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ON THE RATE AT WHICH A HOMOGENEOUS DIFFUSION
APPROACHES A LIMIT, AN APPLICATION OF
LARGE DEVIATION THEORY TO CERTAIN
STOCHASTIC INTEGRALS!

By DANIEL W. STROOCK

Massachusetts Institute of Technology

l.et X(T) be the solution to a stochastic differential equation whose
coefficients are homogeneous of degree 1 (e.g., a linear S.1).E.). Under mild
conditions, it is shown that limits like

1
Tlim 7log P(IX(T)|/|X ()| = R)

exist and a formula is provided for their computation. The techniques
developed apply to a broad class of situations besides the one treated here.

1. Some preliminaries and statement of the results. The notation intro-
duced below will be used throughout. N > 2 and d > 1 are fixed integers;
(Vo --+, V,;) € C=*(RN\ {0}; RV) is a collection of vector fields each of which
is homogeneous of degree 1 [i.e., V,(x) = |x|V(x/|x])], and (B(t) =
(B4(t)s..., By(1)), F#, P)isa d-dimensional Brownian motion. When dealing with
a vector field V, it will often be useful to identify V with the directional
derivative operator =¥ Vd/dx, which it determines. Thus, for example, Vf =
YN V'af/dx, and V*f = Vo Vf. Also, for notational convenience when writing
stochastic integrals, o df,(¢) will be used sometimes to denote dt.

LEMMA 1.1.  For each x € RN\ {0) there is a P-almost surely unique, right-
continuous, {%#, t = 0}-progressively measurable function X(-,x) such that
P(X(t,x) € RN\ {0) for all ¢t >0)=1 and X(*, x) satisfies the Stratonovich
stochastic integral equation

I ,
(1.2) X(T,x)=x+ Y /{)rVk(X(t,x))od,Bk(t), T > 0.

k=0

Moreover, if p(T, x) = log(|X(T, x)|/|x|) and T, x) = X(T, x)/|X(T, x)|, then

o(T, x)

o .
Y [ou(6(t,x))o dBy(2)
(1.3) h=o™0

17 . . .
L [lo0(t,x)) dBy(0) + ['Q(O(x)) b, T =0,

k=1"0
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and

(1.4) o(T, x)———+ Z [ W6, x))edp(1),  T=o0,
x| k0”0

where 0,{(0) = (4, Vk(a))R.\', Wk(a) = Vk(o) - Ok(a)a, and Q(0) = o,(0) +

'YW (0, )0) for § € SN, .

Proor. By the standard theory of stochastic integral equations, there is no
problem about the existence and uniqueness of X(-, x) up until the first time
X(-, x) hits 0. Moreover, up until that time, it is easy to check that p(-, x) and
0(-, x) satisfy (1.3) and (1.4), respectively. Finally, from (1.3), it is clear that
inf, _,_;|X(¢ x)|/|x| > 0 as. P for each T > 0. Hence, P-almost surely, X(-, x)
never hits 0 in a finite time. O

As a consequence of (1.4), it is clear that, for each x € RN\ {0}, 6(-, x) is the
diffusion on SV~ starting at x/|x| and generated by
d
(1.5) L=3) W+ W,
k=1
Let P(T, 8, -),(T,0) € (0,0) X SN~ denote the transition probability function
for this diffusion. Henceforth it will be assumed that

(1.6) Lie(W,,...,W,)(0) = T,(SN""), 6eSN1,

[Lie(W,,..., W,) denotes the Lie algebra of vector field on SV~ generated by
{(Wy,...,W,}.] In particular, by a renowned theorem of Hormander [2], (1.6)
guarantees that there is a smooth map (T, 6,7) € (0,0) X SN~!' x S¥N-1
p(T, 8,7) such that P(T, 0, dn) = p(T, 8, m) dn, where dn denotes the normal-
ized Lebesgue measure on S™V~!. Moreover, by the strong maximum principle
[cf. Theorem (6.1) in [5]], one can easily see that p(T, 6, n) > 0 for all (T, 8,7) €
(0,%0) X SN-1 x SN~ Hence, by Doeblin’s theorem, there is a unique m €
M (SN ') (the probability measures on SV¥~') such that

1

lim sup ?log( sup ||P(T,4,-)— m||var) <0.
T fesN !

Since m = (P(T, 0, -)m(df), T > 0, it is obvious from the preceding discussion

about p(T, 0, -) that m(dn) = ¥(n) dn where y € C°°(SN 1) is positive every-

where on SV . In the future [fdm will be denoted by f for f € L'(m).

The goal of this article is to prove several results about the behavior of
P(p(T,x)/T €T), x € RN\ {0} and " € By, as T 1 0. The first statement is a
rather abstract existence assertion. Subsequent statements provide more concrete
information.

THEOREM 1.7. There is a lower semicontinuous, convex function I: R' —
[0, 0) U {o0} such that, for each I' € %,

(1.8) hmmf?og(mfp( (T, x)/T € F))z — inf I(p)

T peintl’
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and

1
(1.9) limsup—log(supP(p(T,x)/TE I‘)) < — inf I(p),
T1x T x pel

where it is to be understood that x varies over RN\ {0}.

In order to describe the function I, it will be useful to have some additional
notation. Define the function a and the vector field Won SV~! by

I
a= ) of
k=1
and
- (I
W= 2 oW,
k=1
respectively. Set
I
(1.10) a=inf{ Yy f(o,(— Wk¢)2dm: ¢EC°°(SN“)},
k=1

and define the bilinear operation ( - , -} by

d
(61, 920(0) = X (W,6,)(0)(Wyp,)(8), &, 0, € C(SV ).

k=1

THEOREM 1.11. Assume that a > 0. Then

(1.12) 1(p) = sup inf [(p - J@- L¢)du)2/2;df(ok - Wi$)" dﬂ},

where ¢ varies over C*(SN~1), u varies over M,(SN™"), and it is understood
that, when L{[(o, — W,$)?dp = 0, the ratio is 0 or o according to whether
p= (@ —Lo)du orp# [(Q — Lo)dp. In particular, there is an A € (0, o0)
such that:

(1.13) Alp— Q) <I(p) <(p-Q)°/2a, pER,
andsol € C(RY), I(Q) = 0, and I is strictly increasing [ decreasing] on (Q, o)
[(— 2, Q)]

THEOREM 1.14. Assume that o = 0. Then there is a_unique f € C*(SN™")
such that f = 0 and W), f = 0, 1 < k < d. Moreover, if Q = Q — Lf, then

(1.15) I(p) = in{ J(n): 4 € M(SY ") and p = [Qaiu,
wﬁere

(116)  Jn) = int{ [(10,¢) + Lo) dus 9 & C*(sV )]
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and it is to be understood that I(p) = co if there is no p € M,(SN™ ") satisfying
j‘Qd,u = p. In particular, if § , = +sup( +Q(0): 6 e SN, then I is continu-
ouson (q._,q.) andis infinite off of [§_, ¢,). Finally, (Q) = 0 and there is an
A > 0 such that I(p) = A(p — Q)* for all p € R'. In particular, I is strictly
increasing on (Q, o) and strictly decreasing on (— o, Q).

REMARK 1.17.  Referring to Theorem 1.14, observe that Lf = 1X/W,(a,,) +
W, f. Thus, @ = o, — W,{.

COROLLARY 1.18. If either « > 0 or a =0 and 0 € (q_, q,), then for any
function R: (0, o) — (0, o0) satisfying limy_ 1/T log R(T) = 0

FoB( PUX(T, )12/ = R(T)) - Q)| -0,

(1.19) lim sup
T

where
— 0 ifQ >
Q) = { ~1(0) z;g < 8,
Moreover, if « = 0 and @ > 0, then
(1.20) Tll_{noc ir;f%logP(|X(T,x)|/|x|2R(T)) =0.
Finally, if « =0 and ¢, < 0, then
(1.21) l}l_r)rlc sgp%logP(lX(T,x)MxlzR(T))= — 0.

2. Proofs. The proof of Theorem 1.7 follows the same pattern as that used
in Chapter 6 of [4].

Given x € RN\ {0}, T > 0, and I € By, set F(T,x,T) = P(o(T, x)/T € T").
Note that, from (1.3) and (1.4), F(T,x, ') = F(T,x/|x|,T") and that for all
T,T,>0
P((p(T, + Ty, x) = p(T}, x)) & T|.57,)

= F(T,,0(T,,x),T/T,) as. P.

LEMMA 2.2. There exist constants A € (0,00) and & > 0 such that for all
0<8<1,T €Bg, T=2, and (x, y) € (RV\ {0})2
(2.3) F(T,x,T) < A(F(T, y, T®) + exp(—¢82T?)),

where I'® = {p € R": dist(p, I') < §}.

(2.1)

ProOF. First note that, by standard estimates and (1.3), thereisa B € [1, o)
and an &> 0 such that sup P(|p(1, x)|/T > 8/2) < Bexp(—¢ed2T?) for all
0<8<1and T> 0. Second, define M = sup{p(1, 8,7)/p(1,0’,7): 6,0, 7 <
S™ 1} and observe that for all x, y € R¥\ {0}, and f € B(SVN~")*

E[f(6(1,x))] < ME[(8(1, ¥))].



844 D. W. STROOCK

Using this in conjunction with (2.1), one now sees that

F(T,x,T) < P((p(T, x) — p(1,x))/T € T*) + Bexp(—e(T)’)

T 5
= EI:F(T— 1,0(1,3(?), T———II‘(S/Q)) + Bexp(—s(b‘T)z)

< ME[F(T— 1,6(1, y), rWZ)) + Bexp(—&(8T)?)

T-1
= MP((p(T, y) = p(1, y))/T € T*?) + Bexp(—&(8T)*)
< MF(T, y,T'®) + B(M + 1)exp( —¢(8T)?)
for all T>2, 0<8<1, and x, y € RN\ {0). Thus (2.3) holds with A =
B(M +1). O

For T > 0 and I' € %y, set
P(T,T) =infF(T, x,T);

for p € R' and 8 > 0, define
1
£(p,8) = inf{— ~log #(T, B(p,8)): T > o},

where B(p,8) = (p — 8, p + 8); define
G={peR:(38>0)(p,8) =c0};
and for p € R, define
I(p) = sup{¢(p,8): 6 > 0}.

LEmMmaA 24. If p & G, then for all § > 0

(2.5) lim — %logg’(T, B(p,8)) =¢(p,d).

T—
In particular, I: R' - [0,00) U {00} is lower semicontinuous and convex. Fi-
nally, if ||Q| = max,|Q(0)| and ||a|| = maxy|a(0)|, then

(2.6) sup P(|p(T, x)|/T = R) < 2exp(~T(R — [|Q)"/2llal)
forall T > 0 and R > ||Q)||.

PROOF. First note that by (2.1), for any p € R', r > 0, x € RV\ {0}, and
T,T,> 0

F(T, + T,, x, B(p, 1))
o(T, + T,,x) — p(T,, x)
S
T,
= E[F(T,,6(T,,x), B(p, 7)), o(T,, x)/T, € Blp, r)]
‘/}(T27 B(p7 r))F(lexi B(p7 7‘))

B > P|p(T,,x)/T, € B(p, r),

B(p, 1)

v
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Hence,
(27) ‘@(Tl + T2’ B(p’ r)) = '@(TI’ B(p, r))‘@(T% B(p, r))

forall p € R', r > 0,and T}, T, > 0.

Now let p € G and 6 > 0 be given and set S(T) = —log (T, B(p,§))
for T > 0. By (2.7) with r =25, S is subadditive. Thus, the equality
lim,_ 1/TS(T) = inf,_ ,1/TS(T) will follow once it is shown that there exist
0 < T, < T, < oo such that sup{S(T'): T € [T, T,]} < 0. To this end, note that
since p € G, thereis a T, > 0 and a B € (0,1] such that #(T,, B(p, §/2)) = 8.
Hence by (2.7) with r=4§/2, #(nT,, B(p,8/2)) = B" for all n > 1. Choose
n,>1so that T, = n T, > 2 and y = B" > 4A exp(—&(8T,/2)?) [cf. (2.3) for
the definition of A and e], and let 6, be a fixed element of SV~'. Then, since
T - KT, 6,, B(p, 8/2)) is lower semicontinuous, there is a T, > T, such that
K(T,6,, B(p,6/2)) = v/2 for T € [T\, T,]. Hence, by (2.3) with I' = B(p, §/2)
and §/2 in place of §,

Y/2 < F(T, 00: B(P, 8/2))
< A2(T, B(p,8)) + Aexp(—¢(8T/2)%)
< AP(T, B(p,8)) +v/4

for all T € [T, T,]. Clearly this proves that sup{S(T'): T € [T}, T,]} < oo.

The lower semicontinuity of I is obvious. To prove that I is convex, it suffices
to consider p,, p, € G. Given ¢ € (0,1) and & > 0, set p = ¢ép, + (1 — £)p, and
choose 8’ > 0 so that £¢B(p,,8’) + (1 — £)B(p,,8’) € B(p, 8). Then, just as in
the derivation of (2.7), one can show that

P(T, B(p,8)) =2 P(£T, B(p,,8'))2((1 — £)T, B(p,, "))

for all T > 0. In particular, since p,, p, € G and therefore
1
Tlim - ?log@(éT, B(p,,8")) = ¢4(p,,8) < o0
and
1
Ihm - ?log'@((l - g)T’ B(pha/)) = (1 - g)/(p278/) < 00,
it follows that p € G and that
/(py 8) < gf(ply 8/) + (1 - 5)/(;02, 6/)
<&I(p,) + (1 = &) I(p,).

Clearly, this completes the proof that I is convex.
Finally, from (1.3) the derivation of the estimate in (2.6) is standard. O

‘PROOF OF THEOREM 1.7. In view of Lemma 2.4, we need only prove (1.8) and
(1.9). To prove (1.8), let T’ be an open subset of R' and suppose that p € I, If
I(p) = =, then it is clear that liminf,_,_1/T log Z(T, ') = —I(p). If I(p) < =
choose 8, > 0 so that B(p,d,) C T and let 0 <8 < §, be given. Then, since
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p & G and therefore (2.5) holds,

hmmf-—logg’(T r)> hmmfilog@(T B(p,8)) = —¢(p,9).

T—

Since Z(p, 8)1 I(p) as § | 0, this completes the proof of (1.8).

Next suppose that I' is a compact subset of R' and set y = mf{I(p) peTl}
Given 8> 0 and p € I' N G¢, choose 8(p) > 0 so that £(p,26(p)) =y — B if
y < o0 and £(p,28(p)) = 1/B if y = o0. If p € T N G, choose §(p) > 0 so that
£(p,28(p)) = oo. Since T is compact, there exists an n > 1 and p,,...,p, € I so
that T c U"_,B(p,, 8,) where 8, = 8(p,). Thus, by (2.3) with § = 8, A -+ AS,,

F(T,x, F) < i F(T’xr B(pv’8v'))

r=1

< A( i 2(T, B(p,,28,)) + exp(—8(3T)2))

r=1
< 2nA max{.@(T, B(p,,28,)) Vv exp(—e(ST)2): l1<v< n}
for all T > 2 and x € RN\ {0}. Note that

{—oo if p, € G,

. 1 2
lim —flog(.@(T, B(p,,28,)) V exp(—&(8T)%)) = CUp.28) ifp &G

T—~

Hence,

lim sup ?log( supF(T x, I‘))

T—x

(=1/8 if y = o0,
—y+ B if y < .

Thus (1.9) is now proved in the case when I' is bounded.
To complete the proof of (1.9), let T' be a given closed subset of R' and for
R > ||Q|| define T, = T N B(0, R). Then, by the preceding plus (2.6),

lim sup —log(supF(T % 1)) = (- inf 1(p)) v (= (R = 1QI)"/2llal

T—~
< (= inf 1(p)) v (= (R ~ 1QI)"/2lal)
peTl
for all R > ||Q||. Clearly (1.9) follows after one lets R 1 o00. O

LEMMA 2.8. I(Q) = 0 and hmmflp,_,xl(p)/p > 0. Moreover, if ® € C(R")
satzsﬁes llmsup,p,_,m|fb(p)|/p =0, then

TlogE[exp (T®(p(T, x)/T))]| - A(d))‘=

(2.9) 7!im sup

where A(®) = sup,(®(p) — I(p)) € R".
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PrROOF. To prove that I(Q) = 0, note that, by the ergodic theorem and
standards estimates applied to (1.4),

lim [F(T,0,B(Q,8) )m(d6) =1

T—oc

for each § > 0. Hence, by (1.9),

0=~ lim i(1og(/FT 6,B(Q,3) |m (do)))

T— o

> - li’rrn_)sip —,flog(supF(T, 6,B(Q,9) ))
> int  I(p).
pPEBQ, d)

Since I is lower semicontinuous, it follows that I(@) = 0. To see that
liminf, , _ I(p)/p* > 0, let R > ||Q|| be given. Then, by (1.8) and (2.6),

(R - 11QI)*/2llal < - l%igf %IOgil;lfF(T, x, B(0, R)C)
< inf I(p) < I(2R).
lpl>R

Thus, for |p| > 2||Ql, I(p) = (p — 2(|QI)*/8||all
Equation (2.9) is a variation on a lemma first proved by Varadhan in [6]. First

note that, from the preceding, p - ®(p) — I(p) is an upper semicontinuous
function which tends to — oo as |p| = oo and is finite at . Thus there exists a
po & G such that ®(p,) — I(p,) = A(®) € R'. Given § > 0, note that

E[exp(T®(p(T,x)/T))| = E[exp(T®(p(T,x)/T)), o(T,x)/T € B(p,,8)]

>exp(T inf (I)(p)) (T, B(p,, 8))-

B(p,,

Thus, by (1.8), for every 6 > 0

1
o1 e
lim inf Tlog( lrxle'[exp(TCD(p(T,x)/T))]) > B(l::fs)@(p) RO
> inf <I> (p) — I(py)-
B(py, 8

Since @ is continuous, this proves that
1
lim inf - log{inf E [exp(T®(p(T', x)/T))]) = @(p,) ~ I(p,) = A(®).

To complete the proof, first choose R, > ||@|| so that |®(p)| < (}|a|)p® for
|0| = R,. Then, for R > R,
E[exp(T®(o(T,x)/T))] = E[exp(T®(p(T, x)/T)),|p(T, x)|/T < R]
+E [exp(T®(p(T, x)/T)),|p(T, x)|/T > R].
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By (2.6)
E[exp(T®(p(T, x)/T)),|o(T, x)|/T > R]

. T .
< 2fR exp(— m((p —I1QII* — p*/2)) dp

< K exp(—ATR?)
for some K € (0,00) and A > 0. Thus, for all R > R,

lim sup Elr—log( supE [exp(T®(p(T, x)/T))])

T
1
< limsup —]—,log(supE[exp(TCI)(p(T, x)/T)),|e(T,x)|/T < R])
T— o x
v (=AR?).
Thus, it suffices to prove that for all R > R,

1

(2.10) limsup 7F—logsupE[exp(TCI)(p(T,x)/T)), |o(T, x)|/T < R] < A(®).
T— x

Let R >R, be fixed and set M =max, _,z/®(p)l. Given B >0, choose

0 < & < R so that sup{®(0) — ®(p): |o| V |p| < R and |0 — p| < 8} < B. Choose

..., p, € B(0, R) so that B(0, R) < U'B(p,, ). Then

n

E[exp(T®(p(T, x)/T)),|o(T,x)|/T < R] < Y e#e™F(T, x,B(p,, 9)).

v=1
Hence, by (1.9),
1
lim sup -]—,log(supE [exp(T®(p(T, x)/T)), |o(T, x)|/T < R])

T— >~

< B+ max [CI)(P,,) — _inf_I(p)
l<r<n B(p,,d)

< 2B+ sup[®(p) — I(p)] = 28 + A(D). O

p

LEMMA 2.11. For each N\ € R' set A(\) = sup,[Ap — I(p)]. Then A is a
continuous convex function on R,

(2.12) imsup| log(Elexp(hp(T, x)]) = A0V =,
and
(2.13) I(p) = SIip[Kp - AM)].

ProoF. From its definition it is clear that A is a lower semicontinuous
convex function. Moreover, by Lemma 2.8, A(A) € R' for all A € R' and satisfies
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(2.12). In particular, A must be continuous. Finally, A is the Legendre transform
of I, and so, since I is lower semicontinuous and convex, I is the Legendre
transform of A. That is, (2.13) holds. O

LEMMA 2.14. There is a K € (0, ©) such that
(2.15) 16 = Bll32my < K [($,6)dm, € CH(SN).

PrROOF. Define Wip = —(1/4)W*(¥$), ¢ € C<(SV~'), where W* denotes
the adjoint of the operator W, in L% SV '). Then [¢, - Wyp,dm = — [¢, -
Wi, dm for all ¢,,¢, € C*(S¥ ). Thus, if L= |L{W, oW, on C=(SV V),
then L is symmetric in L%(m) and

~ [oLg dm = Ef<¢> oydm, ¢ C*(SV).
Thus (2.15) is equivalent to the existence of a K € (0, o) such that
(2.15") ||¢||§,_,(m) < —2Kf¢£¢ dm, ¢ C*(SV') withg =0.

Noting that W, = W, + ¢, where ¢, € C=(SV™ 1), recalling that (1.6) holds, and
applymg Hormander’s theorem and the strong maximum principle, one concludes
that L is essentially self-adjoint in L%*m) and that its self- adjoint extension L
satisfies

exp(tL)(9) = [o(n)p(t,,n)m(dn), ¢ CHSV ),

where p is a positive element of C*<((0, c0) X SV~ !) and, for each ¢t > 0, (6, 1) €
SN 1 x SN! 5 p(t,8,n) is a symmetric doubly stochastic kernel. In particular,
exp(f,) is a compact self-adjoint operator, all of whose eigenfunctions are
in C*(SM ). Thus there exist 0 = A, <A, <A,< - and an L% SN7')-
orthonormal basis {¢,}* € C*(SV™ 1) such that L¢ =\, 9,, 2 = 0. Because
¢, may be chosen to be 1, (2.15") with 2K = 1/A, will follow once it is shown
that A, > 0. To show that A, > 0, suppose not. Then |||, =1, ¢, =0,
and exp(L)qb, ¢,. But if ¢, achieves its maximum value at 6, then from
¢.(6,)) = /qbl(n)p(l 6y, n)m(dn), one has ¢, = ¢,(6,), which clearly contradicts
”d’ “I (my =1 and ¢1 =0.0

Before proceeding, some more notation is required. For A € R!, define
on C*(SM ') and

L,u
Ji(p) = —inf{fTA dp:ue C*(SV ") and u > O}

for p € M (SN '). Writing u = e®, one sees that an equivalent expression for
Jy(p)is |

(2.16)  Jy(p) = sup{—f(§<¢,q>> + L) dp: ¢ € C*(S™ ')}.
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LEMMA 2.17. J(m) = 0 and for each n € C*(SN"") there is an A, € (0, %)
such that
2

(2.18) (1) ZAn(fnd,L—ﬁ)‘, pe M(SV ),

Moreover, if p € M,(SV™") is given by 1(d8) = g(0)m(d8) where g is a positive
element of C*(SN™"), then

2
(2.19) Jy(p) <K /2min{g(0):0€SN_l},

where K is the constant in (2.15) and L* is the adjoint of L in L3(SN™").

}lm )
v Vg

L*(m)

Proor. First note that by (2.16)

0<dy(m)= sup(—;/<¢,¢> dm) <0.

Next, given 1 € C*(SV '), let & be the unique element of C*(S"" ') satisfying
Lh =m —nand A = 0. Then, by (2.16)

)\2
w) = =5 [k du+ A fnd =]
for all A € R'. In particular,

Jw) = | fada - ﬁ)2/2/<h, By du

2
> (fads =1 2K W)l

Thus (2.18) is proved.
To prove (2.19), let ¢ € C*(SV ') be given. Then, by (2.15)

l/Lcj)du

- - 1
=lfL*(¢g) (¢ - ¢)dn’ <l¢ = 9l o L*(yg)

L"’( m)

<K (o) dm)w.

S Le(ve)
v yg

Lz( m)

Hence, if ¢ = min{g(#): 6 € SV}, then

—f(%<¢,¢>+L¢)du

(f<¢, ®) dm)l/z

1
— o L*
v (vg)

_f 12
< -3 [(o.6)dm + K .

2

/2¢,

I,z( m)

1
<K|-oL*
< “¢ (vg)

and so (2.19) follows from (2.16). O
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REMARK 2.20. Although it will not be used in the present article, one may
want to note that if p € M (SV™!) is given by u(df) = g(8)m(df) with g €
C*(SN 1), then J,(p) < o as soon as there exists an A, € (0, c0) for which

[ W du’ < A#(/<¢, %) du)w, ¢ CH(SV )
holds. Before proving this, observe that if g > ¢ > 0, then, by (2.15),
’fqubdu ={/(Wog) (9 —E»)dm{

< Wl 2l = @l 2

e 1/2
< Kl/l”“/()gul,z(m)(/<¢: ¢'> dm)

(2.21)

< (K/e)‘/2||W)g||,,z(m)( [<o,9) du)w,

where W, is defined as in the proof of Lemma 2.14. Thus, (2.21) holds with
A, = (K/e) W8l ;2m, if g&>¢ Also, note that if W, =X¢b,W, where
{b,}{ € C(SN~"), then (221) holds with A, = |(X{b})'/?|| 2, for every
uE M,(SN rl)'

To prove that J(p) < oo when p(df) = g(8)m(df) with g € C*(SN")*
and (2.21) holds, observe that:

lqu)du’ <

where W, is defined as in the proof of Lemma 2.14. Since W, = W, + c,, where
¢, € C*SN 1y

17
Y [Wig - Wiodn| +| [Wip di,
1

d
E [Wig: Wig dm| < B, [g(9,0)'"* dm + [(g,8)/(5,6)/* dm,
1

where B, = |[(L{c})"/?||os~ 1, Because g > 0, (W,g)* < 2||W/gl|¢s~ 1, & and so

<g,g>1/2 < Bzgl/Z,
where B, = (2Z{||Wigl|¢sv 1))"/?. Combining these with (2.21), one easily
arrives at

~ (29, 9) + Lo)dp < =} [<6,0) du+ (B, + By + A,L)(f<¢,¢> du)w

<(B,+ By +4,)"/2.
LEMMA 2.22. For each A € R' and H € C(SV ™),

1 d -
Jim sup ?log(E[exp()\;/;[ok(G(t,x))d,Bk(t) + foTH(a(t,x)) dt)])
(2.23)

}\2
H + —2—(1) dp — JA(;L)] =0.

]

I
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PrROOF. Define 6,(+, x), x € RN\ {0}, by

174 -
0T, x) = ot X [0t 2) e dBy(0)

k=1"0
T ~
+/ (W, + A\W)(6,(¢, x))dt, T >0.
0

Then, by the Cameron—-Martin formula,

174 } T
E exp(AZj:ok(O(t,x))d,Bk(t) + /0 H(8(¢, x)) dt)]

- 5w [ (0t 20 ]

where H, = H + Na/2. At the same time, 6,(*, x) is the diffusion starting at
x/|x| and generated by L,; and, because of (1.6), Hormander’s theorem, and the
maximum principle, the transition probability function Py(T, 8, dn) for this
diffusion is given by p,(T, 8, n)dn with p, a positive element of C*((0, c0) X
SV 'x 8V 1), Hence, the theory of Donsker and Varadhan [1] applies and
yields (2.23). [See Chapters 6 and 7 of [4], in particular Corollary (7.21), for
details.] O

PROOF OF THEOREM 1.11. Assume that « > 0 [cf. (1.10)]. Applying (2.23)
with H = AQ, one sees from (2.12) and (2.16) that

AZ
A(X) = sup f(AQ + Ea) dp — Jy(p)

N

= Sl'le ir(;f [/

Hence, by (2.13),

A2 1
AQ + Ea)dp.-l— /(—2~<¢,¢> + L@)du .

I(p) = inf A A N d, ! L |d
(p) = supin s1;p p—f( Q+?a) u—f(5<¢y¢>+ >\¢) B

AR

If A # 0 (after replacing ¢ by A¢)
inf A A N d, ! L \d
inf sup p—f Q+ Sa u—f(2<¢,¢>+ )\4’) [

2

= inf sup [)\(p - f(Q - qu)du) - Ei/(ok - Wk(f))zdﬂ}'

[

A;t the same time

0< irl}fsgp[—f(xqs,@ + L¢)du] < sip[—if<¢,¢> dm] - 0.
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Thus

-

. [ >\2 d 2 _
Hp) = supintsup |\ = [(@ = Lo)du| = 52 [(oy = Wie)'a

and so, after two applications of the minimax theorem,

’— >\2 d ) ]
Ip) = supintsup (M p = [(@ = Lo)di| = 5 X [(0, = Wie)"dn|.
o B x| 29 ]
The expression for I(p) given in (1.12) follows immediately from the preceding
one.

Starting from (1.12), one has

I(p) < Sl;p[( f(Q Lo) du)‘/22f(ok W) du}
<(p—Q)"/2a.

On the other hand, choosing A for @ as in the proof of (2.18), we see that

d
I(p) = inf| (0 = Q)°/2X [(o, + W,h)’ du] = A(p - Q)
1

where 1 /A = |Z{(a), + W,h)?||¢s~ 1) € (0, ). Thus, (1.13) has now been proved.
The rest of Theorem 1.11 now follows immediately from (1.13) and standard
facts about lower semicontinuous convex function. O

LEMMA 224. If a =0 [cf. (1.10)], then there is a unique f € C*(SV')
satisfying f = 0 and W,f =0,,1 <k < d.

ProOOF. The uniqueness is immediate from (2.15). To prove existence, choose
{f)F € C*(SN ') so that f, =0 and X{[(o), — W',ef”) dm — 0 as n > oo. By
(2.15), there exists an f € L?(m) such that f, — f in L% m). Define W'k as in the
proof of Lemma 2.14 and note that

/(Wk ) fdm=lim f W) - f,dm = lim —quvm,,dm— —/¢okdm

n—oC

for each 1 <k <d and ¢ € C*(SV ). In particular, if f & C*(SV""), then
W,f =0,, 1 <k <d. To prove that f € C*(SV""), define L as in the proof of
Lemma 2.14 and observe that [(qu) fdm f¢ - gdm for all ¢ € C=(SN 1),
where g = L{W,(0,) € C*(S¥~'). Hence Lf = g in. the sense of distributions,
and so by Hormander’s theorem applied to L, fe C’C(SN H. 0O

« PROOF OF THEOREM 1.14. By Lemma 2.24, f exists and is unique. Hence, by
1t0’s formula,

p(T.x) = 1007, ) = f{ ] + ["@uote, ) ar
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Applying (2.23) (with A = 0) to (2.12) and using the above expression for p(7T, x),
one sees that

A(N) = SUP[?\deM - J(,(m].
n
Hence, by (2.13) and the minimax theorem,

supinf[x(p— Ia +Jo<u>]

A ©

1(p)

inf SUp[A(p - f@du) + Jo(#)}

A
= inf{efo(ﬂ)t f@du = p}‘

Thus, (1.15) has been proved. To prove that I(p) > A(p — é_)) for some A €
(0, %0), let h be chosen as in the proof of Lemma 2.17 and set h =h+ f. Then,
since Qdm = Q, Lh = Q Q. By repeating the argument used to prove (2.18),
only this tlme using A in place of A, one sees that Jo(m) = A( ]de Q)%
uE M(_S 1), for some A € (0, ). In view of (1.15), this proves that I(p) >
A(p — Q).

Next, suppose that p € [§_, ¢, ] Then there is no p € MI(SN”‘) such that

[@dp = p and so I(p) = . On the other hand, if pE(G_,4.) then there is a

positive g € C*(SN~') such that [gdm = 1 and [Qgdm = p. Hence, by (2.19),
J(pn) < 20 when p(df) = g(8)m(d@). In particular, by (1.15), I(p) < co.

To complete the proof of Theorem 1.14, it suffices to recall (cf. Lemma 2.8)
that I(Q) = 0. O

ProOF OF COROLLARY 1.18. Let R: (0,00) — (0, o0) satisfying lim,_ 1/T
log R(T') = 0 be given. For § > 0 choose T > 0 so that |1/7T log R(T')| < § when
T > T,. Then, for any x € RV\ {0} and T > Tj

P(p(T,x)/T > 8) < P(|X(T, x)|/1x| = R(T)) < P(p(T,x)/T = —8);
and so, by (1.8) and (1.9),

~ infI(p) < liminf%log(ir}fP(lX(T,x)\/|x| > R(T)))

p>8

(2.25)

IA

lim sup ?log<supP(|X (T, x)|/|x| = R(T)))

T—

IA

— inf I( ).

p= -8

Since this is true for every 8§ > 0 and because, when either « > 0 or « = 0 and
0e€(§.,q,), Iis continuous at 0, one concludes that

1
Illm sup ?log( P(|X(T,x)|/|x| = R(T))) — TI(Q) {
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where 11(Q) = —inf I(p). But, if Q < 0, then I is increasing on [0, o0) and so, in
this case, [1(Q) = —1(0). On the other hand, if Q@ >0, then 0 < inf,_ ,I(p) <
I(Q) = 0; and so TI(Q) = 0 when Q > 0. Thus (1.19) is proved.

Finally, suppose that a = 0. If @ > 0, then (2.25), with 0 < 8 < @, implies
that

0= —infl(p) < hmmfi;log(mfP(\X (T,x)|/|x| = R(T )))
p>48

and so (1.20) follows. On the other hand, if 0 > ¢, then (2.25), with0 < § < —¢§,,

implies that

llmqup—log(supP(IX (T, x)|/|x| > R(T))) < — inf I(p) = —o0;

T— >~ P

from which (1.21) is immediate. O

REMARK 2.26. It is seldom true that a = 0. For example, a« = 0 implies both
that there is no § € SV ! for which {V(8),...,V,(6)} spans R" and that there
is some § € SV ! at which a vanishes. To see these, first suppose that a = 0 and
that span({V,(§,),..., Vd( 8,)}) = R" for some 6, € SN~'. Then by Lemma 2.24,
thereis an f € C*(SN~")satisfying W, f = 0,,1 < k < d. Define f(x) = f(x/|x])
for x € RN\ {0} and note that (n, V,(§,)) = W, f(go) oi(6y) = (8, Vi(8,)),
1 <k <d, where n = grad f(6,) € T,(SV""). But, since {(Vi(y), ..., Vi(6,))
spans R", this means that 1 = §, and that ('n, 0,) g~ = 0, which is obviously
impossible. Second, assuming that a = 0, again use Lemma 2.24 to find f €
C*(SN 'y with o, = W,f, 1 <k <d. Let §,€ SV"! be a point at which f is
maximal. Then, W, f(8,) = 0,1 < k < d, and so a(§,) = 0.

REMARK 2.27. In[3] Pinsky dealt with vector fields V, given by V,(x) = B,x
0 < k <d and x € RV\ {0}, where the B, are N X N matrices. The additional
structure in this case gives rise to several interesting features. In the first place,
the condition (1.6) becomes the condition that

span({B6 — (6, B9)6: B € Lie(B,,...,B,)}) = T,(S"""), 68",

where Lie(B,, ..., B,) is the Lie algebra generated by the matrices B,,1 < k < d
(i.e., the Lie product here is the commutator corresponding to matrix multiplica-
tion). Secondly, and more important, is the observation that the X(+, x) of (1.2)
is now given by

X(T,x) = A(T)x, (T,x)e€[0,00)x (RV\{0}),
where A(-) is the matrix valued stochastic process determined by
.(2.28) AT)=1+- Z / B,A(t)odB,(t), T=>0.
k=0"0

It is therefore natural to transfer questions about | X(T, x)|/|x| to ones about the
norm of A(T). Because, for the present purposes, the choice of norm is
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inconsequential, let ||A(T)|| denote the Hilbert—Schmidt norm of A(T') and set

(2.29) K(T) = log| A(T)].
Fix an o.n. basis {6,,..., 0y} in R" and observe that
p(T,0,) < K(T) < jlog N + max o(T,¥6,).
I<i<N

Hence, by (1.3) and the ergodic theorem
(2.30) lim K(T)/T=@Q as.P;
T— >

and, by Theorem 1.7,

1
~ infI(p) < liminf .-log P(K(T)/T > ¢)
(2.31) " o

hmsup—logP(K(T)/T> 8) < — mfI(p) 8 € R
T—- >
In particular, by Corollary 1.18, if « > 0 or a = 0 and 0 € (§_, g, ), then for any
R: (0, ) — (0, o0) satisfying lim,_, 1/Tlog R(T)=0

(2.32) lim —logP( (T)/T = R(T)) =11(Q),

T—-x
where 11(Q) is the same as it was in that corollary.
For purposes of comparison, it is interesting to look at A(T') = log(det( A(T))).
Indeed, by It6’s formula for Stratonovich integrals,

det(A(T)) =1 + 2 f bdet(A(¢))odB,(t), T=0,
k=070
where b, = Trace B,. Hence
d

det( A(T)) = exp( Y b,{,Bk(T)), T >0,

k=1

and so
174
AT)= Y b,BT) + b,T, T =>0.

k=1
In particular,
(2.33) lim A(T')/T =5, as.P,

T

and, after an elementary computation
1 .
(2.34)  lim —log P(A(T)/T28) = - (3 - b))’ /2H, 8§>b,,

if
174
H= Y b2>0.
k=1
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Noting that
A(T)/N < K(T), T=>0,
one concludes from (2.30) and (2.33) that

(2.35) Q = by/N
and, so long as H > 0, from (2.31) and (2.34)
(2.36) I(p) < (Np - b,)’/2H,  p> Q.

[In the derivation of (2.36), recall that I is increasing on [@, o0).] In particular, if
H > 0, then I(p) < oo for all p > @ and so, by Theorem 1.14,

(2.37) a>0 if H>O0.

Note that (2.37) leads to the following statement about matrices: if
(B8 — (8, B8)8: B < Lie(B,,..., B,)} spans T,(SV~!) for each § € S¥~! and
if Trace B, # 0 for some 1 <k < d, then there is no fe€ C<*(SV~') such
that (0, B,8)gzv = (grad f(6), B,8)p~ for all § € SV [where f(x)=f(x/|x])),
x € RN\ {0}]. Surely there is a more direct route to this fact than the one given
above. [Such a proof has been found by Peter Baxendale.]

REMARK 2.38. Assume that @ < 0 and that either « > 0 or a = 0 and
0€(q ,q,) Let R: (0,00) = (0,00) with lim,_ _1/7T log R(T') = 0 be given.
Then

im%(wmmamezR"U+“mH=

(2.39) lim sup
X t=>T

T—~

In view of (1.19), checking (2.39) comes down to showing that

1
lim sup sup ?log(P(sup|X(t,x)|/|x| > R(T))) < —I(0).
t>T

’I‘—"Yj X
To this end, note that
(ngtxMM>RTﬁ Z (T, x),
t>
where
J(T,x) = P( 1 su}; ] |X(t +n,x)|/|x| = R(T)).
T<t<T+

Clearly,
J(T,x) < P(p(T + n,x) > log R(T) — (T + n)""")

+P( sup o(t,x) —p(T+n,x)>(T+ n)w)

T+n<t<T+n+1

and by standard estimates, there exist C € (0, 00) and A € (0, o) such that
P( sup p(s +¢t,x)— p(s,x) = M) < Cexp(—-M?/2A)

O -1
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for all (s, x) € [0,00) X (RV\ {0}) and M > 0. Now let A € (0, I(0)) be given
and choose 8, > 0 so that I(—8,) > A. Next, choose T > (2A A)? so that
1
(?Ilog R(T)I) v (1/T"*) <8,/2

and [cf. (1.19)]
supP(p(T,x)/T > —8,) <e

for all T > T,. Then, so long as T > T,
T, x) <e ™M™ 4 Cexp(—(T + n)"*/24)
< (C + l)e—A(T+n)

for all n > 0. Hence,
supP(sup]X(t, x)| /x| = R(T)) <[(C+1)/0-eM]e™, T>T,.
X t-T
Since A was any element of (0, 1(0)), (2.38) has now been proved.

REMARK 2.40. It must be clear that the analysis given in this article applies
equally well in a much broader setting. For example, let M be a connected,
compact, Riemannian manifold and let W, ..., W, be smooth vector fields on M
satisfying Lie(W,,..., W,) = T(M). Next, let (B,(*),..., B,(*)) be as before and,
for 6 € M, let 6(+,0) be the solution to df(¢,8) = LiW,(0(¢,0))° dB,(t) with
0(0,0) =0 and denote by P(t6,+) the transition probability function de-
termined by {6(-, 0)' 0 € M}. Finally, let o,...,0, € C*(M) and set

o(1,0) - ¥ [ oul6(t,8))° (1)

k=0"0

Z/ok tﬁ)d,Bkt)+/Q(0t0))dt T>0,

k=1"0

where @ = o, + |X¢W,0,. Then, with no essential changes, the analysis given
and conclusions drawn in this article can be transferred to the study of
log P(p(T, x)/T€Tl)as T - oo.

Actually, with more work, it is possible to get away from the compact case if
one is willing to impose a sufficiently strong ergodicity assumption (e.g., some-
thing on the order of hypercontractivity). Such extensions allow one to study the
analogue of Pinsky’s problem even when the vector fields are not homogeneous.
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(Vi(8),...,V,(8)} span RV for each 6 € SV~ lim,_ _1/T log(P(|X(T, x)| >
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