ON MAXIMAL AND DISTRIBUTIONAL COUPLING¹

By Hermann Thorisson

University of Göteborg

A simple construction of maximal coupling is given by way of a distributional coupling concept.

1. Introduction. Let $Z = (Z_i)_0^{\infty}$ and $Z' = (Z_i')_0^{\infty}$ be discrete time stochastic processes on a general state space (E, \mathcal{E}) . It is known that under topological restrictions on (E, \mathcal{E}) there exists a maximal coupling of Z and Z'; see Griffeath [2], [3], Pitman [4], and Goldstein [1].

In the author's paper [5] a distributional coupling concept was introduced to deal with the difficulties arising when certain continuous time stochastic processes on a general state space are coupled. It is the purpose of the present note to show how this distributional approach allows a short and transparent construction of a maximal coupling, without any restrictions on (E,\mathscr{E}) . The nondistributional maximal coupling result is then a direct corollary to the distributional one. We restrict our attention to discrete time processes, mentioning the continuous time problem only in a remark.

For further information on coupling we refer the reader to the papers quoted above.

2. Nondistributional coupling. For nonnegative integer valued random variables T put $\theta_T Z = (Z_{T+\iota})_0^{\infty}$ on $\{T < \infty\}$ and $\theta_T Z = (z, z, ...)$ on $\{T = \infty\}$, where z is some fixed element of E. Let $=_D$ denote identity in distribution and $\|\cdot\|$ the total variation norm.

The following is a version of the traditional definition of coupling:

DEFINITION 1. $\hat{Z} = (\hat{Z}_{\iota})_{0}^{\infty}$ and $\hat{Z}' = (\hat{Z}'_{\iota})_{0}^{\infty}$ is a nondistributional coupling of Z and Z' with coupling epoch T if

(a)
$$\hat{Z} =_D Z$$
 and $\hat{Z}' =_D Z'$,
(b) $\theta_T \hat{Z} = \theta_T \hat{Z}'$.

The coupling is called *successful* if $\mathbb{P}(T < \infty) = 1$. In this case the following inequality yields a strong limit result as $n \to \infty$, which explains much of the interest in coupling:

The coupling inequality. For any integer $n \ge 0$

$$\|\mathbb{P}(\theta_n Z \in \cdot) - \mathbb{P}(\theta_n Z' \in \cdot)\| \le 2\mathbb{P}(T > n).$$

Key words and phrases. Coupling, maximal coupling, distributional coupling.

² Received November 1984.

¹Supported by the Swedish Natural Science Research Council and by the Icelandic Science Foundation.

AMS 1980 subject classification. Primary 60G05.

PROOF. Due to (b),
$$\mathbb{P}(\theta_n \hat{Z} \in A, T \leq n) = \mathbb{P}(\theta_n \hat{Z}' \in A, T \leq n)$$
 and thus $\mathbb{P}(\theta_n \hat{Z} \in A) - \mathbb{P}(\theta_n \hat{Z}' \in A) = \mathbb{P}(\theta_n \hat{Z} \in A, T > n) - \mathbb{P}(\theta_n \hat{Z}' \in A, T > n)$

$$\leq \mathbb{P}(\theta_n \hat{Z} \in A, T > n) \leq \mathbb{P}(T > n).$$

Take supremum in $A \in \mathscr{E}^{\{0,1,\dots\}}$, multiply by 2 and apply (a) to obtain the desired result. \square

3. Distributional coupling. We now weaken the requirement that \hat{Z} and \hat{Z}' ultimately coincide and demand rather that \hat{Z} behaves probabilistically from a time T onwards as \hat{Z}' does from a time T' onwards, or more precisely:

DEFINITION 2. \hat{Z} and \hat{Z}' is a distributional coupling of Z and Z' with coupling epochs T and T' if (a) of Definition 1 holds and

(b')
$$(\theta_T \hat{Z}, T) =_D (\theta_{T'} \hat{Z}', T').$$

With this coupling concept the coupling inequality still holds: In the proof apply (b') instead of (b) and replace T by T' in the appropriate places.

REMARK 1. If there exists a regular version of the conditional distribution of \hat{Z} given $(\theta_T \hat{Z}, T)$ —in particular, if E is Polish and $\mathscr E$ its Borel subsets—then \hat{Z} and \hat{Z}' can be glued together through the identically distributed random elements in (b') transforming $=_D$ into = (see Construction 1.1 in [5]). Thus in this case the distributional coupling in Definition 2 can be made nondistributional.

REMARK 2. Since T is discrete there certainly exists a regular version of the conditional distribution of \hat{Z} given T. Thus we may assume that T = T'.

4. Maximal coupling.

DEFINITION 3. The coupling (distributional or nondistributional) is *maximal* if *the coupling inequality* is an identity:

$$\|\mathbb{P}(\theta_n Z \in \cdot) - \mathbb{P}(\theta_n Z' \in \cdot)\| = 2\mathbb{P}(T > n), \quad n \ge 0.$$

THEOREM. There exists a maximal distributional coupling.

The theorem is proved in the final two sections.

As an immediate consequence (see Remark 1 above) we have the following:

COROLLARY. If E is Polish and $\mathscr E$ its Borel subsets then there exists a maximal nondistributional coupling.

REMARK 3. For continuous time processes $Z = (Z_s)_{[0,\infty)}$, $Z' = (Z'_s)_{[0,\infty)}$, there does not in general exist a maximal distributional coupling such that

$$\|\mathbb{P}(\theta, Z \in \cdot) - \mathbb{P}(\theta, Z' \in \cdot)\| = 2\mathbb{P}(T > t), \quad t \in [0, \infty),$$

since although the left-hand side is nonincreasing in t it need not be right- or left-continuous. However, if we apply the theorem to $Y=(Y_t)_0^\infty$ and $Y'=(Y_t')_0^\infty$ where $Y_t=(Z_{td+s})_{[0,d)}, Y_t'=(Z_{td+s}')_{[0,d)}$ with d a positive constant, then we obtain the following result: For any $d\in(0,\infty)$ there exists a distributional coupling of Z and Z' maximal at all $t\in\{0,d,2d,\ldots\}$. In particular, this means that also in the continuous time case total variation convergence is equivalent to the existence of a successful distributional coupling. Observe, that even if (E,\mathcal{E}) is Polish the state space of Y and Y', $(E^{[0,d)},\mathcal{E}^{[0,d)})$, is not. Thus we need path regularity conditions (such as right- or left-continuity) in order to get the regular conditional distributions needed to establish the analogous nondistributional result.

5. Proof of the theorem. The following lemma is the key part of the proof:

LEMMA. Let $\mathscr{F}_0 \supset \mathscr{F}_1 \supset \cdots$ be a nonincreasing sequence of σ -algebras and π , π' two probability measures on \mathscr{F}_0 . Let $(\pi)_{\mathscr{F}_n}$ denote the restriction of π to \mathscr{F}_n and $\pi \wedge \pi'$ the greatest common component of π and π' . Then there exist subprobability measures $\lambda_n, \lambda'_n, 0 \leq n \leq \infty$, on \mathscr{F}_0 such that

(1)
$$\lambda_0 + \cdots + \lambda_{\infty} = \pi \quad and \quad \lambda'_0 + \cdots + \lambda'_{\infty} = \pi',$$

$$(2) (\lambda_0 + \cdots + \lambda_n)_{\mathscr{F}_n} = (\lambda'_0 + \cdots + \lambda'_n)_{\mathscr{F}_n} = (\pi)_{\mathscr{F}_n} \wedge (\pi')_{\mathscr{F}_n}, \quad 0 \leq n < \infty.$$

In order to prove the theorem it is no restriction to let Z and Z' both be defined on sequence space, $E^{\{0,1,\cdots\}}$. Put $\mathscr{F}_n = \sigma\{\theta_n Z\} = \sigma\{\theta_n Z'\}$ and let π,π' be the distributions of Z,Z', respectively. Define probability measures λ,λ' on $(E^{\{0,1,\cdots\}}\times\{0,\ldots,\infty\},\mathscr{F}_0\otimes B\{0,\ldots,\infty\})$ by $\lambda(\cdot\times\{n\})=\lambda_n,\ \lambda'(\cdot\times\{n\})=\lambda'_n$ and let $(\hat{Z},T),(\hat{Z}',T')$ be governed by λ,λ' , respectively. Clearly (1) and the first equality in (2) imply the conditions of Definition 2. Further, (2) yields the final equality in

$$\begin{split} \left\| \mathbb{P} \big(\, \theta_n \hat{\boldsymbol{Z}} \in \, \cdot \, \big) - \mathbb{P} \big(\, \theta_n \hat{\boldsymbol{Z}}' \in \, \cdot \, \big) \, \right\| &= \left\| (\, \pi \,)_{\mathscr{F}_n} - \, (\, \pi')_{\mathscr{F}_n} \right\| \\ &= 2 \Big(1 - \left\| (\, \pi \,)_{\mathscr{F}_n} \wedge \, (\, \pi')_{\mathscr{F}_n} \right\| \Big) \\ &= 2 \big(1 - \left\| \lambda_0 + \cdots + \lambda_n \right\| \big), \end{split}$$

proving maximality since $\|\lambda_0 + \cdots + \lambda_n\| = \lambda(E^{\{0,1,\dots\}} \times \{0,\dots,n\}) = \mathbb{P}(T \leq n)$.

6. Proof of the lemma. We start by defining the subprobability measures λ_n , λ'_n on \mathscr{F}_n such that (2) holds:

$$\lambda_0 = \lambda'_0 = \pi \wedge \pi',$$

$$(\lambda_n)_{\mathscr{F}_n} = (\lambda'_n)_{\mathscr{F}_n} = (\pi)_{\mathscr{F}_n} \wedge (\pi')_{\mathscr{F}_n} - ((\pi)_{\mathscr{F}_{n-1}} \wedge (\pi')_{\mathscr{F}_{n-1}})_{\mathscr{F}_n}, \qquad 1 \leq n < \infty$$

Make the induction assumption that λ_k can be extended as a subprobability measure from \mathscr{F}_k to \mathscr{F}_0 for $0 \le k < n$ and that $\lambda_0 + \cdots + \lambda_{n-1} \le \pi$ (this certainly holds for n = 1).

Extend λ_n from \mathscr{F}_n to \mathscr{F}_0 by

(3)
$$\lambda_n(A) = \int (\pi - \lambda_0 - \dots - \lambda_{n-1}) (A|\mathscr{F}_n) d(\lambda_n)_{\mathscr{F}_n}, \quad A \in \mathscr{F}_0.$$

By (2)

$$(4) \qquad (\lambda_n)_{\mathscr{F}_n} \leq (\pi - \lambda_0 - \dots - \lambda_{n-1})_{\mathscr{F}_n},$$

implying that the set-function λ_n is independent of the version of $(\pi - \lambda_0 - \cdots - \lambda_{n-1})(\cdot | \mathcal{F}_n)$. Thus for a *given* sequence of disjoint events in \mathcal{F}_0 we can choose a version that is σ -additive for that *specific* sequence. Hence λ_n is σ -additive. Further, λ_n is nonnegative and from (3) and (4) we obtain $\lambda_0 + \cdots + \lambda_n \leq \pi$.

By induction we have proved that λ_n , $0 \le n < \infty$, can be extended as subprobability measures to \mathscr{F}_0 such that $\lambda_0 + \lambda_1 + \cdots \le \pi$. By symmetry the same holds with λ_n replaced by λ'_n and π by π' . Define

$$\lambda_{\infty} = \pi - \lambda_0 - \lambda_1 - \cdots$$
 and $\lambda_{\infty}' = \pi' - \lambda_0' - \lambda_1' - \cdots$

to obtain (1) and complete the proof.

REFERENCES

- [1] GOLDSTEIN, S. (1979). Maximal coupling. Z. Wahrsch. verw. Gebiete 46 193-204.
- [2] GRIFFEATH, D. (1975). A maximal coupling for Markov chains. Z. Wahrsch. verw. Gebiete 31 95-106.
- [3] GRIFFEATH, D. (1978). Coupling methods for Markov processes. In Advances in Mathematics Supplementary Studies: Studies in Probability and Ergodic Theory 2 1-43. Academic, New York.
- [4] PITMAN, J. W. (1976). On coupling of Markov chains. Z. Wahrsch. verw. Gebiete 35 315-322.
- [5] THORISSON, H. (1983). The coupling of regenerative processes. Adv. in Appl. Probab. 15 531-561.

DEPARTMENT OF MATHEMATICS
CHALMERS UNIVERSITY OF TECHNOLOGY
AND THE UNIVERSITY OF GÖTEBORG
S-41296 GÖTEBORG, SWEDEN