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COUPLING OF MULTIDIMENSIONAL DIFFUSIONS
BY REFLECTION

By ToreNY LINDVALL AND L. C. G. ROGERS

University of Goteborg and University College of Swansea

If x # x’ are two points of R, ¢ > 2, and if X is a Brownian motion in
R started at x, then by reflecting X in the hyperplane L = {y: |y — x| =
|y - x’|} we obtain a Brownian motion X’ started at x’, which couples with
X when X first hits L. This paper deduces a number of well-known results
from this observation, and goes on to consider the analogous construction for
a diffusion X in R which is the solution of an s.d.e. driven by a Brownian
motion B; the essential idea is the reflection of the increments of B in a
suitable (time-varying) hyperplane. A completely different coupling construc-
tion is given for diffusions with radial symmetry.

1. Introduction. Let the paths of two independent Markov processes, with
the same transition probabilities but different initial distributions, run until the
first instant they hit the same state; that instant is the coupling time, T say.
From T on, the distributions of the two processes are the same, so if T < oo a.s.
we should be able to conclude that the processes are asymptotically equally
distributed. Indeed, if they are denoted by X and X’ and Q\(¢), @,(¢) are the
distributions of X,, X/ when X, =, A, X = 5 u, respectively, then in general the
basic coupling inequality

(1) |@\(t) — Q. ()| <2P(T > t)

holds; if T' < % a.s. then P (T > t) - 0 as t = o0, and (1) implies the ergodicity
result [|@\(¢) — Q,(¢)]| > 0 as ¢t > oo (|| || is the total variation norm). The
coupling is successful if T < oo a.s.

The coupling method has enjoyed much interest during the last decade and
has now also found its way into the textbooks: cf. Billingsley [2], Grimmett and
Stirzaker [8], and Karlin and Taylor [11]. For several of the possibilities of the
device, see Griffeath [7]. As is apparent from the latter account, a construction of
suitably dependent processes X, X’ is often the crucial step in order to obtain a
successful coupling; notice that (1) holds if X, = X/ for ¢t > T.

The method is well fitted to the study of one-dimensional diffusion processes
since they have continuous paths; two such cannot pass each other without
hitting each other, an observation that simplifies estimates about T considerably,
cf. Lindvall [13]. But the paths of two independent diffusions in RY, d > 2, do
not in general ever meet. Hence, in order to apply.the coupling method to
multidimensional diffusions, we are forced to special constructions. The purpose
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of this paper is to present a number of cases where such constructions may be
carried out.

When considering Brownian motions, the task is easy: we let one of the paths
be the mirror image of the other, with mirror surface = the plane (obvious which)
between the two starting points, until they meet in that plane; after coupling we
let the paths coincide. In Section 2 we present the details of that coupling and
examples of its applications, to the asymptotics of the n free particles model of
gas kinetics, simple potential theory, and other topics.

The reflexion method of coupling just described for Brownian motion is a
special case of a general one for coupling solutions of the stochastic differential
equation

(2) dX,=o(X,)dB, + b(X,) dt.
The idea is to construct X’ by solving a companion equation
dX/ =o(X/)H(X,, X/)dB(t) + b(X}) dt,

where H(x, x’) is an orthogonal matrix of determinant —1, a reflexion, essen-
tially. The geometric interpretation is less direct, but we shall consider the effect
of this coupling method in Section 3, under the assumption that ¢ does not vary
too much, and we derive sufficient conditions for successful coupling.

If o =1 and b(x) = —xB(]x|) for some B: R, — R, then the radial process
|X,], t > 0, is a one-dimensional diffusion in its own right. This, together with a
skew product representation of X, permits a somewhat different method of
coupling which can be completely analysed; this is done in Section 4.

Notice that if there exists a stationary distribution #, then @ _(¢) = = for all
t > 0, so if a successful coupling is obtained then (1), with p = =, yields a result
on convergence toward stationarity: @,(¢) — « (in total variation norm) as
t = oo. Sufficient conditions on b and o for the existence of a stationary
distribution are established by Bhattacharaya [1]; these conditions are rather
involved in general and depend on comparison with one-dimensional radial
processes, but in the special case of radial drift this comparison is exact, and the
scale and speed picture of one-dimensional diffusions permits considerable sim-
plifications: see Section 4.

2. Coupling of Brownian motions. Let { = the space of continuous func-
tions w on [0, o0) with valuesin R?, d > 2, endow @ with the standard o-field .%,
and let P, be the probability measure on (£, %) governing a Brownian motion
starting at x. Our mirror surfaces are the hyperplanes

L, ={u;(u—(x+y)/2,x—y) =0}
for x, ye R? if x # y [(*, *) denotes scalar product]; the definition of L, is

arbitrary if x = y. With T, (z) = the mirror image of z with respect to L, we
.define g, w € & through ‘

T. (w(t)), t<k

Xy
w(t), t> K,

Xy

(B, )(t) =



862 T. LINDVALL AND L. C. G. ROGERS

where
Ky = inf{s >0; w(s) € ny};

X

that infimum is set to oo if & never hits L, .

With X, = «(¢) and X; = [B,,X](¢), it is easily seen that X =, P, implies
X’ =45 P, With Y, = (X,, X/), let P, be the distribution of Y when X =, P;
the coupling of two Brownian motions starting at x and Yy, respectively is then
the process Y with governing measure P, . We have random starting points with
distributions A, u if we let Y be governed by P, , where

Py (+) = [P ()N x p](dx, dy).

In fact, any probability measure on (R¢)? will do if it has marginals A and p; for
certain problems, there are better choices than A X p.

This type of somewhat tedious definition will not appear again.

Under P, ,, we have X, =, N(x, tI) and X/ =g N(y, tI). It is easily proved
that

(3) IN(x, tI) = N(y, tI)| = 2®(—|x — y|/2¢'2, |x — y|/2t'?)

<2-|x - yl/(2mt)""”,

where ® is the standard normal distribution; “ < ” may be replaced by “ ~ 7. It
may amuse the reader to prove (3) by using the basic coupling inequality (1): we
notice that T' = «,, and, actually,

(4) [N(x, ) — N(y, tI)| = 2P k., > t).

ExaMPLE 1. For ¢ >0, let £ be the position in (R9)" of an n-tuple of
independent Brownian motions at time ¢, representing a configuration of n gas
molecules at that time. In order to understand how quickly the initial configura-
tion {x,,...,x,} is forgotten, we shall estimate |[P£;' — P£&,”'||; here £; is the
analogue of £, with initial configuration {y,,..., y,}. For the estimate, let X;, X/
be Brownian motions with X,(0) = x;, X/(0) = y, and coupled as above. We find
that

5) Pg, " — P& < 2P(€, # &)

< 2P(K > tforsomei,1 <i < n) < 2ZP(K
1

o>t

which is bounded by 2(X?|x; — y,))/(27t)'/? due to (3) and (4).
For a nonnegative random variable 7 defined on (2, %), let
h(x,A)=P(r<o0,X, €A)

and ' =710, for x, yeERY A€ . For the next examples, we need an
estimate of ||k (x,*) — A (Y, )| under the assumption

(6) r=1" on{k, <TATY}.
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To that end, let
h(x,A) =P (r<o0,7<x,X €A)+P (1<w,1=0w,X A)
and split A (y, A) analogously. Using (6), it is easily deduced that
17 (x,*) = A (y,*

ry(ny>T/\ ') + Pry({'r= w}af{r = o})

for all x, y € R

EXAMPLE 2. Fora % set B C R let
= inf{s > 0; X(s) € B}.

Following Port and Stone [14], we shorten &, (x,+) to hy(x, +); for concepts and
results on Brownian motion and potential theory, see Chapters 2 and 4 of [14]. If
D is an open set with a smooth boundary and D¢ recurrent, then the Dirichlet
problem has the unique solution

f(x) = E[o(X(rp))] = [o(¥)hy(x, dy),

where ¢ is the given bounded and continuous function defined on dD; E, is
expectation with respect to P..
With the help of (7), we find that

(8) | f ) - f )| < 2||q)”Px_y(ny > Tpe A 7'I’)")
for x, y € D.

EXAMPLE 3. For d =2, let u, be the equilibrium measure of a bounded
nonpolar %, set B, cf. [14], page 77. We present a short proof of the result that
(9) |72 p(x, +) = .“'11” -0 as|x| = oo. =

Now py = [hy(z, *)o(dz) if B C B,, where o, is the uniform distribution on the
surface of the ball B, with radius r, centered at 0. Hence, if |x| is large enough,

lAn(x,*) = pyll< 2P, o ‘( Ki,op = T A 7)

due to an obvious extension of (7) covering the case when y is randomly chosen
(with distribution 0,)- Now fix a ball B, so large that B C B,. Then, if |x| > r,
we have

P.r,am (Kx, Oy > Tn A T;}) = })x"'\»rl (Kx, L > TI},.)‘

But the latter probability tends to 0 as |x| = oo which is seen after a scale change
such that the two starting points lie on the unit circle and use of P, ( Ty — 00 s
a ——>O)— 1 for all z with |z| = 1.

EXAMPLE 4. For a set B € %, the function e (x) = P, (1, < o) is the
equilibrium potential of B, cf. [14], page 58. Fix x, y € R% if B is a subset of the
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half-space bounded by L,, and containing x, then
(10) ep(y) < ep(x)

as follows directly from 7, < 7.

It is left to the reader to couple Brownian motions on a circle, a torus, a
cylinder, or a sphere. For spherical Brownian motion, see I1t6 and McKean [10],
page 269f. Notice that the device is useful for proving ergodicity of any nontrivial
diffusion on a circle.

3. Coupling of solutions of certain stochastic differential equations.
Consider the diffusion X = (X,),., in R defined by the stochastic differential
equation (s.d.e.)

(11) dX,= o(X,)dB, + b(X,)dt, X, = x.

Here, B is d-dimensional Brownian motion, b: RY - R“ and o: R’ » R ® R
is nonsingular. We shall always assume that

(12)(1) o and b are Lipschitz,
(12)(i1) o and b are bounded, and
(12)(ii) o ! is bounded.

The first condition ensures the existence of a pathwise unique strong solution to
(11); the others can be relaxed by localisation techniques, but we avoid this for
the sake of clarity.

In order to construct some other diffusion X’ = (X/),., with the same
generator as X but started at x’ # x (y is used to denote other quantities in this
section), with a coupling of X and X’ in mind, the idea is to consider the
stochastic differential equation

(13) dX] = o(X/)dB; + b(X/) dt, X5 =x,
where
dB; = H,dB,

and H is some previsible process with values in @(d) = the set of d X d
orthogonal matrices. By cunning choice of H, it is possible to make X and X’
couple if the coeflicients o and b are good.

We define '

(14) YtEXt - X/, Vi= |Yt|71Yt’
a,=0o(X,) —o(X/)H,, B,=b(X,) — b(X/).
Then by 1t6’s formula, '
(15)  d(|Y)) = (V,,a,dB) + })Y|'[2(Y,, B)) + traa] = [o] V"] dt.
REMARK. The right-hand side makes no sense if Y,=0, nor is V, well

defined, but these are essentially irrelevant points, since we are only interested in
behaviour of Y up to the first hit of zero.
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We are attempting to make Y hit zero in finite time, and there are potentially
three reasons why it might not do so:

(16)(a) the drift |Y,|"(Y,, B;) on the right side of (15) might be too big for large
values of |Y],

(16)(b) the drift |Y;|~'(tr a,a’ — |a,V;|*) might be unbounded for small values of
|Y| (it is always nonnegative), or

(16)(c) the covariance |aTV,|? of the martingale part of |Y| might tend to zero so
that, although Y might tend to zero it will never hit it in finite time.

We shall present a construction analogous to the reflexion couplings of Section
2 which takes care of (b) and (c), at least in examples where o is suitably well
behaved. In general, localisation is needed to extend the construction; details of
this will appear later.

This then leaves only (a), which is essentially the old problem of deciding
recurrence of a diffusion in RY, which is handled by the old techniques. The
following lemma is very similar to results of Khasminskii [12], Friedman [5], and
Ikeda and Watanabe [9]; we leave the proof as an exercise.

LEMMA 1. LetR = (R,),., be a continuous semimartingale such that R, > 0
a.s. and

dR, = K,dW, + 6, dt,

where (W,), ., is one-dimensional Brownian motion, (K,),.,(8,),., are pre-
cisible processes,and for some K > 0, K, > K for all t.
Suppose there exists y: (0, 00) > R which is locally integrable and such that

(17) 0, < K2y(R,) forallt, a.s.
Let f: (0,0) = R be defined by

(18) F/(r) = exp(—Zfl"v(u)du), f(1) = 0.

For T, = inf{t; R[ < E}, To = lirn,;\.o’rF we then hal)e

(i) if lim,_ _f(x) = oo, then P(1, < 00) =1 for all e > 0, and
(i) i lim,_ _f(x) = oo, lim _,f(x) > —oo and liminf, _,,f"(x) > 0, then

P(7, < o0) =1.
We now give the construction of H, = H(X,, X/). It is easiest to understand if
o is constant, but will work equally well for sufficiéntly small perturbation of
such a o; let
c = sup{[lo(x) — o(x)[; x,x" € R},
The @(d)-valued matrix H is given by
(19) H(x,x")=1-2u(x,x )u(x, x)7’,
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where u(x, x’) is the unit vector o(x’) 'y/|o(x’) " 'y|, and H is locally Lipschitz
on (R")2\ {(x, x); x € R?). The matrix H is reflexion in the plane orthogonal to
o(x’) 'y, and as such generalises the reflexion construction of Section 2; if
o =1,b =0, it yields the same pair (X, X’) as was considered there.

Abbreviate o(x’) to o, u(x, x’) to u and so forth. If we define § = 8(x, x’) =
o(x) — o(x’) then :

(20) a=o(x)—o(x’)H(x,x') =8 + 20uu”,
and a few calculations yield the identity
(21) traa” — |a’v|? = tr 887 — |82 = O(|y|?)

since o is assumed Lipschitz. The whole point of this construction was that now
the drift term on the right side of (15) is

(v, 8) + 3y {traa” — |a"v)?},

which remains bounded as y — 0. This takes care of (16)(b), and, provided c is
small enough, it also takes care of (16)(c). Indeed, if A = sup_ |0~ '(x)||, then

laTo| = |6Tv + 2uusTv|
> 2|uoTo| — |87
=2[yl/lo" 'y — 1870|
>2A7" —c.

Thus provided ¢ < 2A !, |a’v| is bounded away from zero.
Now define for r > 0

v(r) = sup{|a"v| %[(v, B) + (traa” —|a"v|?) /2] y]];
x, x’ such that |[x — x'| = r}
= sup{|a”v| %[ (v, B) + (tr 887 — |870]2) /2|¥I%];

x,x’ such that |x — x'| = r}.

(22)

[Here, of course, 8 = b(x) — b(x’).]
We are now in position to use Lemma 1 on the continuous semimartingale
R, =Y}

THEOREM 1. Suppose o, b are Lipschitz and bounded, and that

A =suplo (x)| < 0.
Ry

Suppose also that
supllo(x) —o(x’) || < 2A".
x, x’

(23) /]xdr{exp[—Qflry(u)du]} = %0,
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where vy is defined at (22), then we have a successful coupling of X and X': if
7, = inf{¢t; |Y;| = 0}, then P(1, < o0) = 1.

ProOF. Taking R, to be |Y;| in Lemma 1, we identify K, = [aTV,| > 2A~
¢ > 0 from (15). Moreover by the definition of v,

6, < K}y(R,) forallt.

By the key fact (21), y remains bounded in a neighbourhood of 0, and so
liminf, | ,f’(x) > 0, and lim, _, ,f(x) > — 00. The condition (23) is now simply
the condition lim, , _ f(x) = oo of conclusion (ii) of Lemma 1, which completes
the proof. O

ExaMPLE 5. We begin by considering the special case where o(x) = 6(0) for

all x, and so ¢ = 0, § = 0 and, more simply,
y(r) = sup{|a”| *(v, B); x, x’ such that |x — x| = r}.
There is one particularly obvious case where (23) is satisfied, namely, that where
(v, B) < 0 always, or, put another way, where
(24) (x —x/,b(x) —b(x')) <0
for all x, x’. Notice the interpretation of this condition on the vector field b; if
x,,x, are two solutions of the ordinary differential equation
dx, = b(x,) dt,

then |x, — x}| is decreasing, so the integral curves of b do not spread out as time
passes. This is intuitively very appealing: if b is such as to keep solutions
together, then by including a stochastic term we can ensure a successful coupling.

If the vector field b is assumed differentiable, then the condition (24) holds iff
for all z € R

Z 2,2;0;b(x) <0, Vux.
1, =1

This condition will be satisfied if, for example, b is the gradient of a concave
function, or, again, if b(x) = Ax where A is antisymmetric.

EXAMPLE 6. Let us suppose b =0. If o is cohstant, then coupling takes
place, as in the discussion of the example above. How far can one perturb o from
a constant matrix and still be certain of coupling? In this case,

y(r) = sup{|a’v| *(tr 88" — |87v|?) /2r; x, x’ such that |x — x'| = r},
so if we had ‘
(25) laTo|(tr 887 — |8Tv|?) < 1

evérywhere, then y(r) < 1/2r, and condition (23) holds; the coupling is success-
ful. Now

0<trdd” — |82 < (d —1)c?
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and |a’v] = 2A ' — ¢, so condition (25) is satisfied if
c<2A7'/(1+ (d-1)"7),

that is, if the perturbation from the case ¢ = 0 of a constant covariance is not too
large, we still have a successful coupling.

4. The radial drift case. In this final section, we consider a diffusion
X = (X,),., defined as the solution of an s.d.e. of the form

(26) dX, = dB, - Xt:B(lth) dt,

where 8: R* — R is Lipschitz and, say, bounded. Itd’s formula gives
(27) d|X,| = (U, dB) + {3(d - DIX)™" — |X,B(1X,)} dt
and

(28) U, = |X)"(I - UU") dB, - (d - YU, X, * dt,

where U, = X,/|X,|. In particular, if the Brownian motion W is defined by
dW, = (U, dB,), then | X,| solves the stochastic differential equation

d|X,|=dW,+ {{(d—1)|X,| ' = |X,|B(IX,)} dt.

This s.d.e. has a pathwise unique strong solution which is a time-homogeneous
diffusion process, by general results on s.d.e.’s; see Yamada and Watanabe [16].
As in the skew-product representation of Brownian motion, we deduce from (28)
that if Z is a Brownian motion on S~ !, and if R is a diffusion on R * solving the
s.d.e. (27), then

X, = R,Z(f()’R_;?ds).

So the study of X reduces essentially to the study of the one-dimensional
diffusion | X|.

The coupling construction will be as follows. Let X and X’ be two indepen-
dent processes distributed as the solution of (26), but with different starting
points. We run the two processes until 7 = inf{¢; | X,| = | X/|}, after which we
make X’ follow the path of X reflected in the hyperplane orthogonal to X, — X .
This hyperplane passes through 0, and the coupling time is the first time at
which X hits the hyperplane after 7. Thus there are two problems: firstly to
show that 7 < o0, and secondly to show that the hyperplane must be hit in finite
time. Whether these stopping times are finite or not depends on properties of the
diffusion | X,|. If we make the assumption that 8 > 0, then the methods of the
previous section guarantee successful coupling, since

(x —x/,b(x) —b(x")) <0

for all x, x’. This is an improvement over the results we shall now obtain, but we
should emphasise that we do not here assume 8 > 0.



COUPLING OF DIFFUSIONS 869

Let s: (0, 20) = R be the scale function of |X]|; explicitly,

s(r) = f]"exp[—2/:x{§(d— Du ' — u,B(u)} du] dx
(29) . .
= /]’x”‘d“’exp[2f:u,8(u) du] dx;

see, for example, Breiman [3]. Since B is assumed bounded, it is clear that
s(0 + ) = — o0, so the diffusion is recurrent iff s(c0) = 0. If s(c0) < o, we shall
suppose without loss of generality that s(o0) = 0.

Now let (Y,'),., and (Y;?),. , be two independent copies of the diffusion with
law (s(]X,]),;~ o, With starting points y, and y,, respectively. Define

g;EO'(Y;iISZt), {Q;E ng[t’ i=1,2)

t=0
and
v=9'vy: ¢ =(9.

t=0

We defer the proof of the following result, which holds in much greater
generality than the present context.

LEMMA 2. ¢, =9 v g2

REMARK. The inclusion ¢, 2 ¢! v 92 is immediate; without indepen-
dence, the reverse inclusion is false.
The finiteness of 7 is decided by the following result.

) LEMMA 3. (i) If the diffusion s(|X|) is recurrent (s(c0) = o0), or if the
diffusion s(|X|) is transient (s(o0) < o0) and

(30) f]x(s(t)z/s’(t))f][du/s’(u) dt = o0,

then 7 is finite a.s.
(ii) If the diffusion s(|X|) is transient and (30) fails, then 7 is not a.s. finite.

PROOF. (i) According to Rosler [15], if s(]X|) is recurrent then the tail
o-fields ¢, are trivial, and, according to Fristedt and Orey [6], if s(|X]) is
transient and (30) holds, then the o-fields 4. are trivial. If Py. » is the law of
(lerYIZ )=, and

A, = {Y,' - Y>> 0for all large enough ¢},
A_={Y}! — Y? <0 for all large enough ¢},
A, =0\ (4, UA),
then by Lemma 2, since ¢ are trivial and A, € ¢, it must be that for any y
P,(A,)=0orl.
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But by symmetry, P, (A,) = P, (A _), so both must be zero, and P, (A4,) =
Hence P, ,(A,) = 1 for all y,, yz, and 7 < o P, , as.since 4, C {‘T < x0}.

(i) Frlqtedt and Orey [6] show that if s(|X |) is transient and (30) fails, then
@' are not trivial, and there exists a continuous increasing function ¢ such that

t—c(Y}) -, i1=1,2,
where 7; are some nondegenerate random variables. Thus

P, (Y!> Y? for all large enough t) > P,  (n,>n,) >0,

Yy BARS)
and coupling is not certain: P, , (7 < c0) < 1.0

PROOF OF LEMMA 2. Take X € L*(%, ). Then X € L*(%' v ¢*) for each ¢,
so given ¢ > 0 and ¢, there exists a simple random variable

Y= Z alellAz
,=] 7 i
such that E[|X — Y[] <e¢ and A; € & for i =1,2 and j = 1,2,..., n. More-

over, if s > ¢,

oy Elx-Elveny o] - ElE[x - vigl v o]

<E[|IX-Y|]]<e
since X € L*(¥! v 42%). Now because of the independence of %' and %2,
E[14109) v 92] = E[1,19)] E[1,:197]
if A'€ ¢/, and so
E[Y)9 v 92| = 2 B 1,419} B[1,:97]
J=1

N iajE[lAﬂgo‘C]E[lA/zlgi] a.s.
=1

by the reversed martingale convergence theorem. The limit random variable is
measurable on ¢! Vv 92, and (31) implies that X can be approximated in L' to
within & by a 4] vV ¢2-measurable random variable. Hence X is a.s. equal to a
¢! vV @2-measurable random variable. O

For the success of the coupling construction, we still have to ensure that after
time 7, the process X hits the hyperplane orthogonal to X, — X/. This will
happen if and only if the clock C = (C,),. ,

C,=[|X, 2ds,
2= [1x
of the skew product representation diverges a.s. If | X|is recurrent, this obviously

happens, and if |X|is transient, we have to ensure that if we time change Y by
the inverse to C then Y does not reach 0 = s(o0) in finite time. The bouadary
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behaviour of scale and speed to guarantee this is well known: see, for example,
Breiman [3] or Freedman [4]. Rephrased in terms of the present notation, the
condition is

G20 [Tlsls()dr= | ") [t dul dy = .

Finally, if |X| is recurrent and has a stationary distribution 7, then by
coupling with an independent copy of |X| with initial distribution 7, we can
deduce that the distribution of |X,| - =, for every initial distribution of |X|.
From this, by the skew product representation, the convergence of X, to
stationarity as t — oo follows. The condition for |X| to have a stationary
distribution is that the speed measure should have finite mass; a few calculations
reduce this to the simple criterion
L o I © u

f s'(u) du =/ u? ‘exp(—2f v,B(v)dv) du < o
0 0 1
which hence is necessary and sufficient for a stationary distribution to exist.
We summarize the result of this section.

THEOREM 2. Suppose the diffusion X = (X,),. , is defined by
dX, = dB, — X,B(|X,)) dt,
where B is bounded and Lipschitz. The scale function of the one-dimensional
diffusion | X| = (| X5 i
r X
s(r) =[x Vex (2 uB(u du) dx.
(=] p(2 up(u)

(a) If s(x0) = oo, then |X| is recurrent, and coupling of X and X' is certain
using the method described above. If

fxl/s’(x) dx < o
0

then the diffusion has an invariant distribution to which the law of X, (under
any initial distribution) converges in norm as t = 0.

(b) If $(o0) < oo, then taking s(co) =0, coupling of X and X’ is certain
provided

' (i) /lw(s(t)2/s’(t)){£t1/s’(u) du} dt = oo
and
(i) flw(1/t2s'(t)){ft°°s'(u) du} dt = oo.
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