|B(r,7)|) < %{Eqs(ﬁ

1
< g{Bl+log26 + 2B1+log23/2}E¢(|B(l", r)l)

We now prove that E¢(|B(r, r)|) is majorized by E¢(|B(r, 7))). Let e; =
¥/_la,r,. Then for some N > 1, %, _ ;a,;r;r; = Z_ e;r;. Using the A, inequality

(1.2), the Burkholder-Davis—-Gundy inequalities [Burkholder (1973), Theorem
11.1], Levy’s inequality, and Lemma 2.1 we get

N n
E¢(|B(r,r)|) < BE®|| X e;r;|| < BE®| sup | X e;r, )
Jj=1 n<N| ;=1
12 N 12
< CE$|| XL eir? = C,E¢|| 2 e/7} )
J=1 J=1
. N N
< C,E¢| sup | ) e;F|| < 2C,Eo|| X eF,
n<N| ;=1 j=1

< 2C,E¢(|B(r, 7)]),

where the constants C, and C, depend only on 8.0
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ExampLE. If ¢(x) = |x|?, p > 1, then
E|B(r,r)" = E|B(r,7)[".

This follows also from the fact that both quantities are comparable in size to the
expression (X, ;af;)?/?, a result of Bonami (1970). For completeness, we show
next that this equivalence extends to 0 < p < 1. While this is implicit in Bonami
(1970), it seems worthwhile to provide the details.

PROPOSITION 2.2. Let B be a bilinear form with matrix a = (a,;) with

a,, =0 for all i and finitely many nonzero entries a,;. Assume either that
a,=a; orthata,;=0 fori>j. Then, forany 0 < p < oo,
(2.4) BIB(r, 1) = (Sat)” = BB PF
. , aj , .
LJ

ProOF. The inequalities E|B(r, F)|” = (£, ;a},)?’* for p > 0, follow from
Appendix D of Stein (1970). By Lemma 2.1 and Proposition 2.1 we have
E|B(r, r)|? = E|B(r, 7)|? for p > 1. It remains to prove that for 0 < p < 1, the

inequalities
» ) p/2
(2.5) E|B(r, [ = La} |
l‘j

hold for any a = (a,;) with a,; = 0 for i > ;. Holder’s inequality yields one side
of (2.5) because

E|B(r,r)[" < (EIB(r,r)[})”" = ( ZAa?,)p/Q.

1<j

It is therefore sufficient to prove that the reverse inequality

p/2
(Za?j) < CE|B(r,r)|"
1<)
holds for 0 < p < 1.

Let V be the subspace of [*(Z?%) consisting of those a = (a,;) for which
a,; = 0 for i > j. Consider the two following quasinorms on V: the /* norm given
by |al, = (£%a,;)'/? and the quasinorm p induced on V by p(a) = E|Z,  ;a,7.7;|".
We have noted that p(a) < |alj. By a well-known consequence of the closed
graph theorem, the reverse inequality |a|} < C’p(a) will then follow if we prove
that V is complete under p.

Choose then a sequence a'™ = (a!}’) with p(a'” — a'™) —> 0 as n, m - co.
We first show that a'™ is Cauchy in {*. Let Z, = ¥, _ ;a{}’r,r;. By Feller (1971,
page 152), forany 0 < A < 1, )

2 2\2
P12, - 2y 0) = ol = X)

E|Zn - Zm|4
c 9\2
(la™ = a™]3 = ¥)
T Gla™—aty

where we used the cases p = 2 and p = 4 of (2.5). Suppose that a'"’ were not
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Cauchy in /2. Then, there would exist a subsequence n, of n with |a‘**) — a"/|%
bounded below by some ¢ as k&, [ — . Taking A = (&¢/2)"/2, we get
i p(|z 215 [)) > inf (x - ¢/2)°
im sup - >(—) )zm —_—>
n,m—oc " " 2 x> 02x2
But E|Z, - Z,|” = p(a'™ — a'™) - 0 implies that Z, converges in probabil-
ity and this yields a contradiction. Therefore a'™ converges in [? to some
a=(a;) eV
Now, let Z = X, _ ;a,;1;r;. To show that p(a'"’ — a) = E|Z, — Z|” - 0, choose
n so large that E|Z, — Z,|° < ¢ for all m > n. Then by Fatou’s lemma,
E\Z,-Z|"< lim E|Z, - Z,|" <e.

m—

0.

This concludes the proof. O

3. Proof of the main theorems. The following lemma will be used in the
proof of (1.3). It will be applied iteratively and therefore it is important that no
extraneous constants appear in the inequality (3.1) below.

We need some notation. Let b,, b,,..., by bei.i.d. Bernoulli with P(b, = 1) =
P(b, =0)= 1. Let Sy =(1,2,..., N} and for each subset J C Sy, define the
random variable

e,=(IIa)( IT (1-1)),
ied JESN\/
so that P(e, =1)=2""and P(e, =0) =1 — 2" for any JJ in Sy. Finally, let
{é,, J € Sy} denote an independent copy of {e,, J C Sy}.

LEMmA 3.1. Let & and &, be random variables satisfying E(§,|§,) =
E(£,1¢,) = 0 and independent of both {e;, J C Sy} and {€,, J c Sy}. Then,
for every ¢ € €(B), and each real constant a and sequences {x,}, s and
{3} c s, of real constants, we have '

a+é Y xe,t+é Y Y€,

JC Sy JcS,

E¢||a + 3§, Z x ey + 36, Z Ysey

JCSy JCSy

(3.1)
< E¢

|

PROOF. Let p = P(e,=1)=2"", q=1— p and note that p + (¢/2) >
Because the e, J C Sy have disjoint support,

E¢( ) =Y Y p°E¢(la + &x, + £ 5k])
J K

= ZP2E¢(|a +&x,+ &,
oJ

a+ §12x,,e¢1 + szyJéJ
J o

+3 ZZP2E¢(la +&x,+ &0k i)
J=K

+1L 2 PEd(la + &x, + &, 5k))-

J+K
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ZZP2E¢(|0 + &y + Eukl) = ZZP2E¢(|‘1 + &2 0)

J+K J#+K

= quE¢(|a + glxe]l)y
J

where we used Jensen’s inequality, E(&,/¢,) = 0 and the fact that 2" — 1)p =
1 — 2 N = q. Similarly,

LYY PEd(la+ éx, + E9¢]) = quE¢(|a + &, 5kl)-

J#K

= T p{pEolla+ b, + &3l) + 3Eo(la + €,l) + 5 Bolla+ &)

" >

Therefore,

E¢(!a + &Y xe, + £, 5,8,
J o

> Zp{E¢(

a+ (p+ q)ﬁlx,ﬂr (p + g)ézy,;

2 ZP{E¢(|‘1 + 36, + %fzye/'}
J

8

- where we used Jensen’s inequality and the observation that p + (q/2) +
(g/2) = 1. We also used the fact that the function g(a) = E¢(|a + aZ]) is
monotone increasing in a for a > 0, where Z = §,x; + §,y, is a mean zero
random variable. This is obviously true if @ = 0. Now suppose that a # 0. The
monotonicity of g is easy to check when ¢ is differentiable because g is convex in
a and satisfies g’(0) = 0. The same conclusion follows for general ¢ by approxi-
mating it by ¢, = ¢*p, < ¢ where p, is a Gaussian kernel with variance ¢. O

= E¢’(la + 36 xse, + 360 0e,
J J

EXTENSION. Let {e}, J € Sy}, i =1,..., s, be s independent copies of {e,,
J C Sy) and let &, §,,. .., &, be mean zero random variables independent of the
(ey, J C Sy). Let @ be real and {x/, J € Sy}, i = 1,..., s, be sequences of real
numbers. Then, for every ¢ € €(B),

a+t Zg Y xhe,|| < E¢l|a+ Z 2¢, Y xhel+ 207, Y xje
=1 JCSy =1 JC Sy JC Sy
S
<E¢|la+2°71Y & Y xyeyl|.
=1 JCSy
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LEMMA 3.2. Let X be a nonnegative random variable and ¢ be a noncon-
stant, nonnegative convex function such that E¢(X) < co. Then there is a
sequence of nonnegative random variables X, of the form

(3.2) Xy= X x,¢,

JCS,

with x ; > 0 such that, as N — o0, Xy — X a.s. and E¢(Xy) = Ed(X).

Proor. Note that EX < oo because, by convexity, ¢(EX) < E¢(X) < oo.
Now realize X on [0,1] and let %, be the c-algebra generated by the Nth-
dyadic partition. Set X, = E(X|#,) and note that X, — X as. by the
martingale convergence theorem. Moreover, lim, _,  E¢(Xy) = E¢p(X) because,
on one hand, E¢(X,) = E¢(E(X|#y)) < E¢(X) and, on the other hand,
E¢(X) <limy_ E¢(Xy) by Fatou’s lemma.

The dyadic random variable X, can be expressed as

2N -1
Xv= 1 % 1(Z, v),s

k=0
where I, y = [k/2V,(k + 1)/2"), 1(I, y) is the indicator function of the inter-
val I,y and x;, = (1/|1, s/, ,X(w)dw. We shall now change the labeling and
associate to each 2 = 0,1,...,2V"! a unique subset J = (i, i,,...,7;} of Sy =
{1,2,..., N} by letting ¢, <i, < --- <1, be the positions of the “1”’s in the
binary expansion of k/2VN =274 + 272+ ... +27% and by letting £ =0 be
associated with J = ¢. Moreover,

(3.3) 1(I, y) = (n b )( Y (1- bj)) —e,,

ted JESM\J

where b,(w) is the ith binary digit of w. Because of the one-to-one correspon-
dence between k and J we can write Xy =X, 5 x,e,. O

Proor oF THEOREM 1. To simplify the notation we shall consider the case
s = 2 only—it should be clear how the proof may be adapted to the general case.
In view of Lemma 2.1 we are to prove the following: Let ¢ € €(8). Then for all
independent symmetric sequences {X,} of random variables and for all matrices
(a,;) of real numbers with at most finitely many nonzero entries, we have

zj)’

where C is a constant that depends only on ¢ and where the sequence {X' ;} is an
independent copy of the sequence {X,}.

" Since the X, are independent and symmetric, the sequence ( X,, X,,...) has
the same distribution as (r,|X,|, 15| X,|, . ..) where the r, are i.i.d., independent of
{X,), and satisfy P(r,= +1) = P(r,= —1) = }. We may thus suppose without
loss of generality that X, = r,|X,|.

e

(3.4) E¢(

i<j i<y
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We consider first the case where these | X,|’s are simple, that is equal to
Y= ) xye,

JCSy
[see (3.2)]. Here the x,, are nonnegative and the e,’s are independent of r,. To
establish the theorem for such simple symmetric random variables r;Y, we must
prove

> ain:’"iY,""ji) s CE¢(

i<j

.

where (¥} and {7} are, respectively, independent copies of {Y;} and {r,}.
After conditioning on the {Y,}, we can use Proposition 2.1 to conclude that

om0

We shall now apply Lemma 3.1 to the right-hand side of (3.5). We focus
successively on all u € Z' for which |a,;| + |a,| > 0 for some i and j. If
la,;| > 0, then the random variable Y, appears in the first factor of the right-hand
side of (3.5), and if |a,,| > 0, then the random variable Y, appears in the second
factor. For each such u, we apply Lemma 3.1 as follows. We set Y = Y,,, we let £,
(respectively, ¢,) be the sum of the coefficients of Y, when Y, appears in the first
(respectively, second) factor, and we let a denote the terms of the right-hand side
of (3.5) that do not involve Y,. (Note that £, or £, may be zero, but not both.)
Thus

Z aij-YirYr»

LA

Y a,,(Yr)(YF)

i<j

(3.5) Eq>(

i<y

&= % a,n(¥5) = nf T ayvi),

J>u J>u
g2 = Z aiu(yvtri);‘u = Fu( Z aiuYiri)’
i<u i<u
and
a= ) a,(Yr)(Y).
e
i<j
Thus
E‘i’( 2 a,(Yir)(Y7) ) = Ed(la+ &Y, + £,Y,]).
1<j

Let {Y,} be an independent copy of {Y;} and let ¢ denote the o-fields generated
by all random variables Y,, r;, Y;, and 7, with i # u. Note that Y, is independent
of ¢, and we have E(¢,|¢,,9) = E(&,)€,,9) = 0. Then by Lemma 3.1, we have

E¢(|a + §1Yu + §2Yu|) = E(Ed)(la + §|Yu + £2Yul)|g)
< E(E¢(la + 2¢)Y, + 2¢,7,))|9)
= E¢(la + 2¢,Y, + 2¢£,Y,)).
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We now apply the same reasoning to each u in turn. (The definitions of £, £,,
and a must be slightly modified by changing Y, if the previous argument had
been already applied to the index j. In that case the variable Y; should then be
changed to 2Y; if it previously appeared in §,.) Since the right-hand side is a
quadratic form in the Y’s and since the previous reasoning is applied to each Y
exactly once, we obtain

E¢( ZaUleerl ) < E(i)( Zal/leY;rl )
l<j i<y
< B“’Eqb( Y a,Yr¥r )
i<y

by the A, condition (1.2).

The inequality (3.4) has now been established for simple symmetric random
variables X;’s. To show that it holds for arbitrary random variables we proceed
by approx1mat10n It is sufficient to suppose E¢(|Xa,;X; /l) < 00, and therefore
Eo(|X, X, ) < oo, for each i # j. Then, by the A, condltlon there is a constant B
such that

E¢(1X)|) < BE6(|X|E|X)|) < BE¢(1X,X|) < oo

Lemma 3.2 applies and we can approximate X; = r,|X,| by X XN = 1| X{N)| where
|X ™| is of the form (3.2). Let X be an 1ndependent copy of XN, By Fatou’s
lemma and (3.4) applied to s1mp1e symmetric random variables, we have

o[ Sa, X% = im B[ £a, x5
< C lim Eg(|La,XMXMN]).

Using the A, condition and the fact that only finitely many of the a,; are
nonzero, we can find a constant A such that

8| a, XVZM|) < AL 6| XM,

There remains only to show that for each fixed pair (i, j) the sequence
o(|XMX (™)) is uniformly integrable. By construction (see the proof of Lemma
3.2) we have that

|X¢'(N)|= E(|Xi”-’¢N)

for an appropriate sequence of o-fields %, over the sample space of X,. Let Fn
denote the analogous o-fields over the sample space of X and Fy ® %5 the
product o-fields. Then

| XXM | = B(X,X) |17y @ Fy)
and, since ¢ is convex,

o(|XMXIM|) < E(6(1X ) 1X))|#y ® Fy ).
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The latter sequence is uniformly integrable because E¢(|X;| | X 1) < . The proof
is complete. O

PrRoOOF OF COROLLARY 1. We consider the case s = 2 only. Let then X =
(X,, X,,...) be a symmetric sequence, X an independent copy of X, and
MYy C M, be the space of symmetric bilinear forms B whose matrix a = (a,;)
also satisfies a,; = 0if X; =0 or X; = 0. Let

8](&) = E(f)(‘zaszlXj\), 82(a) = E‘P(\Zaszsz
and let | |, and | |, be the Luxemburg-type norms on .#} defined by
(3.6) la|, = inf{e > 0: §,(a/e) < 1}, i=1,2.

[For convenience, we write §,(a) and |a|; instead of §,(B) and |B|;.] We are to
prove

(3.7) ¢laly, < laly

where ¢, depends only on B.
Let ¢ = ¢(B,2) be the constant that appears in Theorem 1. By that theorem,
d.(a/laly) < cdy(a/|al,). Using (1.4) and since 8,(a/|al,), < 1, we get

a \/los.B a
< max ,881(——) ,81(17—) < max{Bcl/logﬂ, c},

lals la

a

laly

1
so that

(3.8) la|; < max{Bc'/"*%:R, c}|al,. ]
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