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PRINCIPLE OF CONDITIONING IN LIMIT THEOREMS FOR
SUMS OF RANDOM VARIABLES

By ADAM JAKUBOWSKI

Nicholas Copernicus University

Let {X,,: k € N, n € N} be a double array of random variables adapted
to the sequence of discrete filtrations {{%#,,: k € N U {0}}: n € N}.

It is proved that for every weak limit theorem for sums of independent
random variables there exists an analogous limit theorem which is valid for
the system ({X,,},{%,,)) and obtained by conditioning expectations with
respect to the past. Functional extensions and connections with the Martingale
Invariance Principle are discussed.

1. Principle of Conditioning. The aim of this paper is to describe the
“Principle of Conditioning,” which is a way to derive limit theorems for arrays of
arbitrary random variables, when limit theorems for arrays of independent
random variables are given.

Let us consider a double array X = {X, ,: £ € N, n € N} of random variables
defined on some probability space (£, #, P) and a double array F = {%,,:
ke N,=NU {0}, n € N} of o-subalgebras of .#. Suppose that in each row
(i.e., for each n € N) the o-algebras {#,,: k € N} form a filtration: &%, , |, C
F.»» R € N. The pair (X,F) is “adapted” if X,, is %, ,-measurable for all
n, k€ N.

For each n € N let 0,: (2, #, P) » N, be an {#,,: k € N}-stopping time. If
S = {o0,: n € N}, then the triple (X, F, S) will be called an adapted system.

Given (X, F, S), define a sequence of row-sums

(1.1) Syo)(w) = X X,le), neN.

1<k<oy(w)

The following theorem is due to Brown (1971) for normed martingales and
Brown and Eagleson (1971) in the general setting of martingale difference arrays
(in fact in both papers nonrandom o, were considered).

1.0 THEOREM. Let (X,F) be a martingale difference array, i.e., for every
n,keN, E|X,,| < +o and

(1.2) E( X% k-1) = 0.
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PRINCIPLE OF CONDITIONING 903

Suppose that for the adapted system (X,F,S) the following conditions (1.3)
and (1.4) are satisfied:

(1.3) Y E(XF 1) 2L
l<k<a,
(1.4) Y E(XZI(|X.l > &)|F ) 20, >0
1<k<ao,

_ then for the row-sums {S,(¢,): n € N} the Central Limit Theorem holds:
Su(0,) =5 N(0,1).

Clearly, Theorem 1.0 contains the sufficiency part of the classical
Lindeberg—Feller theorem: Consider an array {X,,} of independent random
variables in rows and set %, = {¢, 2}, Z#,, = (X1, Xp9,--+» Xpp), 0, =k, =
const., n, k € N.

Conversely, if Lindeberg-Feller CLT is given, then conditions (1.2)-(1.4) in
Theorem 1.0 formally arise according to the heuristic rule that can be called the

PRINCIPLE OF CONDITIONING. Given any limit theorem for sums of indepen-
dent random variables we obtain a limit theorem for (X,F,S) by replacing:

(a) the expectations of functions of summands by conditional expectations with
respect to the past;

(b) the summation to constants by summations to stopping times;

(c) the convergence of numbers by convergence in probability of the random
variables described in (a) and (b).

Using the above terminology one can say that Brown and Eagleson (1971)
showed the Principle of Conditioning for Lindeberg—Feller CLT. But the Princi-
ple of Conditioning is valid for more general limit theorems: The successive
extensions were proved by Dvoretzky [(1971), CLT for summands without finite
second moment], Brown and Eagleson [(1971), convergence to infinitely divisible
laws with finite variation], Ktopotowski [(1977), convergence of random vectors
to a general infinitely divisible distribution], Walk [(1977), Brown’s Theorem in
Hilbert space], Jakubowski [(1980), Hilbert case for conditionally infinitesimal
summands]. The last mentioned paper contains a simple idea of the proof of the
Principle of Conditioning while in all the earlier papers some more or less
particular cases of the Principle of Conditioning were obtained by means of
specially designed methods. However, in order to make the Principle of Condi-
tioning a mathematical theorem, one must formalize the notion of limit theorem,
restrict attention to conditions of certain types, etc. This has been done [see
Jakubowski (1982)] but is too formal to be presented here. Instead we shall
precisely describe the essential step (Theorem 1.1 below) and then prove a few
conditional limit theorems by reducing them to Theorem 1.1.

Let (X, F, S) be an adapted system. For 2, n € N, let p,,: 8' X & - [0,1] be
a regular version of the conditional distribution of X,,, given %, ,_,. Define the

“



904 A. JAKUBOWSKI

pointwise row-convolutions of p,,,:
(15) uu'n(on)(. ’ w) = ""nl(. ’ (0) * o *lu'n,a,,(w)(' ’ w)‘

Then p,(o,) are random probability measures, i.e., measurable mappings of
(2, F, P) into the space Z(R") of probability distributions on R!, equipped with
the topology of weak convergence. Note that 2(R') can be considered as a
complete and separable metric space [see Parthasarathy (1967)], hence the
convergence in probability in Z(R') (denoted by = ) has the usual sense.

1.1 THEOREM. Let (X,F,S) be an adapted system and let the sequence
{p,(0,): n € N} be defined by (1.5).
If for some (nonrandom!) p € #(R") the convergence

(16) p‘n(on)il’uu‘
holds, then

(i) the sequence {S(0,): n € N} is tight.

(ii) If along some subsequence {n’} C {n}, S,(0,) =4 v, then, necessarily,
v satisfies the equation

(1.7) VEL = prp
(iii) If the equation (1.7) has the unique solution v = p, then
Sn(on) g9 M.

1.2 LEMMA [Jakubowski (1980) and Beska, Klopotowski, and Stominski (1982)
with summation to stopping times]. If z # 0 and

I1 E(eiax"klgrn,k—l) —p 2,

l<k<ao,

then Ee'S:\o) — .

Proor oF THEOREM 1.1. For a random probability measure u(-, w) denote
by fi(8, w) its characteristic function taken in § € R':

(6, 0) = [e™u(dx, w).

It is clear that assumption (1.6) implies

(18) ’L"(o")(ﬂ’ ) = 1 I;[ ;:12(09 ) —p ﬁ(a)s 0 e Rl.
By Lemma 1.2
(1.9) EetSion - 4(9)

provided () # 0. Since fi() # 0 at least in some neighborhood of zero, the
sequence {S,(0,): n € N} is tight.

If v is any limit distribution of the sequence {S,(0,)} and § € R' is such that
a(8) # 0, then by (1.9) »(8) = i(8). In any case

»(0) - p(6) = (2(6))",
i.e., equation (1.7) holds. O
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Consider Brown’s Theorem 1.0 again. In fact, (1.2)-(1.4) are equivalent to a
countable number of conditions only. Hence in every subsequence {rn’} one can
find a further subsequence {n”’} C {n’} for which (1.3) and (1.4) hold as.
The application of Lindeberg—Feller CLT for each w separately shows that
®,(6,.) = N(0,1) a.s. This implies p,(0,) = p N(0,1), since Z(R') is a metric
space. Thus Theorem 1.0 is a corollary of the limit theorem for independent
random variables and Theorem 1.1.

The next two corollaries are examples of application of the Principle of
Conditioning to limit theorems which deal with noninfinitesimal summands.

Let @ be the distribution function of the standard normal law N(0,1). By
convention, let ®(x/0) = 1if x > 0 and ®(x/0) =0if x < 0.

1.3 CoROLLARY. Let (X,F) be a martingale difference array which satisfies
EX}, < + o0, k,n €N. Define s?, = s} (w) = E(X2|%, ,_1)w). The follow-
ing conditions:

(1.10) Y8k ~p 1,
k
(1.11) m;le|P(Xnk <x|Z, p 1) — ®(x/s,,)|=p 0

for x € D, where D is a dense subset of R', 0 ¢ D,

(112) X E(X3k1(|Xnk| > E)igz;z,k—l) - Szk/ x2d)(dx)] —p0, >0,

k {lx]s,> €}

imply the convergence S,(o,) =, N(0,1). [ As usual, the summation and maxi-
mum are taken over the set {k: 1 < k < 0,(w)}.]

Proor. By the Principle of Conditioning it suffices to prove the corollary for
independent random variables only. But in this case conditions (1.10)—(1.12) are
equivalent to the assumptions of the second version of the CLT due to Zolotarev
(1967). O

Note that a different proposition of a conditioned version of Zolotarev’s
theorem is given in Adler and Scott (1975).

In both the examples given above it is not difficult to identify the limit, since
there is only one solution of (1.7) for u = N(0,1). The same holds for infinitely
divisible p (since ji is nonvanishing) and for p concentrated on R* = [0, + o0).

1.4 COROLLARY. Suppose thatX,, =1, a.s., k,n €N, whereA,, € F.
“Let A > 0 and the numbers p,,1 > p, > 0, k € N, form a convergent series:

(1.13) Y pr< +oo.
k=1
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Define P,,, = P(A, 4| %, r-1). Then the conditions

(1.14) YP=p A+ X D
k k=1
(1.15) Z(Pnk)j _’PZ (pk)j’ JEN,
k k=1

imply the convergence S,(o,) =, |, where p is the convolution of 0-1 distribu-
tions with parameters p, and the Poisson distribution with parameter \:

p = Poiss(A)* [T B(p,).
k=1

PROOF. Suppose that the present corollary is proved for independent random
variables, which can be done straightforwardly if we use the Laplace transform.

Let B= {pd, + (1 —p)d,: 0 <p <1} C #(R"). For every A € F, the regu-
lar conditional distribution of I, given any #’ C % is a random element with
values in B. Hence condition (1.6) in Theorem 1.1 can be verified by application
of independent version of the present corollary. O

Let us note, that the above procedure was implicitly used also in the proof of
Theorem 1.0 and Corollary 1.3, where instead of B the class {up € Z(R'):
Jxp(dx) =0, [xu(dx) < + oo} was considered.

2. Some remarks on the Principle of Conditioning.

2.1 GENERALIZATIONS TO HIGHER DIMENSIONS. The Principle of Condition-
ing holds for adapted systems of finite dimensional random vectors. It can be
obtained by a change of notation in the proof of Theorem 1.1 only. But Theorem
1.1 is valid also in the infinite dimensional case: When the adapted system
(X,F,S) consists of random elements taking values in a real and separable
Hilbert space [the author’s paper (1980) in the conditionally infinitesimal case
and (1982) in full generality].

It should be noted that Theorem 1.1 cannot be generalized to the case of an
arbitrary Banach space. Suitable counterexample and further discussion can be
found in the paper by Rosinski (1981).

2.2 THE EQUATION » *u = p*u. In Theorem 1.1(iii) the uniqueness assump-
tion of the solution of the equation » * u = p * p cannot be completely omitted if
the convergence in distribution to p is to hold. This follows from the fact that the
random measure p,(o0,) does not determine the distribution of S,(a,) even if
¢ (6,) is nonrandom.

2.3 ExaMPLE [Kwapieh (1983)]. Let p and » # p be probability measures on
R' having the property (1.7), i.e., » *u = p * u. Then there necessarily exists an
open subset A C R' such that for § € A

i(0)=0 and #»(8) # 0.
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Moreover, for every C > 0, u(jx| > C) > 0. Choose the constant C such that
p(|x| = C) > 0. Define
X =X, X,=YI(|X|>C)+ZI(|X| < C),
‘7070={¢»9}’ ‘7071=0(X)’ "@-2=0(X’Y’Z)»
where X,Y, Z are independent, £ (X)=2(Y) =pu, L(Z)=v. Then by the
definition
pa0,) =p*[p-I(1X|> C) + v I(1X] < C)]
=p*p,
which does not depend on w. But
Eexpif( X, + X,) = P(|X| > C)E(expi6X|| X|> C) - p(8)
+P(|X| < C)E(expifX||X| < C) - 5(6).
Since #(8) # 0, P(|X| < C) > 0, and the characteristic function
E(expifdX||X| < C)
is analytic on R', the characteristic function E expif(X, + X,) cannot be
identically equal to zero on the set A. Hence £(X, + X,) # p*p.

2.4 A REMARK ON ANOTHER WAY OF CONDITIONING. Dvoretzky (1971) has
suggested that the Principle of Conditioning holds (at least for those limit
theorems which are the solutions of the Central Limit problem) if we consider
conditioning with respect to the previous sum, i.e., %, ,_, = o(S,(k — 1)). How-
ever, the counterexample of Klopotowski (1980a) shows that this form of the
Principle of Conditioning cannot be true.

3. Adapted systems and conditionally independent random variables.
There exists a simple interpretation of the predictable random measures p,, (0,)
considered in the previous two sections.

Suppose that (X, F,S) is an adapted system and consider an accompanying
array of random variables X* = {X*: k€ N, n € N} defined on a suitable
extension of (2, %, P) with the following properties:

(3.1) foreach n € N, {X}: k € N} are conditionally independent over #,
the regular conditional distribution of X}, given % coincides with ., ,:
(3.2) P( X:k|g5)(A’ “’) = u“'nk(A» w)
=P(Xnk|'gzr'z,k—-l)(A’w), Aeﬁl) wEQ.
Define
(33) Sn* = Sn*(an) = Z X:k
1<k<o,
By the definition of X *, the regular conditional distribution of S*(a,) given #
satisfies
P(Sn*(on)l‘gz)( ’ w) = ""nl(' ’ w)* T ¥ ""no,,(w)(' ’ w) -
(3.4)
= ”n(an)(' ’ w)'
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Our basic Theorem 1.1 asserts that for a “good” limit distribution u, the
convergence P(S*(0,)|# )(:,w) = pp implies S, (0,) =4 p.

One may expect that admitting nonconstant random measures as limits for
P(S*(0,)|F )+, w) or even replacing the convergence in probability by the
convergence in distribution, new limit theorems can be derived with limit laws for
S,(0,) of the form Ep(:,w) [for the random measure pu(-,w) its expectation
Ep € P(R") is defined by the formula (Ep)(A) = Ep(A4, -), A € #']. This is not
true as has been shown for example by Dvoretzky (1971) and Hall and Heyde
(1980). However, such a theorem can be proved for adapted systems obtained by
scaling a single sequence.

3.1 THEOREM. Suppose that the adapted pair (X,F) is obtained from a
single sequence {Y,: k € N} adapted to a filtration {F,: k € N}

(3.5) X =B, Xpy  F=F

where B, 7 + oo is a sequence of positive numbers.
Suppose that for the system (X,F,S) the condition

(36) P(Sn*(an)l'gf) =>P’J'(’w)
holds. If the random measure u(-, w) has the property
(3.7) P(j(0,w) =0) =0, < DcC R,

where D is a fixed dense subset of R, then
Sn(on) _)@ EAU‘( ) w)y

or more precisely, there exists a nondecreasing sequence {k,} CN, k, 7 + o0
such that

(3.8) P(S,(0,)#,, )(- @) = pu(-, 0).
ProoF. We need an improved version of Lemma 1.2.

3.2 LEMMA [Jakubowski (1982) and Jakubowski and Stominski (1986)]. Let
(X,F) be an arbitrary adapted pair. Fix n € N. Then for each ¢ > 0, § € R,
and every {%,,: k € N}-stopping time o,, there holds the inequality

En()( etGS,,(o,,)) - EnO(JU‘n(an)(o)) ‘

(3.9)

b

< 4P,([p(0,)(0) | &) + e 'E,

”n(on)(a) - En()(lu‘n(on)(o))
where E, () = E(:|%,) and P,(-) = E,(I(-)).

In order to prove (3.8) it suffices to find a sequence k, / + oo, independent of
@ and such that

E,(eo)) 5, 5(8,-), 6€R.

(Il
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Since B, » + oo, for each fixed &, p (-, w) = &, a.s. Hence there exists k,, / + 0
with the property

[T pul0) =8, as.

1<k<k,

By Theorem 1.1 S (k,) — p 0. Define a new system X, = Xo kit Tl ='5"k+k",
o, =0, — k, Ao, and observe that S, (o,) — Sio,) =p 0, u,(c,)(8) —

w,(0,)(0) = 0as., and, since k, = + oo, E(ji(6, INFy,) = (0, -) as. By Lemma
3.2 and property (3.7),
wa0,)(6) = (6, )|

E‘Ek(ewsnw,.)) - (e, -)|s E|ei(Saton) = Sitorn _ 1| +E

+B|Bjy(e5000) — Ejy(i,(07)(0)) ]~ 0.

3.3 REMARK. By condition (3.8), Theorem 3.1 is stable in the Rényi
sense—see Aldous and Eagleson (1978).

3.4 CENTRAL LIMIT THEOREM FOR MARTINGALES WITH STATIONARY DIF-
FERENCES. It is clear that by virtue of Theorem 3.1 one can construct another
Principle of Conditioning, which admits mixtures of probability distributions as
limit laws and is valid for the systems (X,F,S) obtainable by scaling a single
adapted sequence only.

For example, it follows readily from this new Principle of Conditioning,
Lindeberg CLT and Pointwise Ergodic theorem, that for every two-sided strictly
stationary sequence {Y,: k € 2} such that E(Y, — Y|o(Y: j<0))=0 and
EY? < + oo, the convergence in law n~ /2%, _ ;=nY; = EN(0, 6%(w)) holds. Here
0%(w) = E(Y?|#)w) and £ is a o-algebra of invariant subsets for the sequence
Y,. This is a generalization of the well-known CLT for martingales with sta-
tionary ergodic differences due to Billingsley (1961) and Ibragimov (1963).

3.5 OTHER GENERALIZATIONS. Theorem 3.1 is an example of how the basic
inequality (3.9) works in the case when some additional information on the
system (X, [, S) is given. It should be noted that inequality (3.9) may be explored
in some other directions [see the results of Eagleson (1975), Rootzén (1977a), Hall
(1977), and Klopotowski (1980b), which can be obtained from (3.9)].

3.6 TIGHTNESS OF S¥(0,) IMPLIES TIGHTNESS OF S,(0,). Although it is not
possible to describe the asymptotic behaviour of £(S,(s,)) given £(S*(o,)) for
general adapted systems (X, F, S), partial information is accessible. Namely, if
the sequence {S¥(o,)} is tight, then {S,(o,)} is tight [Jakubowski (1982)]. In fact,
there exists a more detailed description of connections of this type.
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3.7 THEOREM. Suppose that there exist #measurable random variables A,
such that the sequence {S¥(o,) — A,: n € N} is tight. Then there exist random
variables C,, such that

(a) for everyn,k €N, C,,, is %, ,_-measurable, i.e.,

(3.10) C(k)= Y C,, keN,

1<j<k

is a predictable sequence with respect to {#,,: k € N,};
(b) the sequence {S¥(s,) — C,(0,): n € N} is tight,
(c) the sequence {S,(o,) — C,(0,): n € N} is tight.

The proof is based on some tightness criteria for random measures and is
rather arduous [refer to Jakubowski (1985)].

4. Principle of Conditioning in functional limit theorems. In this sec-
tion we would like to suggest a formalism leading to the functional version of
Theorem 1.1.

4.1 FUNCTIONAL PRINCIPLE OF CONDITIONING. Let (X,F) be an adapted
pair. Let TS = {¥,: n € N} be a sequence of time-scales with respect to F, i.e.,
for each n the family ¥, = {0,(¢): t € R*) satisfies the following conditions:

(4.1) 0,(0) = 0,

for each t € R”, o,(t): (2, #,P) >N, is an {Z,,: k€ N,}-

(4.2) stopping time,

for each w € Q, the trajectory ¢ — ¢,(¢)(w) is nondecreasing, right

(4.3) continuous, and increases only by jumps of size 1,

(4.4) lim 0,(¢)(w) = +0 foreachw € Q.
t—oc

For example, o0,(¢) = [nt] defines a time scale.
Given the triple (X, F, TS) one can construct a sequence of stochastic processes
{X, = {X,(t): t€ R*}: n € N} by the summation of X with respect to TS:

(4.5) X,(t)=8,(0,(t))= Y X,, t€R*, neN.

1<k<o,(t)

Fix n € N. Clearly, the trajectories t = X, (¢, w) of the process X, belong to
the space D(R™*: R') of functions f: R* — R! which are right-continuous and
admit left-hand limits. It follows that the stochastic process X, can be considered
as a random element in the space D(R*: R') equipped with the Skorokhod
topology [see Billingsley (1968) and Lindvall (1973)].

For 0. < s < t define

(4.6) pos,tw)= TT*  pul, ).

() <k<a,(t)
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Of course, p,(0, ¢, w) = p,(0,(t)) by definition (1.5). Fix w € Q and consider the
family of distributions {y,(s, ¢, w): 0 < s < t}. If random variables Y, Y3, ...
are independent and have distributions given by

(4~7) g(ank) =:“‘nk(""")’

then the stochastic process Y = {Y,*(¢): t € R},

(4.8) Ye(t)= Y Y4, teR",
1<k<o,(t)

has independent increments and the distributions of its increments are given by
LYe(t) — Y2(s)) = (s, t, w). Define a random measure
(4.9) pa(+): (R, F,P) > 1 cP(DR*: RY))

by setting as pu,(w) the law of the process Y = {Y(¢): t € R*}. [Here II
denotes the set of laws of processes with independent increments and trajectories
belonging to D(R*: R').]

Suppose that

(a) p,(+) converges in probability to some measure p,, = .£(X_) € II:

(4.10) Ba() = phs,

(b) the process X corresponding to p_ has no fixed points of discontinuity.

If s < t, then (4.10) implies

(4.11) Ba(8,8,0) = phg(s, t) = L(X,(t) - X (s))

and by (b) the measure p_(s, t) is infinitely divisible. Hence by Theorem 1.1
X, (t) — X,(s) =45 X (t) — X_(s), and this statement can be easily strengthened
to the convergence of finite dimensional distributions.

On the other hand, (4.10) implies

(4.12) Bl Tps T, + 8,5 0) = 6,

for any bounded sequence {7,: n € N} of nonnegative random variables and any
sequence of numbers §, \y 0. Then subsequent application of Theorem 1.1 gives

(4.13) Xn(’rn + Sn) - Xn('rn) _)[) 0

for any sequence {7,: n € N} of discrete stopping times with respect to the
natural filtrations {Z(t) = o(X(s): s <t): t€ R").

Now, application of the Aldous (1978a) criterion gives an especially clear proof
of tightness of the sequence {X,: n € N} and ends the proof of the functional
convergence

(4.14) X, -y X,

The limit theorem proved above is the most important case of the Functional
Principle of Conditioning. Indeed, the situation is just the same as in Section 1,
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because it is possible to express the condition p,(-) = pp,, in terms of conver-
gence of predictable characteristics of processes X,, [e.g., using the general limit
theorem for processes with independent increments due to Jacod (1983)].

A suitable example will be given in the next section (Theorem 5.1). Here we
note only that by “conditioning” of the well-known Donsker Invariance Principle
we get Brown’s (1971) Invariance Principle for Martingales, and that-certain
other [e.g., Durrett and Resnick (1978)] results of this type can be also obtained
following the line presented above.

Whether the Functional Principle of Conditioning is true for the general limit
process X is still an open question. However, the results of Jacod, Klopotowski,
and Memin (1982) show that the answer should be positive.

4.2 THE FUNCTIONAL PRINCIPLE OF CONDITIONING HOLDS FOR SEMI-
MARTINGALES. The construction of the predictable random measure p ,(-) was
very simple for stochastic processes arising by the summation of random vari-
ables according to a given time scale. There is a more extensive class of processes,
semimartingales, for which an analogous random measure can be defined. An
explicit expression for such a measure can be found in Jacod et al. (1982).
Moreover, limit theorems proved in that paper, as well as in the earlier paper by
Liptser and Shiryayev (1980), show (implicitly, of course) that the Functional
Principle of Conditioning also holds for semimartingales.

4.3 FUNCTIONAL PRINCIPLE OF CONDITIONING GIVES EXTENDED CONVER-
GENCE. The quantities appearing in conditions of any limit theorem derived by
the Principle of Conditioning, contain information about the connections between
the processes X, and filtrations {#, , ,: t € R"}. Such connections can be
described, for example, by the notion of extended convergence of processes with
filtration, introduced by Aldous (1978b).

One can prove that the assumption p,(:) = pu,, is almost equivalent to the
extended convergence of respective processes with filtration—see Jakubowski and
Stomihski (1983). Similar results belong to Helland (1980) and Grigelionis,
Kubilius, and Mikulevidius (1982). The case, when the limit process does not have
independent increments is considered in Stomihski (1984) and Kubilius (1985).

5. Principle of Conditioning and martingale central limit theorems.
There are several methods of derivation of martingale CLT or Martingale
Invariance Principles. They are exhaustively described in the well-known book by
Hall and Heyde (1980).

Here we shall describe another one via the Principle of Conditioning.

We begin with the limit theorem that is a particular case of Theorem A from
the paper by Lipster and Shiryayev (1980). From our point of view, this theorem
is “derived by the Principle of Conditioning from the most general Invariance
Principle for processes obtained by summation of independent random variables.

All notations below are taken from Section 4. The Wiener Process is denoted
by W= (W(t): te R"}.
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5.1 THEOREM. Let (X,F,TS) be an adapted system. Denote Y,, =
X, 1(1X,,,] < 1). Suppose that the following conditions (5.1)-(5.3) hold:

(5.1) sup Y E(YulZ )| ~p0, tERT,
s<tll<k<g,s)
(5.2) Y E(YAZ ) — [EYuZ )] —»pt,  teRY,
1<k<o,(t)
(5.3) Y P(X,l>el% ) 2p0, e>0, teR".
1<k<a,(t)
Then X, —», W.

We shall prove that conditions (5.1)-(5.3) in the above theorem are implied by
assumptions (5.4) and (5.5) in the following Invariance Principle for martingale
difference arrays. This invariance principle is due to McLeish (1974) but here is
presented in the form improved by Ganssler and Hausler (1979).

5.2 THEOREM. Let (X,F) be a martingale difference array. Suppose that for
the sequence {¥,: n € N} of time scales the following two conditions hold:

(5.4) E max |X,,|— 0, te R,
1<k<a,(t)

(5.5) Y X% -opt, teR.
1<k<o,(t)

Then X, -, W.

The proof is contained in two lemmas below.

5.3 LEMMA [Helland (1982)]. Suppose that (X, F) is a martingale difference
array and for {¥,: n € N} condition (5.4) holds. Then

(5.6) > E(IXnkll(IXnkI > 1)|5‘;z,k—1) -p0, tERT,

1<k<a,(t)

=%n

and, in particular, (5.1) holds.

5.4 LEMMA [Liptser and Shiryayev (1980)]. Let (X,F,TS) be an adapted
system.

(a) Condition (5.3) and
(5.7) max |X,,| =p0, te R,

1<k<ay(t)

=%

are equivalent.
(b) Under condition (5.3), condition (5.2) and

(5.8) Y (X~ E(Y % 1) >pt,  teRY,

1<k<ay(t)
are equivalent.
If, in addition, (5.6) is satisfied, then (5.2) is equivalent to (5.5).
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5.5 REMARK. It is well known, that under condition (5.1) conditions (5.2) and
(5.3) are equivalent to X, — W. Similarly, if for a martingale difference array
(X, F) the sequence {max, _j ., (| X,,[: » € N} is uniformly integrable for each
te R*, then X, -, W if and only if (5.7) [= (5.3)] and (5.5) are satisfied. See
Rootzén (1977b), Ganssler and Hausler (1979), and Liptser and Shiryayev (1981).

This is the contrary to nonfunctional martingale CLT where there is no hope
for necessary and sufficient conditions (excluding the case of independent random
variables).

Acknowledgment. The author would like to express his gratitude to Profes-
sor Stanistaw Kwapien for his valuable remarks and encouragement.
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