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VARIANCE OF SET-INDEXED SUMS OF MIXING RANDOM
VARIABLES AND WEAK CONVERGENCE
OF SET-INDEXED PROCESSES

By CHARLES M. GOLDIE AND PrisciLLA E. GREENWOOD

University of Sussex and University of British Columbia

A uniform bound is found for the variance of a partial-sum set-indexed
process under a mixing condition. Sufficient conditions are given for a se-
quence of partial-sum set-indexed processes to converge to Brownian motion.
T'he requisite tightness follows from hypotheses on the metric entropy of the
class of sets and moment and mixing conditions on the summands. The proof
uses a construction of Bass [2]. Convergence of finite-dimensional laws in this
context is studied in [16].

1. Introduction. Let {§, ;};c, be a triangular array which in each level is
indexed by-the 1/n lattice in (0, 1]¢, namely by

J,o={(ji/n,..., j/n) Ji,.. Ja € {1,2,...,n}}.
Think of £, ; as spread uniformly over the 1/n cube
C,;=0-n"Lj),
where 1 := (1,...,1) and we use the notation (a, b] for the half-open interval
{(xy,..,x)a,<x;<b,i=1,...,d}

with endpoints a = (a,,...,a,), b = (b,,..., b,). It then is natural to define the
partial-sum set-indexed process based on the nth level as

|ANC,;l

z
IC.

W(A) =)

jG'In

A e 2([0,1]7),

il "

where | | is Lebesgue measure and %(-) is the class of Borel sets in the space (-).
In this paper we prove weak convergence of Z, to Brownian motion, having first
restricted its domain of definition to a subset A C #[0,1]" satisfying a metric-
entropy bound. We also impose moment and mixing conditions on the §, ;. The
ingredients of our result are

1. convergence of finite-dimensional laws,
2. variance bounds on arbitrary sums of Z “-indexed mixing r.v.s,
3. tightness.

Topic 1 is dealt with in [16]. Item 2 forms Sections 24 of the present paper and
contains results of independent interest which we now pause to describe. From an
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818 C. M. GOLDIE AND P. E. GREENWOOD

array {X;}; <z« of r.v.s we form the partial-sum process

(1.0.1) Z(A)= ) |ANnC|X;,, AecBR,

iez!

where C; := (i — 1,i]. Let 0? := sup,var X;, assumed finite. In Section 3 we prove
that under a mixing condition there exists C < o0, depending only on d and the
mixing rate, such that

varZ(A) < Co?|A|, A€ B(RY).
We note that an alternative formulation is

var ), ¢;X; < Co? ) ¢

iez! iez’
whatever the weights ¢; € [0, 1], and in particular

var ¥, X, < Co’card(I), 'ITc 2z
iel

Only a logarithmic rate of decay is needed on the mixing coefficient, so that the
strength of our result is near to that with the slowest known rate (Peligrad [18])
for the case d = 1. But when d > 1, geometrical considerations arise which are
absent when d = 1, and in Section 2 we prove a result in n-dimensional geometry
which we call a “bisection lemma,” on which our proofs in Sections 3 and 4
depend.

Section 4 extends the foregoing by deriving a uniform integrability result for
Z*(A)/|A| based on uniform integrability of the r.v.s X?. The results of Sections
3 and 4 are applied to each level of a triangular array in [16] and in Section 5 of
the present paper.

Tightness, item 3, is established in Section 5, on a suitable function space
which we shall shortly describe. Here we extend the method of Bass [2] to the
dependent case by means of a novel form of blocking. Bass’s result (proved earlier
by a more intricate method by Alexander and Pyke [1]) needs only second-
moment assumptions on i.i.d. summands. Our tightness proof needs 2 + ¢ mo-
ments, where & can be as small as desired at the cost of requiring a severe mixing
rate. The mixing rate also has to be related to the metric entropy bound.With
low metric entropy exponent, and moments of high order available, the mixing
rate is less. It is, though, for the tightness proof always a polynomial mixing rate,
and a question we leave open is whether a logarithmic rate, as in our Sections 3
and 4 for variance considerations, would suffice.

We conclude this section by setting up the mixing, weak convergence, and
metric entropy apparatus needed subsequently, and stating our main theorem. In
terms of separation distance

o(E,F)= "inf |x-y|, E,FCRY
xek,yeF
where || || is supremum norm and inf¢ = + o0, we shall need three mixing

coefficients, of which the first two were used in [16, Section 4]. The maximal
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correlation coefficient is, for n = 1,2,... and x > 0,

pa(x) = sup sup lcorr( X, Y)],
1, JCd, XeLyo(§, ;i)
pl, ) zx YELyo(é, ;,i€J)
where L,(-) is the set of L, r.v.s measurable with respect to (-), and degenerate
r.v.s have zero correlations with every r.v. The symmetric ¢-mixing coefficient is
¢,(x) = sup sup max(|P(E|F) — P(E)|,|P(F|E) — P(F))).
1,-Jc-), FEe€o(, ;i€
pil, J)y>x Fea(, ;. jed)
P(EY>0, P(F)>0

The absolute regularity coefficient is

B”(x) = sup ||°g7 ‘n J}JGIUI) _g({g".J}jEI) Xg({gn\j}jepl) var’
1.-JCd, . p(l,J)>x

where || ||,,, is variation norm and #(-) denotes probability law. Again, in the
case where the £, ; arise as a normed sum §, ;=n"“?X,; . this coeffi-
cient is related to the absolute regularity coefficient for the Xs,

B(x) = sup “g({Xi}ieluJ)
(1.0.2) 1,Jcz pl, Jy>x

—2L({X}ie)) X L{ Xi}ies) |
by B,(x) < B(nx), so that polynomial decay of B(-) corresponds to
(1.0.3) B.(x) =o((nx)_b), nx — oo.

When (1.0.3) holds, for the general {£, ;} array, we call b the exponent of
absolute regularity.

Relations among these mixing coefficients and the strong mixing coefficient
a,(x) used in [16, Section 5.8], are as follows. By [18], p,(x) < 2¢,(x), and clearly
a,(x) < p,(x). Since absolute regularity is an L, form of ¢-mixing (cf., e.g., [8]),
B,(x) < ¢,(x), and again, clearly a,(x) < B,(x). There is no general relation
between p,(x) and B,(x). ~

We say that Borel sets A, B in [0,1]¢ are equivalent if |A 2 B| =0, and
denote by & the set of equivalence classes. Set-theoretic operations on & will be
performed by first selecting representatives. Thus the Lebesgue disjunction,
d,(A, B) :== |A a B|, is a metric on &. Since the processes Z, have d,-continuous
paths we may regard them as &-indexed. The results of [16] continue to provide
sufficient conditions for finite-dimensional weak convergence of the Z,, indexed
by & or some subset, to a correspondingly indexed Wiener limit.

The set & forms a complete metric space under d; ([22], 11, Section 2). Let .«
be a totally bounded subset of &. Its closure &7 is complete and totally bounded,
hence compact. Let C(</) be the space of continuous real-valued functions
on &/ with the sup norm|| ||. Because &/ is compact, C(/) is separable ([11],
page 437). Thus C(«/) is a complete, separable metric space. Let CA() be
the set of everywhere additive elements of C(%/), namely, elements f such that
fCA U B) = f(A) + f(B) — f(A N B) whenever A, B, AUB,ANB e Itis
a closed subset of C(./), and since the Z, are random elements of CA( ), it will
be on that space that our weak convergence occurs. A standard Wiener process

var?’
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on %/ is a random element W of CA(%/) whose finite-dimensional laws are
Gaussian with EW(A) =0, E(W(A)W(B)) =|A N B|. In order that W should
exist it is necessary (Dudley [10]) that <7 satisfy a metric entropy condition. For
our tightness proof in Section 5 we need ./ to be totally-bounded-with-inclusion,
i.e., for every & > 0 there is a finite set A (%, ¢) C &, which we take to have
minimal cardinality e’ such that for every A € &/ there exist A", A~ €
AT/, e) with A" C AC A* and |[A"\ A | <& The function H is called the
d,-metric entropy (with inclusion). Its exponent is
i log H(e)
r = limsup ———.
£ 10 log(1/¢)
We now state our weak convergence theorem. Recall from [16] the notation ¢
for the set of all half-open intervals (a,b] C [0,1]% A null family is a collection
(D))o n. n, €F such that D, C D, for h < b’ and |D,| = h for each h.

1.1 THEOREM. Assume

(i) E§, ; =0V n,j;
(i) for some s > 2, the set {jn"/zényjj“}jeelm":1,2““ is uniformly integrable;
(1ii) the exponent r of metric entropy (with inclusion) satisfies r < 1;
(iv) the exponent b of absolute regularity satisfies b > ds/(s —2) and
b>dl+r)y/1~-r)
(v) the symmetric ¢-mixing coefficients satisfy sup, c yE7= 6}/ *(n " '27) < 0;
(vi) for any null family (D)}, <, <, in 7,
- EZY(D,) I
lim limsup |—— ~
hl0 n—ox

1| = 0.
| Dyl

Then Z,, converges weakly in CA( ) to a standard Wiener process.

1.2 REMARK. The proof of this result will be concluded in Section 5. For
conciseness we have selected only Theorem 4.3 of [16] as the finite-dimensional
ingredient of the above result. However, [16, Theorem 4.1] can be used equally
well: replace (v) by the weaker

(v') sup Y 0/*(n 27) < o0
neN J=1

and (vi) by [16, 2.2(i1) or 2.6(i)].

1.3 REMARK. Tightness (Section 5) can be proved by extending Pyke’s [20]
method instead of Bass’s, provided we replace (iv) by
1+r
s(1-r)—2"
This necessitates s > 2/(1 — r), and is stronger than (iv) for every such s and
0 < r < 1. However, metric entropy without inclusion can then be used.

(iv") b>ds

1.4. The stationary normed sum case. Consider a random field {X;}; c z«. Its
absolute regularity coefficient is given by (1.0.2) and its maximal correlation
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coefficient (at separation distance x) by

p(x) = sup sup lcorr( X, Y)|.
(1.4.1) 1, Jcz? XeLyo(X;,icl)
oI, Jy=x YELyo(X;,jEJT)
For the stationary case, with a very slight strengthening of 1.1(iv) we arrive at
the following simplification of our main result. For proof see Section 5.8.

COROLLARY. Let{, ;=n "X,
stationary real random field. Assume

(i) EX, = 0;
(il) E|X,|® < oo for some s > 2;
(iii) &/ has exponent of metric entropy (with inclusion) r < 1,
(iv) X has absolute regularity coefficient B(x) = O(x~ %) (x —» ) for some
b > max(ds/(s — 2),d(1 + r)/(1 — r));
(v) X has maximal correlation coefficient p(-) satisfying L7_,p'/*(2') < oo;
(vi) T; c 0 E( X, X,) = 1.

Then Z, converges weakly in CA(.%/) to a standard Wiener process.

njyy Where X = {X;}; c 7 1s a strictly

1.5 REMARK. For a list of the metric entropy exponents of various families &/
see, e.g., Pyke [20]. One important case is /= {(0,x]: x € (0,1]¢}, which
obviously has r = 0. Here the limit process {W(0,x]}, c .1}« has paths which are
continuous real-valued functions on (0,1]¢ so it can be identified with the
Brownian sheet on (0,1]% For existing results in this setting see Berkes and
Morrow [4], Deo [9], Eberlein [12], and Eberlein and Csenki [14]. Our result,
specialised to this setting, is not contained in these.

2. Minimal slices of d-dimensional sets. Let | | denote the Euclidean
norm in R™, for any m > 2, and denote the ball and sphere of radius r by
B, (r)={xe€R™ x| <r}, S, (r)={x€R™ [x| = r}, respectively. We use | |
also for Lebesgue measure in R™ and for (m — 1)-dimensional measure of subsets
of S, (r). A slice in R? is a set

S(e,a,n) ={xeR“a<ex<a+n},
where ¢ € RY |¢| =1, a €R, and 3 > 0. The thickness is n, the direction (of

the normal to the two bounding hyperplanes) is ¢, and the displacement a. The
slice splits a set A C R? into three parts, namely A N S(c, a, n) and the two sets

A, =An{xeR%ex>a+n}, A =An{xeR%cex<a}.

If A is measurable and |A_| = |A_| we say the slice bisects A. The aim of this
section is to prove

2,1 BISECTION LEMMA. There exist positive constants C,, q, depending only
on d, such that for all p satisfying 0 <p < 1/d, and for every measurable
A C RY of finite measure, we can find a slice S that bisects A, has thickness
(3|AD?, and is such that

|A N S| < Cy(514])

(g+pd)/(g+1)
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2.2 REMARK. The case d = 1 is immediate. For the case d = 2 we can by
exact evaluations reduce the bound to C,m'/2*”L(m) where m = }|A| and L is
slowly varying. In relation to the exponent of m this is sharp, because for a
square the exact bound is obviously m”/2m . In dimension d > 3 we expect
similar sharp bounds to be obtainable by refinement of our methods.

2.3 REMARK. Divide the scale on all axes in R¢ by |A|'/% then the following
reformulation is obtained:

There exist constants C, r > 0, depending only on d, such that for every
measurable A € R? of measure 1, and for every ¢ € (0,1), we can find a bisecting
slice S of thickness ¢ such that |[A N S| < C¢t'.

2.4. Assume d > 2. The proof of 2.1 is obtained by a sequence of lemmas. We
have |B,(r)| = K r where K,=7"?/T(1 + 1d) ([21]), so |S,(r)| = dK ,r* .
For any A C R™ we denote l(x, A) = inf . 4jx — y| and NJ(A) =
{(x e R™ I(x, A) < ¢}.

2.5 LEMMA. Let V, be any m-dimensional subspace (1 <m <d) of R%
then for 0 < & < 1 the intersection of N(V,,) with the unit sphere satisfies

mK, K e (1= )" < IN(V,) 0 Sy(1)] < mK Kyt
forl1 <m < d, and
KK, &' <|N(V)) nS,(1)| < K, K,_e?"'(1—¢?) '

2.6 PROOF OF LEMMA 2.5. By a rigid rotation in R we can change V,, into
the subspace {x € R%: x, = --- =x,_,, =0}, leaving S,(r) and B,(r) unal-
tered. Then clearly

N(V,)={xeR“ x}+ - +x% , <&}
So for r > ¢,
IN(V,,) N B,(r)]

f f(F - )1/2 f(vz—xiz" ce=xh o, OV
e / .

! 2 2_ 2 2 2

Y )/ - T Xg om I)I/

(&% —xy —

2 2 2 .2 .2 2
% (, Axl- PP, (I m)l/ . (re—xy— - —xg l)l/ l
2 2 1/2 d 2 2 2 1/2 d-
(rfexi- oo ) —(r .““'7'\.11-])

i (re—-ux
The part of the integral on the second line is |Bm(\/r2 —xio o —xi =
Km(r - s —x(l m)m/2~ SO
IN(V,,) N B,(r)| = / K, (r?- leg)m/z dx

B(I m(F)
and the derivativein r at r = 1 is

Nr(Vm) N Sd(l)l = me/ (1 _ |x|2)"l/2'ldx‘

v m(€)

Since 1 — [x|? is bounded above and below by 1 and 1 — ¢?, the result follows. O
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27. If e,,...,c, are linearly independent directions then the intersection
NY_,S(e,, a,, n) will have finite volume V (¢, ..., ¢,) which does not depend on
the displacements a,. (We may translate the origin to make the displacements
zero.) Given directions ¢,,..., ¢y, where N > d, we define

Vi(e,...,ey) = 2 V(e;,...,e,) < o0,

the sum Y’ being over all integers i,,...,i, with 1 <i, <i, < -+ <i,<N.
Then define

‘/11’N:= inf Vn(cly--'?cN)’

where the infimum is taken over all collections ¢, ..., ¢, of N directions.

2.8 LEMMA. There exist positive constants K, q depending on d, such that
Vn’N<KN"n“’, 7>0,N=d,d+1,....

2.9 PROOF OF LEMMA 2.8. As in [6, Section X.7], for a,, ..., a,, € R the set
(a,,...,q,)={te, + -+ +t,0,:0<¢t <1,i=1,...,m}

is the parallelepiped spanned by edges a,, ..., a,,. If m = d its volume

(2.9.1) M(a,...,a,)| = |det(a,,...,a,)l,

where (a,,...,a,) is the matrix with columns a,...,a, If m <n then
Il(a,,...,qa,) lies in the subspace U(a,..., a,,) spanned by a,,..., a,, and has
m-dimensional volume |II(a,,...,a, )| which is zero if a,...,a, are linearly

dependent, and otherwise is its m-dimensional Lebesgue measure in U(a, ..., a,,).
This volume may be obtained recursively as follows. For any x € R and
subspace U of R the perpendicular distance of x from U is I(x, U) as defined
above, and may also be obtained by expressing x as y + B where y € U and
B L U, and taking I(x,U) = |B|. Then

{|H(a1)| = |oyl,
(2.9.2)
TT( g,y 0,)] =TTy, ey 0y )0y, Ulay, ..o e, ).

Let C = (c,,...,¢,). The set NS(c,,0,n) consists of all x for which ¢/x =
n, € [0,9]foralli=1,...,d. Soife,,...,c, are linearly independent this is the
set of points C~'n where n = (7,,...,m,)" and 0 <, < n. It therefore is the
parallelepiped II(C 'ne,,...,C 'ne,) where e,...,e, are unit vectors in
the coordinate directions. So

V(e,,...c,) = |det(C 'ne,,..., C 'ne,)|
= [det(nC™")]

] d

- |det(e,,...,ey)]

(2.9.3)

b

whence
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Fix N > d and let
1 d-1
(2.9.4) gi=NI"D— dK > KK, .
p=1
We assume N is large enough so that
(2.9.5) (1-¢) <2,

that is, e < (})'/%. We construct directions ¢, ..., ¢y such that for each n = d,
d + 1,..., N the direction ¢, has the property

foreachp=1,...,d -1,

(P,) and for every p distinct elementse, ,...,¢;

frome,,...,c,_,, l(c,,, U(cil,...,cip)) > e,
Take ¢,,..., ¢, to be the coordinate directions e,,...,e,. Then (P,) is satisfied.
Suppose ¢;,...,¢, , have been found, then the requirement on ¢, that
e,,Ule,,...,¢c, )) > e may be reexpressed as ¢, € N(Ul(c,, ..., ¢, ), so that c,,

as a point of S (1), has to belong to the subset S,(1) \ N(U(c, , ..., c; ) Thus the
requirement ( P,) is equivalent to

d-1

(PI;) cnesd(l)\ U UNp(U(ci,"“’ci,,))’

p=1

where the inner union is over all selections ¢, ,...,c of distinct elements of

{e,,...,¢, ,}. Now by Lemma 2.5, (2.9.5) and (2.9.4),

in

S,(1) N

(Dl U NF(U(ciI,...,c,«p))) I

p=1

d-1 -

Y Y[s,) nN(Ue,,....¢c,))]

p=1

IA

d-1

-z

p=1

S,(1) N N(U(e,,...,¢c,))|

P

d-1
-1 v o
< ¥ (np )prK(,,ps’ P(1 — %) 172
p=1
d-1
< X N"'K,K, 2

p=1
K = |Sd(1)|-
Thus, in.( P}) the set to which ¢, is required to belong has positive measure and

so a choice of ¢, is possible. We have established that c¢,,...,ey can be
constructed as claimed.
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Now for every selection ¢,,...,¢, from c¢,,...,cy, taking the subscripts in
increasing order we find from (2 9 1) and (2.9.2) that

idet(c, ,...,e; )| =le; | Hzl(ci,,.’ Ule,...,c, I))
m=7:

d-1,
> ¢ ;

hence, by (2.9.3),
V(e .,ey) <nf) e

d—1 d-1
— nd(l(\i/)N((l 1)(2 Z Kd—l))

dK ,

< KndN(d—l)'"er‘
This holds for all N large enough that (2.9.5) holds, and then, by enlargement of
K, if necessary, for all N > d. Lemma 2.8 is proved. O

2.10 LEMMA. Let A,,..., Ay be events in some probability space (2, <7, Q)
and let [ € N. Then there exists A, € {A,,..., Ay} such that

jaaysgo| Uals £oL atana nna),
Al/!lv.}(‘jv“v./'l$jl,

2.11 ProOF. This is trivial for / > N so assume otherwise; likewise, assume
all @ A_/) > 0. Now

o0

J=1

- $Q(4) - TXQ(4, 14,) + TETQ(A, 14, 014,) -

J=1 N <J N <Ja<Js
N
- £ e(a)- 1T a(ana)+ L @404, 04,) -,
J=1 h#] S <)z
s Jo#

so there exists some value of J, say i, for which

N 1
L_JAj )_§ZQ(AlmAj.)

h#L

1
NQ

-1
+3 YY QA NA; NA;) -
./';,.l ./QJ; t

Write P(-):= Q(-|A,) and I:={1,..., N} \ {¢}. Define S, = ZA/.E'IP(A./I) and
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generally
= Z"'ZP(AJ, n--- mAj,,)'
J< o <k
Jiseves R€l

This is the notation of Feller [15, page 110] from which we also use
Py, = P(exactly r of the events A, j € I, occur),

P.:= P( atleast r of the events A, j € I, occur).

The above may now be written

2111) GA ayli-ts +ls (_I)NS
1. — . . - — + — —_ e
( ) NQ Pag J 2Q( l) 2 1 3 2 N N-1
and
1 (-1)Y
_Sl_gs + N N-1
N 1) N-1
- 2 T (,01)Pn  [15 page 110]
)= r=vr—1
r+1
= ZP[r] Z( 1) (r+1)
r=1
N-1
- o rtl (]
_11 1 N-1
s——l—ZlP,]+ ZP[,]
<1-0"'"+P

<1-0I""+8, [15,pagel10].
Thus, from (2.11.1),

—Q UA >Q(A)(I'-8)

=l71Q(Ai) _ Z...ZQ(A[(\A/I N - mAjI),
;ln """"" i/*jll

as claimed. O

2.12 PROOF OF LEMMA 2.1. If |A| < 1 then |A|(7 P4/t *+ D > | 4| s0 the result
is trivial. Set m == }|A|and N = [m 7974+ V] where [ ] denotes integer part.
We shall assume |A]| is so large that N > d, for remaining cases are then covered
by increasing C,.
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Take 7 := m” and let ¢,,...,cy be directions for which Vi(e,,...,ey) is so
close to its infimum that, by Lemma 2.8,

V,(ey,...,ey) < KN9y“.

For each slice S(c;, a, n) we choose a = a; so that |A,| = |A_|. This is practica-
ble since |A ,| — |A _| is a continuous function of a, tending to —|A|as @ = +
and to |A| as a » — 0. In Lemma 2.10 take [ := d, take A;=A NS, a,n),
and let @ be the uniform probability law on A. Lemma 2.10 yields the existence
of one of the bisecting slices, S(c;, a;, n), such that

d
A N S(e;, a;,n)| < N|A| +dV(c,,...,cy)

< m + “"l‘
N

< d(4 + K)mtatpdi/ta+h,

as required. O

3. Variance of arbitrarily indexed sums of mixing random variables.
This section is concerned with the process Z defined by (1.0.1) on the array
{X,}; < z+ whose maximal correlation coefficient is given by (1.4.1). We assume
the X, are centred at means, and denote p := Zj‘;op(Zj), o = sup;|| X;lls-

3.1 THEOREM. There exist constants a, b, depending only on d, such that
IZ(A)ll, < ae™s| A2, A € B(RY).

3.2 PROOF. We may assume p, g, and |A| are finite, otherwise there is nothing
to prove. Then we may also assume o = 1. The proof will use a repeated splitting
of a large set A, imitating the one-dimensional version of Peligrad [18]; the idea
goes back to Ibragimov [17]. Some new aspects arise because the bisection lemma
does not cut the set as simply as in its trite one-dimensional version.

Set

o(h) = sup  [|Z(A)ll,  a(h) = supo(h').
AeBRY), |Al=h W<h
Observe )
1Z(A)l, < X JANClIXjl. < X |ANCG=]|4]
jez! jez!
SO
(3.2.1) o(h) < h.

Take p in the bisection lemma to be such that the exponent r := (g + pd)/
(g + 1) does not have any positive power equal to }. This is to avoid a minor
technicality later. Pick A of positive finite measure 2m, say. The slice S in the
bisection lemma is S(c, a, m”) for some ¢, a. We refer to {x: ¢’x > a + m”} and
{x: ¢’x < a} as the “sides” of S containing A, and A , respectively. Since
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|[A,|=|A | we know
m>|Af|=|1A"|z2m—-|ANS|>=m—-Cm".

We may find A’, such that A’ is in the side of S containing A ., is disjoint from
A |, and has measure |A’,| = m — |A | Thus |A’, | < C;m'. Let A’:=A, U A’;
then |A”| = m. Similarly we construct A’_and A” on the side of S containing
A . Now if x € A”], y € A” then (recall || || is supnorm, | | Euclidean)

Ix -yl = d V’x —y| = d”*m”.
Hence if C; and C; intersect A’/ and A”, respectively, then
i = jll = d~'*m? — 2,
whence
E(Z(A”) + Z(A”))" < (1 + p(d 2mP — 2))(E(2%(A)) + E(Z*(A”)))
< (1 + p(d™2m? - 2))26(m)>.
Since
(3.2.2) Z(A)=Z(A")+ Z(A") - Z(A",) - Z(A_) + Z(ANS)
the triangle inequality gives
o(2m) < 2721 + p(d"2m” — 2))%a(m) + 35(Cym").

Choose i > 1, then A = 2*m where k£ € N and } < m < 1, and we have

o(m) <1, 0(2/"'m) < aj0(2jm) + B,
where
a; =221+ p(d~'/?27m” — 2))1/2, B; = 35(C,27").
Iterating,
k-1 k—1 k-1
(3.2.3) < [laj+ X8 11 a.

J=0 j=0 i=j+1

Let [ € N satisfy p > 1/1. Now d'/?2/7277 — 2 > 2//! for j > j, > 1, so

Z p(d™1/?2/Pm? — 2) < Z p(27')

J=Jo

)
Z p(272/1)

Il
™8

J=01

>

=0

IA

p(27) = Ip.

M~ 1

"Thus

.
(3.2.4) ]—[ (1 + p(d~1/227PmP — 2))"* < 9in/2ele/2 = g ew,
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and (3.2.3) yields

k-1
(3.2.5) o(h) < @282+ 3 Y 2k-1-1/%5(Cy27) |.
J=0

Let » be the integer such that r* < | < r”~! (recall that r” = | was excluded by

choice of r). We shall use (3.2.5) iteratively, v times, to obtain the result of the
theorem,

(3.2.6) o(h) < ae®h'/?,
Applying (3.2.1) to the right-hand side of (3.2.5), if » = 1 we find
o(h) < a,et®2t/(1 + 3C, (1 — 270/ 7)),
1

and since 2*/? < 2'/2p'/2 the proof is concluded. In the other case, when r > |,
we obtain instead

o(h) < ae® (2" + 3G, (271 — 1) '2")

whence (k) < aje®?h” for some a]. Substituting this in (3.2.5), if rt< ! we
obtain (3.2.6) and otherwise (%) < a,e®*h”. After a total of » uses of (3.2.5) we
obtain (3.2.6). O

4. Uniform integrability of arbitrarily indexed sums. The setting is the
same as Section 3 except that the mixing and moment conditions are strengthened.
Again assume the X; are centred at means, and set

o = f pA27),  g(y) = supE(X{1{1X|| > y}).

J=0

4.1 THEOREM. If the set of r.v.s {X?};cz« is uniformly integrable and
P’ < oo then the set of r.v.s {Zz(A)/|A|}A€g(R./)Y || <o 18 uniformly integrable.
Explicitly, there exist constants c,, c,, c,, depending only on d, such that

Z%(A Z3(A

E )1 { (A)

|Al |Al

> y>) < {emin(1, y71) + c,8(yV4) e, y>0.

4.2. As in [16] the convention is. 0/0 = 0. When |A| = 0 we have Z(A) = 0
a.s., consistent with the above. The proof is by truncation and fourth moments.
The latter are dealt with by the following lemma, for which we define 7:=
sup; || X;ll 4.

4.3 LEMMA. There exist constants a’, b’, depending only on d, such that if
T < ocand p’ < o0,
IZ(A)|, < ae®7|A]"2, A e B(RY).

4.4 PROOF. Again we may assume 7, p, and |A| are finite. Divide through by
7, and thus assume 7 = 1. Then ¢ < 1 by Holder’s inequality. Define a( %) as in
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Section 3.2 and set

T(h) = sup  |IZ(A)ly,  7(h) = sup 7(H').
AeBRY, |Al=h n<h

Similarly to (3.2.1),

(4.4.1) 7(h) < h. .

Take p,r,A,S,A,,A_, A", A", A/, A” as in Section 3.2 and write p, =

p'/2(d /?m” — 2). Following Peligrad [18], proof of Lemma 3.6, we find
E(Z(A7) + Z(A”))" < {241 + Tpy) " (m) + 2o(m)}"

< {2'/4(1 + 7p,) r(m) + 2ae”"'m‘/2}4,
the latter inequality by Theorem 3.1 and since p < p’. By (3.2.2),
T(2m) < 241 + Tp,)*r(m) + 2ae®'m!/? + 37(Cym").

Choose h > 1 and take k € N, ! < m < 1 such that & = 2*m; then
(4.4.2) (m) < 1, (27" 'm) < a_;7(2jm) + B,
where

o= 2/4(1 + T (d V22 rme — 2)) 7,

B/ = 2ae2//°m'/? + 37(C,2/"m").
The assumptions made for the present proof imply, similarly to (3.2.4), that

x

T1(1 +7072(d""2277mP — 2))"* < aje®*
J=0

for some constants a}, b, depending only on d. Then iteration of (4.4.2) yields

k=1
(h) < afebip'{2k/4 + 2ae® Y, 2//20k=1-)/4
=0
(4.4.3) F
k—1 4 4
+3 Z 'F(C(,Z”)2"?—1‘J)/4 )

Jj=0
Inserting (4.4.1) in the right-hand side yields
'T(h) < azebzp’2kmax(l/2,r) < 2azeb2p’hmax(1/2,r).

If r < ! the proof is done; otherwise we insert 7(A) < 2a,e b20'R" into (4.4.3) in
place of (4.4.1) and conclude in the same way as in Section 3.2. O

4.5 PROOF OF THEOREM 4.1. We follow Peligrad [18] Lemma 3.5. For y > 0
put
Xy = Xa{I1X;| <y} - E(X1{1X,] < y/*}),
Xy = Xa{1X >y} - E(X1{1X] > »'}),
Z(A):= Z |[A N Cy| XY, ZV(A) = Z AN Cilyiyr Ae .%;(er)‘

\)
iez’ iez’
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Then Z(A) = Z(A) + Z(A) and ZX(A) < 2ZX(A) + 2Z%(A), so
Z*(A) {Z‘Z(A) }
1 >y
14| |A]
Z*(A) {Zf(A) y} Z*(A) {Zf(A)
< 1 > =+ 1
4] |4 4 4] 4]
Z*(A) (ZXA Z?
B ( )1{ ,(4) _{}Jr Z,(A)
4] |4

>
4] 4
QZ;(A)1<Z;(A) . y} GZ;(A).

y ZXHA) vy
<=, > =
4’ (A 4

14 14| 4 |A]
For y > 1,
Z*(A) {22(A) }
E 1 >y
( 1A 4]

IA
)

|

2 nzy(Am)“+ 1Z,(A)ll, )\
|A|'2 |AJ'/?

(a%e”) sup E((X7)") + 6(ae")’sup E((X7)’)

IA
)
—_——

LRI LRI |
™

N

(ae?”)'(25'/)" + 6(ae’®) g(y'/*),

IA
S
—_——

< (e,y7 ' + cg(¥'4)) e,

since p < p/, where c; := max(4b’,2b). For y < 1 the above expectation is bounded
by (ae’)?g(0), so by enlarging the c, if necessary we obtain the claimed bound. O

5. Tightness and weak convergence. We identify which considerations
are needed for the tightness component of Theorem 1.1 by stating that compo-
nent as a separate lemma, 5.1. Its proof occupies Sections 5.3-6. The proof of
Theorem 1.1 is concluded in Section 5.7.

We need first the following lemma, a consequence of the contraction property
LX) X L(Z) = L(Y) XL yur < NZL(X) = L(Y)]],, for variation norm.

5.0 LEMMA (Eberlein [13]). Let X,,..., X, be random elements of some
space. Suppose that for allk = 1,...,n — 1,

LUK X)) XL Xy X)) LUK, X)) o < e
Then

< (n—1)e.

var

|2({X,,.... X,})) —L(X)) X -+ xZ(X,)
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5.1 TIGHTNESS LEMMA. Assume 1.1(i), (ii), (iii), (iv) and

(B) there exists C < oo such that for all n>1, A € &, and all functions g
R — R with the property |g(x)| < |x| ¥ x,

. JANnC, .
var Z —-———l 'JI

.je'lrz n

il
Then for every A > 0,
lim limsup P(ws(Z,) > A) =0,

8§10 n-oox
where Wy( f) = SUP4 ey, aan <5l [(A) = f(B)| forf: A - R.

5.2 REMARK. We will use g to “layer” the £, ;. Thus g will be of the form
8\(x)=x 1{a < |x| < B}, or g,(x) = |g,(x)], for certain constants «, B.

5.3 TIGHTNESS PROOF: FIRST STEPS. Choose r’ satisfying both r < r’ <1
and b>d(1 +r')/(1 —r’).If r > 1/(s — 1) then it is easy to see we can find s’
satisfying 2 < s’ < s and

(5.3.1) r<1/(s’"—1),
(5.3.2) b>ds' /(s — 2).
Otherwise set s’ := s. In both cases we have (5.3.1), (5.3.2), and, from 1.1(ii),

h(x) = sup maxE(|nd/2£n‘j|“'1{|nd/2£n‘j| > x}) -0, x- .

n jeEd,

For 0 < u < v < % define

5,,,j(U, v) = én,jl{u < n(l(suz)/(z(s'—n)|$n‘j| < v},

|A n C'n,'l
Zn(A’ u, D) = Z ’ (gn,j(u7 U) - Eén,j(u’ D))’
je’ln |Cn’j|
|A N Qr,'l
U(A,u,v)= ), “—-C—J|f,,,j(uy v)|.
je,/" | n,jl
Then
ANC, .
EU(A,u,v) < ) 140 Gl Mln"dug(s'*”h(lmd/(z(s,*m)
(5.3.3) jed, |Cn,J‘|

= |A|u*(“'“ ”h(und/(z(“/*”)).

~ For 0<d<1 let o= (A\B: A, Be«,|A\ B|l<§), and M., =
sup,c .. |f(A). By additivity, |Z,(A) - Z(B)| < |Z(A\ B)| + |Z(B\ A)j;
hence, to prove the theorem it suffices to show that for all A > 0,

(5.3.4) };im limsup P(||Z,].,, > A) = 0.
10 n—oox
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For the metric entropy of <7 (for fixed §), observe that
card( A( s, €)) < card( N (), ¢)) < {card( A (, ée))}z,

since if A, CA,C A and |A'\A;[|< e for i=1,2, then A \ A, C
A\NA, C A"\ A,; and

(A" NA)N (AT NAY) € (ATNAT) U (A7\4y)

so the left has measure at most e. Thus /5 has metric entropy at most 2H(} - ).
Since r’ > r, there exists K such that

(5.3.5) 2H(%£) <Ke ", 0<e<l.

54 TIGHTNESS PROOF: TRUNCATION. Since Z,(A) = Z,(A,0,a) +
Z(A,a,%) and |Z,(A,a,0) < U([0,1]9 a,0) + EU([0,1], a, ), we see
that

1ZNl . < 1Z,(+,0, @), + U,([0,1]1%, a,0) + EU,([0,1]7, @, c0).

By (5.3.3), U([0,1]¢, a, ») tends to 0 as n — o, in L, and hence in probability.
So instead of (5.3.4) it suffices to prove that for all A > 0,

(5.4.1) lim limsup P(||Z,(-,0, a)|l.,, > A) = 0.
a,8l0 n—ooxc

5.5 TIGHTNESS PROOF: BLOCKING. Define m, = in/[n*/*~D] where [ ]
is integer part, and set p, = n/(2m,). We decompose [0,1]% into the union of
the cubes C, ,,1 € ¢J, , and then further decompose each C, , into the dlS]Olnt
union of those cubes CZp",,V j € J,, , it contains. Denote these by wLi L=
1,2,. ! indexed the same way in each C, | cube.Set I, ;==U, gy In i Then
each I,, , is a regular lattice of cubes of s1de m,/n, w1th separation distances

m,/n in between. For instance, in two dimensions each C, , is cut into four
s1mllar quarters, and I, , might represent the union of the southwest quarters.
Now

21[
Zn(’)O) a) = Z Zn( N In,iro’ a);

=1

hence, (5.4.1) will follow if we can show that for each i = 1,2,...,29 and A > 0,

(5.5.1) llm limsup P(||Z, (- N I,.,0,a)|l,>A)=0,
810 5
where A /2 has been changed into A.
Now
7( r-\In (24 ’a)= Z Zn(.mIn,l,UO’a)
led,,
I - N I n Cﬂ,jl

Y X (£,,(0,a) — E£, ;(0,a)),

led, jeS(n,10) I I

Il

where S(n,1,i) = {j: C,; N I,,,# @}. For fixed n and i, the sets S(n,1, 7) are

n,j



834 C. M. GOLDIE AND P. E. GREENWOOD

at separation distances > [m,]/n from each other. On a new probability space
construct mutually independent processes {é,,, iJiesiny i 1 € d, , such that each
process has the same law as the corresponding {£, ;};< g1, i)- Keeping to a fixed
i, and so omitting it as a subscript, let

£, (1, 0) = £y < mor /g, < o),

|AnIn,,szn,'| > -~
V(4 u,0) = ) Cl (£, (u,v) - EE, j(u,0)),
jeSn, 1) | n,jl
Zn(A7uyv) = Z ‘/n,l(Aruy v)y
14,
|A N In,l,i N Cn,'l >
vvn,l(A’ u, D) = Z C ! |£n,j(u7 D)Iy
jeSn,1, 1) | n,j|
f]n(A’ u,v) = Z WI,I(A’ U,D).
leelpn

Then by Lemma 5.0,
“,,?(Z”( N In,i707 a)) —g(Zn(',O, a))”var = (pr(zi - I)Bn([mn]/n)

< pds /2Us’~ ”’,[%n(ﬁn*""/”‘“" l)))

= o(ntds' ~b -2/ =10) = o(1),
using (5.3.2). In particular,
|P(I1Z,(- N1, ,,0,@)lly, > A) = P(IZ,(+,0, @)l > A)| = 0(1), 7= oo,
and so for (5.5.1) it suffices to show that for all A > 0,
(5.5.2) a!igrllo li'r1n_>s°lc1pP(||Zn(‘,0, a)lly, > }\) =0.

We do this by a modification of Bass’s [2] technique. For the purpose of using
Bernstein’s inequality, note that Z, (A, u,v) is the sum of independent sum-
mands V, ,(A, u,v),1€ Jp", with a.s. bounds as follows:

—d(s'—2)/(2(s" —
|‘/n,l(A1 u, ‘D)I < 2vn (s /@7 Z |In,l,i N Cn,jl/lcn,jl

jeSsSn, 1)

— 20"’_(1(3’_2)/(2(8/_”)ndlln,l,il < 20’

while
varZ,(A,u,v) = ) varV, (A, u,v)

1€,

Y varZ,(ANI,, , u,v)

14,

Z ClA N In,l,tl < ClAI

le.]

Pn

IA
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Similarly, U/(A, u, v) — EU/(A, u,v) is the sum of independent summands
W, (A, u,v) — EW, (A, u,v), each with absolute value bounded by v, and
again

varU (A, u,v) < C|A|.

Lastly,
EU(A,u,v) =EU(ANT, ; u,v)
(5.5.3)
< |Aju~"~Yh(0)
by (5.3.3).

5.6 TIGHTNESS PROOF: NESTING. We adapt Bass [2], proof of Theorem 6.1.
We shall choose A, §;, a;, later so that

C
A L0, A=4)Y A,

1=0
80 = 8, 8,’ J,O,
a, = a, a,lo.

(5.6.1)

For any A € &/; there exist A,, A" € #'(;,8,) such that A, C A C A and
|[A!' \ A, <9, Then

x
Z"(A,O, a) = Zn(A()’O’ at)) + Z {Zn(At+1’07 az) - Zn(AuO’ az)}

i=0

+

IoF

{Z"(A, a;, ai—l) - ZII(Al’ a;, ai—l)}'

=1

So if ||Z,(-,0, a)|l,, is to exceed A, at least one of the following must hold:

(a) for some A, € A(, ), on(AO,O, ay)| > Ay
(b) for some i, for some A, € N (s, 9,), A, €E N (A, 8,,,), |4, 24, <28,
|Zn(Ai+1’07 al) - Zn(Ai7O7 al)| > 2}\n
(c) for some i, for some A, A} € /(A 8;), A€ A;, A,CACA,
|141+ \Azl < 8;’1
|Zn(A’ a;,a,_,) - Zn(AH a;, ;)| > A,
The number of pairs A;, A" in #(Z;,8,) is < exp(4H(}3,)), while the number
of pairs A, € #'(;,9,), A, € N (A, 08,,,)1is < exp(4H(}6,, ,)) since H(-) is

nonincreasing.
: We have

P(”Zn('707 a)“.gy's > )\) Spt) + Z r, + Z S“

i=0 =1
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where
Po = exp(2H(%3(,))|An|1ii;(8 P(|Z,,(A0,O, a,)| > A,),
r.= exp(4H(}5,.,) ~max (P(IZ,(A;\A,0,a)]>],)
|A,.184,]<26,

+P(|ZIZ(AI\A1+1’0’ az)l > )\1)}’

s, = exp(4H(18,)) max P( sup |Z,(A,a, a,_,)
AlgAl' ‘lA:. \A1|§81 A,QAQA,'

- Zn(An a, az—l)l > }\1)

To estimate, first, p,, recall that Z,(A,,0, a,) is a mean-zero r.v. of variance
< C|A,|, and is the sum of independent summands each bounded in absolute
value by 2a,. So by Bernstein’s inequality ([3]),

1 —N
< 2exp|2H| =6 ))ex ‘ .
Po p( (2 o |EXP (4C80 + dagh,/3

Similarly, bounding each probability in the expression for r,, we obtain

1
r, < 4exp(4H( ES,H))eXp

_)\%
4C8, + 4a N /3|
To estimate s,, observe that

sup IZn(A?anaz—l) _Zn(Auawaz—l)I
A CACA/;

U"(A:r \AH at? az—l) + EUn(At+ \AH al’ az—])
Un(Az+ \AH an az—l) - EUn(Af \An a,, az—l)

IA

IA

+2|A \ A Ja; " Vh(0)
by (5.5.3). We insist that

(5.6.2) 28.a - "VR(0) <A/3, i=0,1,2,....

Then
1 ) ) A,

s, < exp(4H(—8,)) max P(UR(B, a,a,_,)— EU/(B,a,,a, )> —
2 |B| <8, 3
1 ~(A/3)°
4H| =6 .
= e"p( H( 2 ‘))exp( 208, + 2, ,(A,/3)/3

Let us set 8, = 2"9@ and A, = A, 2 ‘07 7/% where A, =
N1 =2 /) Take @, = 27'"Ya where a = c¢8"/*""" and ¢ =
(6h(0)/X )"/ V. Then (5.6.1) and (5.6.2) are satisfied. We now have

3N
12C$, + 4a A,

r, < 4exp(4K8, -
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by (5.3.5), while

}\2
s, < exp|2K§, " — : .
18C8; + 2.2 7% 'q X,
Thus
>~ x P A2 '
pyt Er1+ ZSZSGZeXp 4K817,‘/_ : .
0 1 i=0 18C8, + 4.2+ ¥q X,
Now

18C8, + 4 - 2075 X = at}\l{4.2“+r’>/8’ + 1808}\612~t(l+r’)(s'—2)/s’>
< ca\,

where ¢’ := 4 - 20+7/% 4 18C/\,.. So

7

= - " >\l
sup P([1Z,(-,0, a)ll, > ) < 6 L exp| 4K8, " = —

n =0 [

< , }\ , }
=6 exp{(4K8" - “(—),8“1/‘” ”)2”‘}.

i=0 cc
Because of (5.3.1) the coefficient of 2" may be made negative as large as desired,
by choosing & small enough, and (5.5.2) follows, concluding the proof of Lemma
5.1.0

5.7 PROOF OF THEOREM 1.1. For f & C(%/) we can use w; as defined in
Lemma 5.1 as a modulus of continuity, since wy( f) = SUPA, e .7, 140 B < sl f(A) —
f( B)|. Then, since .« is compact, we have available a version of the Arzela—Ascoli
theorem: a subset U of C(2/) has compact closure if and only if it is equibounded
(sup; ¢ :SUps e 7| f(A)| < o) and equicontinuous (limg ,sup; < ws(f) = 0).
Using this, the proof of [5] Theorem 8.2 essentially carries over to give the
following characterisation of relative compactness of a sequence {S,} of random
elements of C(/): every subsequence of {S,} contains a weakly convergent
subsequence if and only if

(a) for each element A of some countable dense set in o, the family {S,(A)},.,
1s tight, and
(b) for every A > 0, lim,, ,limsup, ,  P(ws(S,) > A) = 0.

Under the conditions of Theorem 1.1 we have convergence of finite-dimen-
sional laws of Z,, to standard Wiener laws, by [16] Theorem 4.3. Since this also
gives (a), while (b) is the conclusion of Lemma 5.1, the theorem is complete once
the remaining condition ((B)) of Lemma 5.1 is checked. Fix n and f and write
«temporarily X, .= n??(f(§, ;) = Ef(£,;)); then for A € &,

ANC,;
Z |(j—"‘]|(f($n,j) _Ef(gn,j)):nill/z Z I(nA)mCIIX|

je -, | ",JI ie{l, ..., ny
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and by Theorem 3.1 the right-hand side has variance at most
n= % ae””")2( supvar(n"/2f(£n,j)))|nA|,
j

where p, i= X%_,0,(n"'27). Now var(n?/?{(¢, ;)) < E[n?/?¢, ;|* which by 1.1(ii)
is bounded in j and n. Also, by 1.1(v’), the quantities p, are bounded. So we have
5.1(B), with

C = a’***"Prsup E|n/%, ||%. O

n,j

5.8 PROOF OF COROLLARY 1.4. The random field has strong-mixing coefficient
a(x) = sup sup |P(ENF)- P(E)P(F)|,

I,Jcz! E€a(X;, i€l

oI, J)=>x Fea(X;,ied)
and a(x) < B(x). Thus T k9 la(k)* 2% < 0. Let y(i) = E(X,X;) for
i€z’ Then by Davydov’s lemma ([7]) |y(i)| < 8|| X, %([li])**~?/% hence,
Y e z¢|Y(A)| < 0. (The sum X;y(i) therefore converges, and assumption (vi) can be
achieved by normalisation if we know ¥;y(i) # 0.)

Choose C € ¢, with |C| > 0. We show that EZ*(C) — |C| as n — o, whence

the result follows by Remark 1.2. Now

|C N Cn,kl IC N Cn,jl _

n~%(nj — nk).

EZ}(C)= X )»

ked, ICn,kI jed, |Cn,j|
For each x & (0,1]7 let k,(x) be the unique k such that x € C, ,. We then have

(5.8.1) EZX(C) = f h,(x) dx,
C

* where
h(x):= Y n9Cn C, ;lv(nj — nk,(x)).

J€d,
In fact, h,(x) = L, zew, ;v(i) where the weights w, ; lie between 0 and 1, and
for each fixed i, w,; equals 1 for all large n. Since ¥;|y(i)| < co, dominated
convergence gives 1 ,(x) = X; . ,«v(i) =1 as n — oo, for each x. Also|A (x)| <
¥;]v()|, so dominated convergence in (5.8.1) yields EZ%(C) — |C| as required. O

One should notice that although the above shows that EZ*C)/|C| - 1 for
each fixed C, the convergence has not been shown uniform in C, and condition (v)
and the results of Section 3 are still needed to establish the uniformity. Without
a condition such as (v), uniform convergence is problematic (see [4]).
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