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ON THE RATE OF CONVERGENCE IN THE CENTRAL LIMIT
THEOREM IN BANACH SPACES

By F. GOTZE
University of Bielefeld

Let K denote a separable Banach space and let X,, i € N, be a sequence
of ii.d. K-valued random vectors having finite third moment such that the
central limit theorem holds. We prove that the convergence rate in the central
limit theorem is O(n '/?) for regions {x € E: F(x) < r} which are defined
by means of a smooth real valued function F on E, provided that the limiting
distribution of the gradient of F fulfills a variance condition.

Using this result we prove that the rate of convergence in the functional
limit theorem for empirical processes is of order O(n '/2).

1. Introduction and results. Let E denote a separable Banach space
normed by || |l Assume that X,, i € N, is a sequence of i.i.d. E-valued random
vectors. Let € denote the common probability distribution of the X,’s defined on
the Borel o-field, say %, of E. Let @, denote the probability distribution of
R,=n V)X, + --- +X,). Suppose that for some y > 0

(1.1) E|X,|**Y< o0 and EX, =0.
Furthermore, assume that the central limit theorem holds for ,,, i.e.,

Q,, n € N, converges weakly to some Gaussian Borel measure N
defined on 4.

The results of Hoffmann-Jergensen and Pisier (1976) show that the central
limit theorem holds for every i.i.d. sequence X,, i € N, satisfying E||X,||? < o
and EX, = 0if E is a Banach space of type 2 (which includes for example the L?
function space with 2 < p < o0).

Let F: E — R denote a measurable functional. We shall study the speed of
convergence in the central limit theorem for regions {x € E: F(x) <r}, r € R,
where F is differentiable. From another point of view this means that we study
the speed of convergence in the functional limit theorem for F(R,) with respect
to the Kolmogoroff distance of distribution functions.

For this purpose it will be convenient to use Frechét differentiability of F with
respect to || - ||, i.e.,

|F(x + h) — F(x) — DF(x)[ 2]]= o(||2l),

where A — DF(x)[h] denotes a continuous linear functional on E. The
kth derivative of F at x, say D*F(x), is a k-linear symmetric functional
(hy,..., h,) = D*F(x)[h,,..., h,] with finite norm

| D*F(x)| = sup{| D*F(x)[ hy, ..., hyd]: IRl .. Il < 1.

(1.2)
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CLT IN BANACH SPACES 923

Assume the derivatives of F satisfy the

DIFFERENTIABILITY CONDITION DB'

D*F(x)|| < cp(1 + ||x||?), O0<k<3,
(1.3) I D*F(x) | < cp(1 + 1] ”)

|D*F(x) = D’F(y)| < cp(l + ||x|” + |3)17)]1x — yII#

for every x, y € E and some fixed constants ¢, >0, p >0,and 1 > 8> 0. In
this case F is said to be of class C**A.

Let v(x) = E(DF(x)[ X,]?). The crucial condition on F and X, is the follow-
ing “variance” condition which guarantees the existence of a smooth density of
the distribution of F(R), where R has Gaussian distribution N on E.

VARIANCE CONDITION.

Let ky =6+ 4/B. Let o =TIIIX|(n|X| <1) and X, =9 X, +
o+ +m,X,, r=_[kg/2] + 2. (Here [x] denotes the largest integer smaller or
equal to x.) Assume there exists 5 > 0 such that

(1.4) E(p,'I(v(R +X,) < e) = o(e"), e—>0and |n]<n,1<j<r.

REMARK. When
EIX P < 0, y>0,
we may choose 1 = 0 in (1.4) and replace (1.4) by
(1.4") P(v(R) <¢) = O(e*), wherek,=4/y + 4/ + 6.

These assumptions combine conditions on the covariance structure of X, (or
R) and conditions on the “regular” behaviour of the region where the gradient of
F vanishes, which will be discussed later.

The main result of this paper is

1.5 THEOREM. Assume that conditions (1.1)~(1.4) hold for some ¢, p, and
B. Then

sup |P(F(R,) <r) — P('F(R) <r)|=0(n"?).

reRr

The validity of the variance condition (1.5) is essential for the convergence
speed. A class of Hilbert space examples constructed by Rhee and Talagrand
(1984) shows that for functions F which are “flat” at some points [||DF(x)| =
O(l|lx — x,]|9) for every q > 0] and with a sufficiently “singular” covariance
structure of X, the rate of convergence can be made slower than any prescribed
order.

The speed of convergence for functionals F(x) = ||x|| which are differentiable
has been investigated first by Kandelaki (1965) [obtaining O(1/log n)], Kuelbs
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and Kurtz (1974) who obtained O(n~'/8) in Hilbert space, and Paulauskas (1976)
who improved the rate for three times differentiable norms in Banach space to
O(n~'/%). See also the survey articles of Paulauskas (1979) and Rachkauskas
(1980) and the monograph of Sazonov (1981).

For functionals of “polynomial type” (i.e., the gth derivative of F vanishes
identically) the distribution of F(R,) can be approximated in regular.cases by
smooth expansions up to the order O(n~9/%2%¢) (Gotze, 1984, 1985). Similar
results for general differentiable functionals F such that the gth derivative
satisfies a variance condition like (1.4) will be treated in a forthcoming paper.

In the following we discuss some applications of Theorem 1.5.

1.6 COROLLARY. Suppose E is a separable Hilbert space and C denotes a
measurable set which is star-shaped with respect to 0 € C. Assume that

(i) E|| X,||>*Y < 00, y > 0 and EX, = 0.
(i) F(x) = inf{r > 0: xr~' € C}* satisfies differentiability condition (1.3).
(iii) P(R € €C) = O(&#*), g > 10, kg as in (1.4").
(iv) The (ordered) eigenvalues of the covariance operator of N, say A, are
decreasing such that

Y A, =o(m*/logm) asm — oo,
i=m

where A = 10/(g — 10). Then
(1.7) sup|P(R, € rC) — P(R € rC)|= O(n™'7?).

r>0

1.8 REMARKsS. Condition (iii) holds if C is bounded in norm and more than
gk, eigenvalues are different from zero.

Our conjecture is that condition (ii) can be replaced by a Lipschitz condition
on F when we restrict the supremum in (1.7) to r > § > 0.

For norms in [, Nagaev and Chebotarev (1978) obtained O(n~'/?) for the case
of r.v.’s with independent components. The author proved (1979) that for a large
class of U-statistics including symmetric quadratic functionals in Hilbert space
the actual rate of convergence is O(n~!*¢) in nondegenerate situations. Further-
more, asymptotic expansions are possible. The moment conditions for the norm
in Hilbert space have been weakened in papers by Yurinskii (1982) using a similar
approach together with strong exponential estimates for sums (Yurinskii, 1976) to
the assumption of a third moment for the rate O(n~'/?). For the symmetric case
Zalesskii (1982) obtained O(n~ ! *%/2) assuming a moment of order 3 + §, § < 1.
Further papers by Sazonov and Zalesskii (1985), Nagaev (1985), and Opsipov and
Rotar (1984) focus on weaker variance conditions and the nonidentical case for
the norm in Hilbert space. ‘

, For a typical application of the functional version of Theorem 1.5 consider the
empirical process

5,(6) =n 2 Y (I(X, < 8) - 1)
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based on an ii.d. sample X,,..., X, taken from the uniform distribution on
[0, 1]. Consider functionals of the following additive type,

F(x(-)) = /0 (¢, x(¢)) dt,

such that for0 < i < 4
(1.9) sup |DV(¢, x)| < c(1 + |x|7).

0<t<1
Furthermore, define f(x(+), s) = [J(I(s < t) — ¢t)D,V(¢, x(t)) dt and suppose that
for a Brownian bridge w(¢),0 <t <1,

(1.10) P(/lf(w(-),s)zds < e) — O(eM), Ry asin (1.4).
0
We have

1.11 COROLLARY. Suppose that conditions (1.9) and (1.10) hold. Then
sup |P(F(x,(+)) <r)— P(F(w(-)) <r)|=0(n"'?).

1.12 REMARK. Condition (1.10) holds, in particular, if
(1.13)  |V(t,x) — V(s,x)| < c|t — s|'/*(1 + |x|?) for some p > 0,

(1.14) P(fo]DxV(t, w(t))?dt < e] = O(e5%),  ky asin (1.4).

1.15 EXAMPLES. It can be shown by means of Remark 1.12 that the order of
convergence is O(n~'/2) in Corollary 1.11 for the following functions V(¢, x):

(i) V(¢t,x) = c(t)x?, p € N, ¢(t) Lipschitz continuous of exponent 1,
(i) D.V(0,0) # 0 or D V(1,0) # 0, V(t, x) satisfies (1.13),
(iiiy DV(t,x) > 0 for all x €R, t €[0,1] and P( /3 °D.V(t, w(t))*dt < ¢) =
O(&*r) for small 8 > 0.

In example (iii) condition (1.10) follows immediately (interchanging integrations)
since the covariance kernel of the Brownian bridge is bounded from below by
c(8)>0on (s, t)e[6,1 —6]X%X[8,1—38]

The previous result shows that convergence rates O(n~'/2log n) based on the
strong approximation techniques of Komlos, Major, and Tusnady (1975, 1976)
can be improved for some classes of functionals.

We believe that for the particular case of the empirical process the conditions
(1.9) and (1.10) are still too restrictive.

The method of proof is a kind of “partial integration” scheme for sums of i.i.d.
‘random vectors in E (see Lemma 3.7) which reduces to Stein’s method of partial
integration (or differential equations) in the case of linear functionals F. In order
to guarantee the existence of the terms obtained by partial integration an obvious
condition is Ev(R)™? < oo, hence condition (1.4) for n = 0 [compare (3.23)].
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2. Proof of the results.

Proor oF COROLLARY 1.6. Since the region is star-shaped the functioral
M(x) = F(x)"* is homogeneous, i.e., M(Ax) = AM(x) for A > 0. Hence

M(x) =(DM(x),x), x#0,

where (x, y) denotes the scalar product in E.

Denote by C the covariance operator of N with nonnegative eigenvalues
A =A,=A;> -+ and A= 0. Let {e,, £ =1,2,...} denote an orthonormal
system of eigenvectors of C corresponding to A,, k& € N, which spans the
supporting subspace of N. Denote by P, resp. P. the projection on the space
(e,...,e,y resp.{e,..., e, ). Let C, = P,CP,. When A, > 0 then

o) M(x) =(C\/*DM(x),C,,'/*P,x) + { DM(x), Px)
2.1
< | /DM () || GV /2P,x |+ DM(x) | || P,
Since DM(Ax) = DM(x), x #+ 0, A > 0, we have by condition (1.3)

IDF(x) || = 4] DM(x) [M(x)” < ¢p(1 + |I%]17).

By definition
v(x) = (CDF(x), DF(x))

(2.2) = 16M(x)*(CDM(x), DM(x))

> 16M(x)°|C}/2DM(x) .

We have

{v(x) <e}=A,UB,UD,UE,
where
B, = {M(x) < £/¢},
D, = {|IC,,'/*P,x||> > mlog e *},
E, = {||lx|| = e /€P},
A, ={v(x)<e}\(A,UB, UC,).

In the following arguments write k& for k.
By assumption P(R € B,) = O(¢*), and using Lemma 3.12 we have
P(R € E,) = O(¢*). Furthermore, P(R € D,) = P(n? + -+ +n% > mloge %),

where 1,,...,n,, denote i.i.d. N(0,1)-variates. Chebyshev’s inequality yields
P(R € D,) < exp|—m(loge™*)/m](1 - 2/m) "
= O(e¥).

Hence it remains to prove P(R € A,) = O(¢*). If x € A, then by (2.1)
and (2.2)
e/8 < M(x),

M(x) < ce”2V#(mloge*)"” + || Px|je~3/8(1 + e~ P/&P)),
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Choosing m = [¢~!*10/8], this yields a lower bound
| Pix|| > ce'/8e3/8P/28)  for e sufficiently small.
By Chebyshev’s inequality we obtain (since g > 10) from this lower bound
P(R € A,) < P(|P;R|* = c£'%)

<exp(—t'%) T] (1-2eA,) "%
k=m+1
provided ¢ > 0. Choose ¢ = ¢ '*€log(e*). Hence by condition 1.6(iv) and the
choice of m

P(Re A) = o(e"). O

Proor oF REMARK 1.8. Let K denote a positive constant such that x € C
implies ||x|| < K. Then

P(R € ¢C) < P(||R|| < K¢)
< eEexp(—||R||?K ' ")

< eﬁ(l +2X,/(Ke))
i
= O(&fhs). ]

ProorF oF COROLLARY 1.11. Condition (i) guarantees that the functional
F(x(-)) is well defined for every x(t) € L9[0,1]), where ¢ = p + 4.

By the dominated convergence theorem and Hélder’s inequality F admits four
Frechét derivatives with respect to the norm of L9([0,1]). Hence the differentia-
bility condition (1.3) holds.

The invariance principle in C[0,1] implies lim P(F(x,(:)) < r) =
P(F(w(-)) < r) for all continuity points r. Hence the CLT for L? [compare the
remarks following condition (1.1)] together with the continuity of the limit
distribution function of F(R), R € L9 implies P(F(w(-)) <r)= P(F(R) <r)
for every r. The same remark applies to condition (1.10). O

ProoF oF REMARK 1.12. Let 8 > 0, arbitrarily small, and « > 0 be de-
termined later. Let A, denote the set of sample paths w(¢) of the Brownian
bridge satisfying for ¢ sufficiently small

(i) sup |w(t) — w(s)|<e "2,
Jt—s|<e"
(ii) Osup |lw(t)|<log(e™ '),
<t<l1
(i) ow())= ["f(w(-),5)"ds <.

By well-known properties of the Brownian bridge we have
(2.3) P(v(w(-)) <e) < P(A,) + O(&").
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Define g(s) = f(w(-),s) for 0 <s <1 and extend it by g(k + s) = g(s),
k € Z outside [0,1]. Let x denote a r.v. independent of w(t), ¢t = [0,1] with
symmetric distribution around zero such that x2 < 2% as. and Ex2? > ce?”.
Then

> E(f()lg(s)2ds —/O‘g(s + x)stlw(-))

+/:Var(g(s + x)|w(-)) ds.

Conditioning on x in the first integral on the r.h.s. of (2.4) shows that this
integral vanishes since g(¢) is defined to be periodic. If A, occurs and [s, s + x]
does not contain 0 or 1 we have

g(s+x) =g(s) + Dg(s)x + O(log”(e™")(e ™2+ */2 + £2/%)|x]).

(2.4)

Hence

1—¢"
e [ Var(g(s + x)lw(-)) ds
> Ex*[' "Da(s)’ ds + O(c>+7/*)logP(e ™).

Choosing a = 2/5 + §/2 we conclude that A, implies
f“‘"DxV(s, w(s))? ds < e~ +1/5.

Restoring integration to [0, 1] this immediately proves Remark 1.12. O

PROOF OF THEOREM 1.5. The first step is to replace X; by its truncation Z;
at n" where a = 3/(6 + 2v). Let

Z;= X, when || X||| < n*and Z, = 0 otherwise.
Define
S,=n"V¥Z, + - +Z)).
Furthermore, replace the indicator function x —» I(x < z) by
8n:(x) = P(x <z+ Un™'7?),

where U denotes a random variable which is symmetric around 0, [U| < 1 a.e.
and which admits a Lebesgue density that is infinitely often differentiable.
We have

sup|P(F(R,) <z) — P(F(S,) < z)|

(2.5) o
< P(F(R,) # F(S,)) < X P(I|X,ll > n®)
. k=1
and
g [FS)<2) - PR <2)

< P(F(S,)<z+ Un'?)-P(F(R) <z+ Un'?) +1,,
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where
z+ n" 12,

[
Il

I,=2supP(F(R) €[z —n"1?% 2+ n"'/2]),

By Lemma 3.13 we have
(2.7) I, = 0(n"'?).

From (2.5) together with Chebyshev’s inequality and (2.7) as well as its analogous
lower bound it follows that

sup |P(F(R,) <z) — P(F(R) <z2)]|
(2.8) < sup|Eg, (F(S,)) — Eg,.(F(R))|+ I, + O(n"'*)E| X,||**"

=1, +0(n""?), say.

We are going to expand the difference I, by means of derivatives of g,,. Since
we want to replace the rth derivative [which near z is unbounded of order
O(n"/*)] by the bounded function g,, using “partial integration” (Lemma 3.7)
we have to insert factors of order 1 + O, (n~'/?) in I,. These factors provide us
with functions which make the application of Lemma 3.7 possible.

Define
(29) ) An = n_1/2(01Zn+1 + o +0BZn+B)1
where B is a number independent of n and 6,,...,68, are ii.d., uniformly
distributed in [0, 1] and independent of X;, j € N. In the following, random
variables ¢, 7, u are understood to be independent and uniform in [0, 1] and
independent of X}, 6. Define the factors mentioned above by

(2.10) e(x) = ﬁ(e(ZnH-, x) + n“so(x)—z), x€E,

(2.11) e(z,x) = DF(x)[2]%0(x) "%,  o(x)’=n"%+ E(DF(x)[Z,])?

for some 0 < § < min(f,1/4)/4 and moreover § < y/(6 + 2y) when y > 0.
Returning to (2.8) again we shall write g instead of g,, and remark that the
following inequalities hold uniformly for all z € R. Then

I, <|Eg(F(S, + A,))e(S,) — Eg(F(R))|
(2.12) +|Eg(F(S, + A,))e(S,) — Eg(F(S,))|
=1,+ I, say.

Since the estimation of the term I, is particularly involved we describe it in
detail.

ESTIMATION OF I;. Write F, = F(S, + A,) and ¢, = F(S,) — F,. Then
I3 = Ee(Sn)lg(Fl) - g(Fl + 8n)!

=< Ee(Sn)I(lFl - Zl =< |£n|)
by definition of g. (Note that g(z + §) =1 or O for |§| > n~'/2)

(2.13)
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Using (a + b)? < 277 Y(a” + b?), a, b > 0, we have by condition (1.3)
leal < (1 + ISP + (S22 )IIA,I,
where S = n~2EM7Z. S® =S, — S, and M =[n/2]. Let b=B — 2. We
have
1841 < n= A ZNZ, i+ 1200,

where the sum Y’ extendsover j = 1,...,[B/2]andY¥"c ~j=[B/2]+1,...,B
and

(2.14) I(|F, — 2| < (s, + 85)(2, + 25)) < LI(17) - 2| < 4s,2;),
where s,, z; > 0 and the summation is over i = 1,2 and j = 1,2. Hence we obtain
(2.15) I, < 4EE(e(S,)I(|F, — 2| < n"'/A,)| %)
with
A, = c(L+1ISPNP) 12,

and

¢=0(Z,n/2<j<n,n+B/2<j<n+B).
In order to apply the partial integration, Lemma 3.7, note that
e(x) = X0 %o(x) " "T] DF(2) (2,

k J

(2.16)
=e(x)+r,, say,

where 2* denotes the summation over all (B — k)-tuples of integers between 1
and B and [T denotes the product over such (B — k)-tuples of indices (j) and
e,(x) resp. r, denotes the sum from 2 =1 to b — 1 resp. k = b to B. We have
by (2.15)

(2.17) I, < cEE(e(S,)I(|F, - 2| < n”\/%A,)|%) + Er,

=1, + Er,, say.

Let £** denote summation over all k2 between b and B and IT as in (2.16). By
(2.20) and (2.11) we have

Er,<c) **n_MEo(Sn)_an’e(Znﬂ., S,)
(2.18) k

< cmax{n‘s"Eo(Sn)_Zk: k=b,b+1,..., B}
(2.19) =0(n""?)

by Lemma 3.15 with B = /2 = [I(y < 0)4/y + 4/B] + 6 such that §b > ..
Let

G,(x) = fx_zl(|a| <n"'?A,)da.

—oC
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While applying the “partial integration” Lemma 3.7 replace F by Fy(x) =
F(x + S®) and let g(y) = G,(y) and

A=A, —-0n"V?Z,,
Furthermore, let

H(x) = n-%(x + S@) T e(2,,, x + SP).

J#1
Let M =[n/2] and identify Z,,,, in Lemma 3.7 with Z, ,. Hence by ap-
propriate choice of the splitting (2.17) (using the i.i.d. assumption) we can
estimate a typical summand DF(x + S®)[Z,, ,]?H(x) of e ,(x) conditioned on
9=0(Z,M+1<j<n,A)using

(2.20) Ee(Z,,;,x) <1 and o(x) *n < 1.

Lemma 3.7 yields

I, < cEG,(F(S,,, + 8))|DF(S,,, + A)[S,.,JH(S,,, 4)|
+lla, I EG,(F(S, + A))(1 + |IS,[17)H(S,, A)
+EG,(F(S,., + 8))[H(S,.,,8)[Z, ]
+0(n"V%)| E(Hy(S, 4,0, 8))[ 22,1

By definition H, and H, consist of derivatives of F up to the second order and a
first derivative of e,(x). The following estimate for this derivative will be
frequently used: [notation of (2.16)]

(2.22) lDe1<x)|<c1+||x||"")Z 12,4l %o () 27 ‘“H e(Z,,,,x).

(2.21)

We have G, (x) < cn"'/?A, for every x (with A, constant given 2) and
lla,|l = O(n~'/%). By expansion of ©” in A, and the i.i.d. assumption, together
with bounds for H, and H,, relations (2.21) and (2.20) yield for some g > 0:

L < [0(n'%) + o(jla,lin"/#)] Eo(S,) (1 + ISH19)(1 + 1Z,.4l)
+0(n" V) EQ + 1S,19) (1 + 1Z, i1l + 12,1117 0(S,r) "
+0(n 2)EQ + (IS 17) (1 + 1Z, AlI> + 1Z, s 5l1?)0(S,40)

= 0(n"1?)

by Remark 3.24 with ¢ =4 using similar arguments as in (2.18). Hence
(2.17)-(2.23) yield

(2.24) I, = O(n"'72).
Recall that

(2.23)

-4

I, =|Eg(F(S, + A,))e(S,) — Eg(F(R))e(R)|.
Let W

o = S,sin(wt/2) + R cos(wt/2). We may rewrite the difference in I, as an
integral over the derivative of the function ¢t — g(F(A ,sin(7t/2) + W,,))e(W,,)
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and obtain with Proposition 3.1(i) and the notation used there,
I, <|EDg(F(S,,)) DF(S,)[ T, Je(W,,)]
+|Eg(F(S,,)) De(W,)[T,.]|
+|EDg(F(S,,))DF(S,,)[A,]e(W,,)|
=1, +1,+ I, say,
where T,, = (d/dt)S,, and ¢ is uniformly distributed in [0, 1].

(2.25)

ESTIMATION OF THE TERM I OF (2.25). Notice that by definition of e(x) as a
conditional density

E(De(W,)[T,|Z,, j#n+r)=0 as.forr=1,...,B.
Hence
I65E,g(F(Snt))_g(F(VVnt))”De( t)[ t]l
< cEI(|F(S,,) - 2| <|F(S,,) = F(W,,)|)| De(W,,)[T,]|

by arguments similar to those used in (2.13). Using (2.22) the estimation of (2.26)
is very similar to the estimations of (2.14)-(2.23), when we condition on ¢, split
e(x) with b = B — 3, and apply Lemma 3.12 together with Remark 3.24. Here
again the splitting can be chosen such that at most third-order powers of ||.X,, ., |
occur in a final estimate similar to (2.23) together with factors of the type
o(W, .4 1))~ % The result is again

(2.27) I, = O(n"1?)
by Remark 3.24 with ¢ = 6.

(2.26)

ESTIMATION OF THE TERM I; IN (2.25). We have by (2.37)
I, < cn™'?|Ee(W, )Dg( S.)) DF(S, ) Z,.11]]
< o[ Ee(W, ) I(|F(S,,) = 2 < n™2) (1 + 1,1”)1 2,2l

Conditioning on Z,,, we spllt e(x) = e|x) + r, with b =B — 2 and may
proceed as in (2.13)-(2.24) by partial integration (Lemma 3.7 together with
Lemmas 3.12 and 3.24), obtaining I, = O(n~'/?).

Combining this result with (2.23), (2.24), and (2.26) it follows from (2.11) and
(2.12) that

(2.28) I, =1, + O(n"'?).
In view of (2.8) it is sufficient to show that I, = O(n~1/?) in order to prove the
theorem.

ESTIMATION OF THE TERM' I, oF (2.12). Split e(x) = e,(x) + r, as in (2.16)
with b = B — 3. We have in a manner similar to (2.17)-(2.23) with b > 1,

(2.29) I, < E|Dg(F(S,,))DF(S,,)[ T, ]e,(W,,) |+ O(n"'/?).
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Define G(x)[y] = Dg(F(x + A,,))DF(x + A,,)[ y]e(x), suppressing the depen-
dence on A,, in this definition.

Applying Lemma 3.1(ii) (which does a second-order Taylor expansion with
integral remainder term with respect to the i.i.d. summands Z; of T,,) with this
function G(x)[ y] yields with the notation used there (U,, = S,, — n~'/?Z,, and
U/ =8, — (1 —mn""?Z,) :

I; = EG(Unt)[ant] + ELnt[DG(Unt)] + O(n_1/2)

I

(2.30)
+ED*G(Uy,)[22, Y, ](1 = 7)n= 172,
Here we have
D*G(x)[2?, y] = {D’%(F(x))DF(%)[ y] DF(%)[ 2]*
| +2D%(F(%))D*F(%)[ y, 2] DF(¥)[ 2]
+ Dg(F(x))DF(%)[27, y] Je,(x)

(2.31)
+ D’g(F(x))DF(x)[ y]DF(x)[ 2] De,(x)[ 2]
+ Dg(F(x))D*F(X)[ v, 2] De,(x)[ 2]
+ Dg(F(x))DF(%)[ y]D%\(x)[2*],

where

XxX=x+4,

The expressions for DG(x)[ z, y] are similar.
Summarizing we have

D'G(x)[z2", y]
(2.32) — Z/'ng(F(E))Mpr(x’ Ant)[zi’ y] n—Sko(x)—2k—2rn'e(x, Zn+j)»

J
where i, p = 0,1,2, the sum %" is over all integral numbers k, p,r, and
(B — k)-tuples of numbers n+1 to n+ b such that p+r<i+1, r>0,
k < B — 3. The product I'T extends over B — k indices j > 1 of a (B — k)-tuple.
The functions M, (x, X) are of class C**#~¢~7*D for i > 1 (conditionally on
Anl)'

The next step is to reduce DPg(x) to g(x) by repeated application of Lemma
3.7. This lemma can be applied up to three times since (2.32) shows that there are
at least six factors e(Z,, x)? in every summand of (2.32) which (even after
application of Lemma 3.7) always allows us to rewrite the resulting term in the
form required by (3.8).

We shall demonstrate this procedure for a typical term in the sum e,(x) (or its
derivative) involving D3g [see (2.31) resp. (2.32)] and we denote this term by I.
The expectations of other terms occurring in (2.31) resp. (2.32) can be treated
similarly. ’

In Lemma 3.7 let

H(x7 Ant) = Milr(x7 Anl)[Z;Zt’ Ylt] nisko(‘x)72r72kn//e(x7 Zn+j)1
J
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where the product [1” extends over B — k& — 1 indices 2 < j < B. Furthermore,
we replace expectations by conditional expectations given %= o(Z,, pJ>1,
Z; t, 7) and identify 6 with §,. Let M = n — 1 and replace Z; by Z,, as well as g
by D?g and A by A,,, in Lemma 3.7. The particular term I can now be written as

1= "\ B([ D%g(F(S;)) DF(S;) [/, ) H(S 0, 8,)n/(n — 1)
+D%(F(U,))DF(U;)[Z,. S H(U, 8,,)

(2.33) R
+D%g(F(S;;))DF(S;;)[a,, JH(S}, A,,)
+n~'2D%(F(U.,))Hy(Uy,, A,,t)] ‘50‘)},

where
S =U) + n—1/2(1 - 01)Z(n+1w

(2.34)

_ 1,2
Sy=U),—n"" 01Z(n+1)n

and H; j=1,2 denote functions of class C'*# involving o(x) 272k x
[T*,e(x, Z, , ;), where the product extends over at least B — £ — 1 > 4 different
indices n + j > n + 1.
Applying Lemma 3.7 to the r.h.s. of (2.33) again with M = n resp. n — 1 and g
replaced by Dg resp. n~'/2D?g yields
I <n | E[Dg(F(S;)H(S;1,A,)
+ similar terms involving S;/*, S

+n~2D*%g(F(U,,))Hy(Uy,, A,,) + similar terms
+n"'D°g(F(U,,))He(U,,, A,,,) + similar terms] |,

(2.35)

where S'¥, S¥ etc., are derived from the quantities in (2.34) as before by
conditioning on 6, = 0, 1. ~
Here H/(x, A) denote differentiable functions of class C# [see (1.3)] such that

|H;(x, A)| < e(1 + JAI7 + [l 9)(1 + o(x) " *)n 2%
(2.36) X(L+1Z, ol + 1Z401° + [1Y317)

*

Xo(x)_Zk_zrn* e(x, Zn+j),

where [1** denotes a product over at ieast one index n + j out of B — k£ — 2. By
the choice of the function g

Dg(x) <0,
n~'?|D"'g(x)| < c|Dg(x)| < en'I(|x — z| < n~/2).

Let S¥*=S,,+ O(n"'?XZ,,, + Z,.,) be one of the sums obtained by the
partial integrations above. Then

I < cEI(F(Sx*) — 2| < n‘l/Z)ZHHjH.
J

(2.37)
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Using (2.37) together with (2.22) and the splitting arguments of (2.16)—(2.23)
we obtain (with ¢ = 8)
I=0(n"1%)
for the term in (2.25) involving D?g. The other terms can be treated similarly.
Hence
I = O(n~ 1/2)
and the theorem holds. O

3. Lemmas. Let R, j=1,...,n, denote iid. Gaussian random vectors
with the same distribution as R.

3.1 ProposITION. (i) Let g: R - R denote a function of class C', let F
denote a functional on E satisfying (1.3), and let H: E — R denote a functional
of class C'. Let t € [0,1] be uniformly distributed and independent of X;, j € N.
Define

d
S,=nY¥Z,+ - +Z,,+4,) and T, =-S,, where

dt
.omt
(32) An! = [01Zn+l + - +0an+B]Sln?1 An = AnO’
. omt wt d
Z,= stm; + chos(?) and Y, = EZth.

Then we have by Taylor expansion with integral remainder term
Eg(F(S,+ A,))H(S, + A,) — Eg(F(R))H(R)
(3.3) = E{Dg(F(S,,))DF(S,)[ T, 1H(S,,)
+8&(F(S,.)) DH(S,,)[T,.1}-

(ii) Let G(x)[v], x,v € E denote a real valued function of class C? with
respect to x and which is linear and continuous in v. Let U,, = S,, — n~'?Z,,.
Then (X,, = d/dtA,,)

EG(Snt)[Tnt - A,nl]

(3.4) = E{G(Unt)[an{] + Lnt(DG(Unt))

vy D’G(S,, - tn~"?Z,)| 2%, Y, m-m}.
J=1

Here t € [0,1] is uniformly distributed and independent of X; and t and

T it
a, = n‘/zEZlgcos?, such that ||a,,|| = O(n~'/?).
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The function L,, is a continuous linear functional on the Banach space of
continuous symmetric bilinear forms on E (endowed with the strong
supremum-—norm topology for bilinear forms) defined by

(3.5) L,(w) =Ew[XhXl]I(”X1”>nm)ﬁjmlZ

on bilinear forms w, such that ||L,,|| = O(n~1?).

ProoF. (i) The assertion immediately follows by Taylor expansion in ¢
around ¢ = 0 with integral remainder term.
(i) We have

(3.6) EG(S,)[T,] = 3 n~2EG(S,,)[ Y]
j=1

using the identical distribution of Z;, and a Taylor expansion with integral
remainder term with respect to the summand of S,, which depends on Y,,, we
obtain a three-term expansion for (3.6).

In order to evaluate the first term of this Taylor expansion note that EY, = 0.
Since U,, and Y,, are independent we have

EG(Unt)[Ynt] = EG(Unt)[ant]'
The upper bound for ||a,,| is a consequence of
EZ,= EX, — EX, I(| X,| > n®).

The second expansion term of (3.6) follows from

7 wt wi
Ew([Z,, Y,| = (Ew[Zj, Z;| - Ew[R, R])—icos?sm?
7 sin(7t)
- —4——(Ew[Xj, X;| - Ew[R, R]) + L,(w),
where the term in brackets vanishes by assumption (1.3) and Lemma 4.6 in Gotze

(1981).
The third term of the Taylor expansion of (ii) is

> ED*G(S,, - v~ "?2,,)| 2%, Y, ] 1/2,
J=1

thus proving the assertion (3.2). O
The following lemma provides the “partial integration” tool.

.37 LEmMA. Let Sy, =n"Y*Z,+ --- +Z,), M <n, where Z;, j €N, are
i.i.d. and E||Z,||> < w. Let g: R > R denote a function of class C* and let
H: EXE - R be of class CP. Denote by A a linear combination of Z,, ,
2 < j < B, with coefficients of order O(n~'/?) and let Sy, ., = 7Zy . \,n~ "> + Sy,
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where 1 is uniformly distributed in [0,1] and independent of Z i» J € N. Define
a,= EZ jn"'"? and F(s) = F(A + s). Then

EDg(FA(SM+f))DF(SM)[ZM+1]2H(SM’ )
= Eg(F\(Sy+1))DE(Sy 1) [ Sy JH(Spy41, A)nM !
(3.8) + Eg(Fu(Sur 4 ) H(Sw .y 8)[ 2371
+Eg(Fy(Sy))Hy( Sy, A)[ ay ]
+n” V2 EDg(Fy(Sy s ) Hao St 8) [ Z3111]
where the functions H; are of class C"~' and given by
H\(s, A)[2%] = —=D(DF\(s)[2]H(s, A))[ 2],
H,(s, A)[2°] = —D(DF\(s))[2]*H(s, 4))[ 2]
—D,(DF, (s)[2]"[An'*1H(s, 8))[ =],
Hy(s)[a] = DFy(s)[a]H(s, 2),
where v, u, and 7 have the uniform distribution in [0,1], independent of all

other r.v.’s.

ProoF. Let J denote the first term on the r.h.s. of (3.8). By the i.i.d.
assumption and Taylor expansion with integral remainder term we have
Mn 'J = Eg(FA(SM+1))DFA(SM+1)[ZM+1]Mn_1/2H(SM+1> A)
= Eg(F\(Sy))DEy(Sy)[ay JH(Sy, &)

+Mn~ IE{Dg(FA(SM+7))DFA(SM+1)[ZM+1]2H(SM+1: A)

+g(EA(SMJ”))D(DFA(SM+7)[ZM+I]H(SM+7’ A))[ZM+1]} .

Using an additional Taylor expansion with integral remainder term of the
second term of the r.h.s. of (3.9) around A = 0 and 7 = 0 yields the Lh.s. of (3.8)
as well as the term involving H,(s, A) on the r.h.s. of (3.8). Hence the lemma is
proved by (3.9). O

(3.9)

Let V denote a Gaussian random vector independent of R with the same
distribution. Similar to Lemma 3.7 we have
3.10 LEMMA. Let H: E — R denote a function of class C”. Then
EDg(F(R))DF(R)[V]*H(R) .
(3.11) = Eg(F(R)){DF(R)[R]H(R) — D*F(R)[V*]H(R)
~ ' — DF(R)[V]DH(R)[V]}.

ProoF. Since R and (R, + --+ +R,,)m~'/? (where R; denote independent
copies of R) have the same distribution the arguments of the proof of Lemma 3.7
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immediately entail (3.11) as m — oo. (Note that arbitrarily high moments of || R||
exist by Lemma 3.12.) O

3.12 LEMMA. Let Z; denote the random vector which equals X, if || X|| < n®
where a < § and is zero otherwise. Assume that X; satisfy (1 1)- (1 2) Let
S,=n l/”(Z + -+ +Z). Then :

(i) sup{E||S,||”: n € N} < oo,

(ii) E|R|” < «
for every p € N.

Proor. Chebyshev’s inequality yields
EZ, = EX, — EX I(|| X,|| > n*)
= E|| X,|[Po(n=®*1e).
Hence
IES,|| = o(n~@+1er1/2),
Using
[Sall7 < 227 (|| ES,|I” + IS, — ES,|I7),

we may assume EZ; = 0. By assumption the CLT holds for X;. Hence, the results
of de Acosta and Gme (1979) imply that E| X, + - +X,,||2/n is uniformly
bounded in n. Hence the same holds true for Z,. Assertlon (i) now follows

immediately by an explicit estimate of Yurinskii (1976), page 478, (2.8). Assertion
(ii) is a well-known result of Fernique (1970). O

3.13 LEMMA. Let R denote a Gaussian random vector in E as in Lemma
3.10. Then

(3.14) P(|F(R) — z| <€) < ce.

ProoF. Let
X
g(x) = f I(-e<a-2z<¢)da.

Then 0 < g(x) < 2¢. Writing
P(|F(R) — z| <¢) = EI(—e < F(R) — z < ¢)DF(R)[V]*/v(R),
the r.h.s. of (3.14) can be bounded after application of Lemma 3.10 [with
H(R) = o(R)™ '] by
Eg(F(R)){DF(R)[R]o(R)™" - D*F(R)[V?]u(R) "'

—DF(R)[V]D(o(R)™")[V])
< eE{o(R)"'(1 +|R|”)IR| + (1 + |R|")*o(R)*}
<ceE%(R) %, forsomeq>0,1>s>0

< ce
by (3.23) and the choice of k;, thus proving the assertion. O
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3.15 LEMMA. Let Z;, = Z;ssin(nt/2) + R,cos(7t/2) and let S,, denote the
sum n VXZ,+ - +Z,,). Let Y, = d/dtZ;,. Asin (2.11) let o(x)>=n"%+
E(DF(x)[Z,]). Then

(i) sup{Ea(R +0, X, + -+, X) X 11X,
nEN,I"HSn—'/Z,lSiSr} <D< w0,

wherer =[q/2] +1 and & < min(B,1/4)/4 implies

(3.16) sup{Eo(S,,) “:neN,se[0,1]} < C(D,B) < co.
When E|| X,||>*Y < a0, y >0 and § < (B A 1/4)/4 A (v/(6 + 27)) the condition
(ii) supEs(R) “<c(l1+D) <

is sufficient for condition (i) to hold. Conditions (i) and (ii) hold assuming that
the variance condition (1.4) holds with vy =0 and y > 0, respectively, when
q < 2k :

Proor. Let S;,=S,, — n~'/?Z,,. Similar to relations (3.2)—(3.3) we have by
Taylor expansion with integsal remainder term
Es(S,,) ?— Es(R) ‘

~ ['ds{EDo(S;,) [2,,]n'/* + ED(S;,) *[Z,,,Y,,]
(3.17) t

+ED26(S".S - n_l/20ZnS)—‘q[ZnS’ Yns]
~ED%(S;,) [Z,,, Y., 1},

where 6 is uniformly distributed in [0,1]. Using the relations in-the proof of
Lemma 3.12 the first term on the r.h.s. of (3.17) can be estimated for fixed s by

cE(1 + [1S.,1127)0(S;,) "9 %12, ||Pn - @+ etis2
(3.18) (14 1S5l ) o (S5) ™Iz

< CE’s(S;,) """ E|Z,|Pn = 112,

for some 0 < » < 1 arbitrarily close to 1 and a = 3/(6 + 2y), y > 0. Similar to

(3.4) we have again by independence and the definition of Z,, Y,,,, and
ki 7S mS
Ew[Zns) Yns] = Ecos?sin?{Ew[R, R] - Ew[Xn) Xn]I(”Xn” < na)}

O(n™ ) | E|L X, IPI(1 X, > n%).

Using this relation in order to estimate the second term of the r.h.s. of (3.17)
similar as the first one we get as an upper bound for the second term

(3.19) CE(1+[1S;,11*)a(S;,) T O(n ) E X,
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Finally, the third term of the r.h.s. needs more elaborate estimation using

[ Do(x) = DPo(y) *| < (1 +ixl” + |1517)"
(3.20) x{lle = o) 11y = Slla(x) 4 e =]

x [dbo(6x + (1= 8)y) *""(1+ Il + 1517

for every x, y € E with ||x — y|| < 1 and integration over [0, 1]. This inequality
follows from condition (1.3) and elementary calculus.

Relations (3.17)-(3.20) together with Hoélder’s inequality, ||Z,,]| < n* + ||Y}|
and sup o(x) 2 < n?® yield for some » < 1 sufficiently close to 1,

Eo(S,,) ‘< Es(R)‘

+ flds{O(n""‘” + @ 4 pre® 4 opra@) Brg(gr )T
t
(3.21) a5 1 , :
+0(n ) / drE(1 + [S417)(1Z,I1* + 1Y, 1I*)

Xo(S,:S + *rnfl/ZZ,,s)_q},

where a(1) = (2 + y)a—1/2 -6, a(2) = (1 + y)a — 28, «(3) = B/2 — §, a(4) =
/2 — 28, and a(5) = 1/2 — 38. Using
E"s(8S;,) " < n-"9/2Fe(S;,) ¢

and E||Y,||” < oo for arbitrarily large p by Lemma 3.12(ii) we have
Eo(S,,) ¢ < Eo(R) “+ O(n*x)/‘ds{ws,;s)*"
t

(3.22) + /d*rEo(S,;s + m-wz,,s)"’nznnﬁ‘}

<Eo(R) "+ 0(nx) sup Eo(S, +m '?Z,) “Z,?,
O<r,s<1
where x = min(a(l),..., a(5)) — (1 — »)qd/2. Choosing v sufficiently close to 1
and 8 < (B A 1/4)/4 we obtain x > (B A 1/4)/4 > 6.
Conditioning on Z, we apply (3.22) r times recursively, obtaining
r—1
Ea(S,,) ‘< Sup{ Y O(n ¥)Eo(Rx,; + A,;) “NZ)1° - 1Z,_juill?

J=0
+0(n" X" )supEo(S;, + A,,) IZ,|1° -+ 11Z,-1I°),

where A, ;= Y;_.Z,,n" "% x5;=1-j/n, and the supremum is over all
0 <1, s, <1. Since

02(Rxnj+ Anj) >o%(R+ A,,j)/2,
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and
e(1 + (IR + 18,,117)°(1 = X, IRl < n™%/2

hold with probability 1 — o(n"4), A > 0 arbitrarily large, we have by the
assumptions of Lemma 3.15,
supEo(S,,) 7 <D + O(n4) + O(n ¥+ 972)(E|Z,)*) .
t,n
Choosing r = [q/2] + 1, the proof of the first part of Lemma 3.15 is complete.
When y > 0 we have

B 2
o*(R+A4,;)20%(R) —c(L+|R|I” + |A,,17) 114,

Since ||A, |l < en*"'/? we have c(1 +||R||?)*|A, ;| = =% with probability

1—0O(n 4), A >0 arbitrarily large, provided a — 1/2 < —8, which follows
from & < y/(6 + 2y). Hence o*( R+ A,;) > jo*(R) with probability 1 -
O(n 4), which immediately shows that
Eo(R) I <cD(E|X)|?)  +c<
is a sufficient condition.
In order to reduce (i) and (ii) to the variance condition (1.4) note that by
Chebyshev’s inequality

o(R)’>=0v(R) +n %+ (1 +|R|>)O(n """V E| X,|**7,

Eo(R) " < Ev(R)*? + O(n**?)P(||R|| > nt=~®/2P)),
By Lemma 3.9 and condition (1.4) we have for £ > 0, y > 0,
Eo(R) < c/lx‘k“P(v(R) < x?)dx + 0(1)
0

(3.23) .
< cf x ke dy + 0(1) < o0

0
for £ < 2kj. For y = 0 the proof is similar. This completes the proof of Lemma

3.15. 0

3.24 REMARK. Using the notation of Lemma 3.15 we have for arbitrary
A > 0and g = ky/(1 + &), for some ¢ > 0 sufficiently small

(3.25)  sup{E(1 +S,/1*)s(S,) °IZ,)* neN, t € [0,1]} < o0,
provided condition (1.4) holds.

PROOF. Since ||Z,|| <n® we have ||S,||* <2471 +||S,, — n~'2Z,,||*).
‘Conditioning on Z, and Y, we may proceed as in Lemma 3.15 using Holder’s
“inequality to get rid of the factor (1 + ||S,, — n”'/%Z,,,||*), thereby replacing ¢
by q(1 + €), F by F (- + n~'/2Z), and n by n — 1. Using condition (1.4) we can
carry out the proof of Lemma 3.15 with the additional factor ||Z,,||* for y = 0 and
vy > 0 as well.
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