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CHARACTERISATIONS OF SET-INDEXED BROWNIAN
MOTION AND ASSOCIATED CONDITIONS FOR
FINITE-DIMENSIONAL CONVERGENCE

By CHARLES M. GOLDIE AND PRisciLLA E. GREENWOOD

University of Sussex and University of British Columbia

T'wo characterisations are given of the finite-dimensional laws of Brownian
motion indexed by an arbitrary class of subsets of the d-dimensional unit
cube. There are associated conditions for convergence of finite-dimensional
laws of a sequence of set-indexed additive processes. These conditions have a
more explicit form in the case of set-indexed partial-sum processes based on
mixing random variables.

1. Introduction. Let &/ be any subset of the class # of Borel subsets of
[0,1]9. A process X on </ is a collection {X(A)}4c., of real-valued random
variables. It is additive if whenever A, B,A U B, AN B e ¥,

(1.0.1) X(AUB)=X(A)+ X(B) - X(AN B) as.

A standard Wiener process, or Brownian motion, on & is a Gaussian process W
with the properties EW(A) = 0, cov(W(A), W(B)) =|A N B|for A, Be . It
is necessarily additive, in the present limited sense.

In this paper we characterise W and weak convergence to it of additive
processes in the Cartesian product space R equipped with the o-algebra %
generated by finite-dimensional cylinders. That is, we study convergence of
finite-dimensional laws. In a companion paper [7] we restrict 7, requiring that it
satisfy a metric entropy condition, in order that our processes and their Wiener
limit can live in a space of continuous functions. For convergence of finite-dimen-
sional laws, however, the elements of .7 and their finite intersections need to be
approximable by unions of uniformly small similar subsets of [0,1]¢, e.g., 1/n-
cubes. The fact that finite intersections of elements of &/ have to be approxima-
ble means that for finite-dimensional calculations our space cannot be assumed to
satisfy a metric entropy bound. In this paper, therefore, we shall work mostly on
a large (in metric entropy terms) space %, to be defined below, consisting of all
finite unions of left-open right-closed intervals.

Section 2 contains our core results: characterisations of W on %, and weak
convergence to it. We write conditions which are as weak as we can manage; in
corollaries some more concise sufficient conditions are developed. We have two
methods of proof, leading to stabilising conditions on variances expressed, respec-
tively, in terms of fixed intervals, and asymptotically negligible intervals, in
[0,1]% In Section 3 we deduce characterisation and convergence results relative
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SET-INDEXED BROWNIAN MOTION 803

to an arbitrary class &/ of Borel subsets of [0,1]9 from uniform continuity-
in-probability conditions.

In Section 4 we apply the preceding results to the case of set-indexed
partial-sum processes based on lattice-indexed summands subject to mixing
conditions. We obtain new multidimensional central limit theorems for mixing
random fields, and need only second-moment assumptions on the summands, a
logarithmic mixing rate, and convergence of second moments of certain special
partial sums. How close are these conditions to optimal? In the classical case
where the index set is the natural numbers ({X,}, cn strictly stationary and
¢-mixing, EX, =0, S,:=X,+ --- +X,, 02:= ES? < o) it is known that a
logarithmic mixing rate suffices for S, /0, to satisfy the central limit theorem and
invariance principle (Ibragimov [12]; Peligrad [15, 16]) and that ¢-mixing alone is
not enough (Herrndorf [10], Example 4.1), but that no mixing rate is needed if
one knows o’ —> o and liminfo?/n > 0 (Peligrad [17]) or if one suitably
strengthens other conditions (cf. [12], [10]). State-of-the-art surveys of this case
will appear in [5]. Only in this classical case are there theorems and counterexam-
ples, not too far apart, by which one can judge closeness to optimality in the
particular dependence setting in use. Thus for the set-indexed case one has to
extrapolate, and we conjecture that our assumption of a mixing rate can be
dispensed with if the variances of all the set-indexed partial sums are assumed to
converge appropriately, but that without this or some other strengthening of the
conditions of our theorems, some mixing rate is needed.

Our results in Section 4 should be compared with other central limit theorems
for mixing random fields. Recent work (Bolthausen [2]; Bulinskii and Zurbenko
[3]; Gorodetskii [8]; Guyon and Richardson [9]; Malysev [14]; Takahata [19, 20])
has allowed sums over arbitrary sets rather than just rectangular blocks. All
. these authors assume polynomial mixing rate, though often with a less restrictive
form of mixing.

In [7] our results are combined with a tightness lemma to give weak conver-
gence of continuous-path processes.

To proceed formally, for any a = (a,,...,a,), b = (b,,..., b,;) in [0,1]¢ the
half-open interval (a,b] is {(x,,...,x,): ¢, < x,< b,, i = 1,..., d}, and the class
of all such sets is . Let # denote the ring of all finite unions of elements of 7.
For m=1,2,... let J, be the set of all points (j,/m,..., j,/m) where
J, €1{1,2,...,m}. Let1:=(1,...,1) and

Coy=(G-m,jl, jed,m=12...
For sets E, F C RY the separation distance is

p(E,F):= _inf |x—yl|,-
xek,yek

where || || is supnorm in R? and inf @ = co. For E C R’ and £ > 0 let
(1.0.2) Ef={xeR" |x —y||<eforsomey € E}.

Lebesgue measure is denoted | | and on % we use the Lebesgue-disjunction
pseudometric d,(A, B) == |A a B|.
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2. Characterisation and convergence on unions of intervals.

2.1 THEOREM. Let W be an additive process on % that satisfies

1) EW(C)=0V C e_g;
(i) EW*C) = |C|V C € _g;
(iii) W(C,),..., W(C,) are independent whenever C,,...,C, € ¢ and
p(C,C;) > 0 fori +J;
(iv) V £ > 0, lim

m —oC

e, PUW(C,, ;) = €) = 0.
Then W is a standard Wiener process on X.

2.2 THEOREM. Let {Z,} be a sequence of additive processes on % such that

(i) EZ,(C) > 0(n—> )V CEF
(ii) EZAC) — |C] (n —> %) V C €7
(iii) whenever C,, ..., C, € # are such that p(C;,C;) > 0 for i + j we have for
all real z,, ..., z, that

P(Z(C) <z,...,2,(C,) < 2)

n

(2.2.1) k

_l_[P(Zn(Cl)SZz)—)Oy n_)OO;
1=1

(iv)V e >0,lim, _ limsup,_ Y;c, P(IZ,(C, ;)| =¢) =0

(v) for each C € ¢ the set {Z2(C)), ., is uniformly integrable.

Then Z, on & converges weakly to a standard Wiener process.

Our second route to characterisation and convergence was suggested by the
differential equations method of Rosén [18] and Billingsley [1, Section 19]. Here
our conditions on the moments of W and Z, are entirely local in character.

By a null family in ¢ we mean a set {D,}, . ., of elements of ¢ such that
D, c D, for h < h’ and |D,| = h.

2.3 THEOREM. Let W be an additive process on % that satisfies

(i) foranyC,,...,C, € 2, anyrealu,,..., u,, and any null family { Dy}, < » < p,
in # such that p(Dh‘_,U,ij) > 0,

k- W(D,)
2.3.1 lim E ] WI(C: =0,
(250 i e"p(’;”’ (C’)) D, )
k W?*(D,)
2.3.2 limE . W —F =1 | =0
( ) hnf;l) exp ljgl uj (CI))( |Dh| .

(ii) for any null family {D,}, -, in 5,

W*(D,) { W?(D,) })
1 >a)| =0.
| Dyl | Dyl

Then W is a standard Wiener process on X.

lim limsup £
= h|0
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2.4 REMARK. Conditions (i) and (ii) are equivalent to the apparently stronger
conditions in which |D,| = h is replaced by the requirement that |D,| strictly
decrease to 0 as A 0. For then we can simply re-index the set {D,} to make
|D,| = h. The same remark applies to conditions 2.6(i) and (ii) below.

2.5 REMARK. While (ii) is not equivalent to uniform integrability of the set
{(W*(D},)/\Dyl} < h < n, it is not hard to see it is equivalent to the following
sequential version:

(ii’) for any sequence D,, D,,... in #\ {@} such that D,| and |D,|0 as
I - oo, the set {(W?(D,)/|D,|},., is uniformly integrable.

2.6 THEOREM. Let {Z,} be a sequence of additive processes on % such that

(i) for any C,,...,C, € ¢, any real u,,...,u,, and any null family
{Dy} < < n, in F such that p(D,, ,UfC;) > 0,

. . . k Zn(Dh)
(2.6.1) lim limsup | E | exp| i ) u,Z,(C;) =0,
L0 o j=1 Dy
k ZXD
(2.6.2) lim limsup | E{exp| i ). u,Z,(C;) (D) —1|}|=0;
hi0 j=1 |Dh|

(i) for any null family {Dy}y < p <4, in 2,
Z*(D ZXD
lim limsup limsup £ (D1 1{ ~(Di) > a} = 0;
a—=x hlo n—x |Dh| |Dh|
(iii) for each C € ¢ the set {Z,(C)}, ., is uniformly integrable.

Then Z, on # converges weakly to a standard Wiener process.

2.7 CorOoLLARY. For 2.6(i) it suffices that for any C,,...,C, € ¢ and any
D e _¢ such that p(D,Uf*Cj) > 0,

n—xc

k
lim E|exp|i), ujZn(Cj))Zn(D) =0,
noee J=1
k i
lim E exp(i Y ujz,,(q))(z,‘f(p) —|DJ)| = 0.
j=1

2.8 COROLLARY. For 2.6(i) it suffices that for any C,,...,C, € ¢ and any
null family {Dy}o <y < 5, in F such that p(Dh“,Uij) >0,

E(Z,(Dy)I1Z,(C)),..., Z,(C}))

| Dyl
E(Zy(D)IZ,(Cy), .-, Z,(C}))
| Dyl

(2.8.1) lim limsup E
L0 oo

)

(2.8.2) lim limsup E

hi0 oo

—1|=O.
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2.9 CorROLLARY. For 2.6(i) it suffices that for any C,,...,C, €_¢ and any
D € _¢ such that p(D,Uij) > 0,

E(Zn(D)lzn(Cl)""’Zn(ck)) L, 0, n— oo,
E(Zz(D)IZn(CI)”Zn(Ck)) _’Ll IDlv n — oo.

2.10 REMARK. Corollaries to the characterisation Theorem 2.5 are obtained
if in the above corollaries we replace Z, by W and remove the limiting operation
in n.

2.11 REMARK. A sufficient condition for 2.6(ii) and (iii) is that the set
{ZXC)/IC1}, = 1. ¢ « gro e uniformly integrable.

3. Convergence on an arbitrary class of sets.

3.1 THEOREM. Let {Z,} be a sequence of processes on #'J &« such that

(i) Z, on R converges weakly to a standard Wiener process on %,
(ii) for each A € o/ there exists a nonincreasing sequence C, € # such that
[(NFC))\ A| = 0 and, for every ¢ > 0,
lim limsup P(|Z,(A) — Z,(C,)| =€) = 0.

=% pox

Then Z, on o/ converges to a standard Wiener process on /.

3.2 REMARK. The first half of condition (ii) does not impose any condition
on /. That is, for any A € # we can find a nonincreasing sequence C, in # such
that N*C, 2 A and |(N°C,) \ A| = 0. For proof see Section 5.7.

3.3 COROLLARY. Let {Z,} be a sequence of additive processes on % such
that the set {ZX(A)/|A|}, 1. acw i uniformly integrable, and satisfying either
2.2(1), (ii), (iil), or 2.6(1). Then Z, converges weakly to a standard Wiener process
on A.

3.4 REMARK. We use the convention 0/0 = 0. The uniform integrability
condition above is then well-defined and includes, in particular, that for each
A € % of zero measure, the random variables Z ( A) are zero a.s.

3.5 REMARK. As in Section 2, if we replace Z, by W and delete all limiting
operations in n, we get characterisations of the standard Wiener process.

4. Partial sum processes. Let £, ;, j € JJ,, be random variables and define
the smoothed row-sum

Z(A)= Y

jed,

IA N Cn,jl

Ae #
IC,

n,j’ ’

bt ,jl

so Z, is an additive process on %.
We use the following mixing coefficients on the triangular array {¢, ;}. The
maximal correlation coefficient (for the nth row, at separation distance x) is, for
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n=12,... and x > 0,

p(x) = sup sup  Jcor(X,Y)],
I,Jc, XGllz(o(g,,‘j,jEI))
U, ) 2x YeLyoa(é, i€

where L,(-) is the set of L, random variables measurable with respect.to (-).
(When X or Y is degenerate, define corr( X, Y) = 0.) The symmetric ¢-mixing
coefficient is
¢,(x) = sup sup max(|P(E|F) — P(E)|,|P(F|E) — P(F))).
1,Jcd, Eea(§,;.jeD)
ptl,yzx  Fea(d,; jed)
P(E)Y>0, P(F)>0

Both coefficients are zero for x > 1. To see the way they should behave in n
and x, consider the canonical example of a normed sum, when X, . isa
fixed Z“indexed array on which we define the triangular array §n=

n ‘?X. .. The maximal correlation coefficient for the Xs is

p(x) = sup sup |corr( X, Y)|.

I,Jcz! X€E€Lyo(X;,icl))

o(l,Jy=x YELyo(X;,i€d))
Thus p,(x) < p(nx) for this example, the possibility of strict inequality arising
because not all the Xs are used to define the nth row of the triangular array.
Polynomial decay of p(-), for instance, corresponds to the requirement p,(x) =
O((nx) ), some b > 0. Similar considerations attach to the symmetric ¢-mixing
coeflicient.

The connection between ¢,(x) and p,(x) is that, by Peligrad’s inequality

(116},

(4.0.1) p,(x) < 2¢,(x), n=1,2,..., x> 0.

We now state Peligrad’s inequality, as it will be needed for other purposes. For
o-algebras of events %, 9, let
b= s |P(GIF) - P(G)|
Ferx Ge9, P(F)>0
Let X be %measurable, Y be %measurable, and p,q satisfy 1 < p < oo,
p '+ q¢ ' = 1. The inequality is
|E(XY) - EXEY| < 26211 X ||, 0/2IY -

T |G
It strengthens the inequality of Doob—Cogburn-Ibragimov [4,11] by including
the ¢'/7 term. '

F\9

A.1 THEOREM. Let the &, and the smoothed partial-sum processes Z,

satisfy

(i) Egn,j = O v n?j;
(ii) the set (n'; }};c; ,ew is uniformly integrable;

(iil) sup, c n 27,0/ 4(n '27) < o0,
neN~;=1Fn

n,j
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and either 2.2(ii) or 2.6(i). Then Z, on % converges weakly to a standard Wiener
Pprocess.

4.2 REMARK. For (iii) to hold it suffices that there exist § > 0, K < 0 such
that p,(x) < K(log(nx))"?*" (n=1,2,..., n”' <x < 1).

4.3 THEOREM. Let the §
satisfy
(i) E§, ; =0V n,j;
(ii) the set {n¢2 ;};c; .- is uniformly integrable;
(iii) sup, c nE72 9% (n7127) < o0;
(iv) for any null family (D)}, . » < , Of elements of 2,

EZ,(D,)
Dyl

and the smoothed partial-sum processes Z,

n.j

lim lim sup 1= 0.

hi0 o5

Then Z, on % converges weakly to a standard Wiener process.
5. Proofs. Theorem 2.1 is based on

5.1 THEOREM (Gnedenko and Kolmogorov [6], page 126). For each m =

1,2,... let&, ..., &, , beindependent. If Yi» ¢, , = X and
kl"
lim ) P(|¢, ,/>¢) =0, Ve>0,

m—
=X =

‘then X is normally distributed.

5.2 PROOF OF THEOREM 2.1. First, if Cy,...,C, € # aresuch that C, N C, =

@ for i # j, then in each C, we take subintervals C/™), m = 1,2,..., with C\"™

similar to C,, of the same centre, and with measure (1 — 1/m)|C,|. Since

p(C™,C{™) > 0 for i #j we have W(C{™),..., W(C{™) independent. Now

C,\ C!™ is the union of a fixed number of disjoint intervals I, ,, , j=1,..., j,
say, of total area m~'|C,. We have by additivity and (ii) that

“W(Cz) - W(Ci(m)) ”2 = “W(It,m,l) +ooet W(It,m,ju) “

2

b |Il,m,l|l/2 + o +|Il

|l/2

,?l»j()
L 1/2
<Jjo(m=YC,)) N 0, m — oo.

Thus‘independence of W(C)),..., W(C,,) follows from that of the W(C!™). That
is, (iii) extends to (iii’), the corresponding property for disjoint but not necessarily
separated intervals. From this property, additivity, and (i) and (ii), we have
EW(A) =0and EW?*(A) =|A|forall A € .



SET-INDEXED BROWNIAN MOTION 809

Choose C € #. Let K, == {j€d, C,;c C}, then Yick,W(C, ;) converges
in L, to W(C), since the difference is w(C \ C.;) whose argument is in #.
By Theorem 5.1 and (iii"), W(C) is normal. By (i) "and (ii), it is N(O, |C)).

Choose A,,..., A, € #; then we can find a finite collection {C,,...,C,} of
disjoint intervals such that each A, is the union of some of the C,. By (111 ) the
W(C)) are mdependent N(O, |C, |), hence, by additivity the Jomt law of

W( B s W( B,)is multmormal with the correct mean and covariances. O

5.3 PROOF OF THEOREM 2.2. Let S be a countable dense set in [0,1],
containing the rationals. Let _Z be the set of all intervals (a,b] with a,b € S*.
Note C,, ; € #s for all m,j. Let % be the ring of all finite unions of elements of
Zo. By (v), for each C € #; the sequence {Z,(C)}, ., is tight. By additivity the
same holds for any C € %g. Since £ is countable we can by selection and
diagonalisation find from any subsequence Z,. a further subsequence Z, such
that Z, on %y converges weakly, i.e., the finite-dimensional laws on % con-
verge, to those of W, say. We shall check that W satisfies the hypotheses of that
version of Theorem 2.1 in which ¢, # are everywhere replaced by %, #g. The
proof of Theorem 2.1 then applies, with little alteration, to show W is a standard
Wiener process on %g. This is enough to show Z, on %y converges weakly to a
standard Wiener process on %¢. But that suffices to show the finite-dimensional
laws of Z, on # converge to those of a standard Wiener process, as the theorem
claims.

Each of properties (i)-(iv), and additivity (on %, % instead of #, #),
implies the corresponding property in 2.1, utilising (v) in the cases of (i) and (ii). O

5.4 PROOF OF THEOREM 2.3. First we prove the following strengthened form
of (i):

(i) forany C,,...,C, € #,anyreal u,,..., u,, and any null family { B}, <,
in # such that B, N (UfC)= o

k W(B
exp(i ; ujW(Cj)) |§3,|h)

wiB) ||
i 1]) ~o.

Given C,, u,, and B, we shall construct a family {D,} satisfying the conditions of
(i) (in the form given in Remark 2.4), and such that

I

(5.4.1) limE
hl0

(5.4.2) limE
hl0

exp( i u,W(C;)

Jj=1

W(B,) W(D,)
5.4.3) - -0, hlo,
( B, 1D
W%(B,) WD)
(5.4.4) E - -0, hlo0.
B, D,

Then (i") will follow from (i).
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Observe first that (ii) implies for any null family {D,} in # that for some
h, >0

(5.4.5) sup E
O<h<h, |Dh|

Let D, be a geometrically similar subinterval of B,, of the same centre, and
such that |B,\ D,| = h® Then |D,| = h — h*|0. By construction D, decreases
with A, and p(D ,U"C) > 0. Now we can write B),\ D,, for all A, as the union
of a fixed number of m (depending only on the dimension of the space)
disjoint intervals I, ..., I\™. From (5.4.5), for each i=1,...
m, supy . WAL/ < oo, Since W(B, \ Dy) = T W) and
|B,\ D,| = =™ ,|I{"), by Minkowski’s inequality we find

sup |W(B,\ Dy)lly/|1By\ Dy|'/* = K < o0

h<h
Then
W(B WD WB B,\D
( h)_ ( h h\ h) W(Dh)l h\ h'
|B,,| D, |B,,| |B,| Dy
_ IW(B)\ Di)llz 1By \ D)'72 + WD )”1 B, \ Dy
|B,\ D,|'/? B, "2\ B, 1D,
WI(D,)||. h?
<kn”+ | sup W( ]h/}zuz __
h<h, lDlzl (h - h})
-0, h|0,

and similarly for (5.4.4). This establishes (i').

Denote Z = u,W(C,) + - -+ +u,W(C,). Fix B € ¢ such that B N (Uf*Cj) =g,
and let b := |B|. Let { B,},_,., be a family of elements of ¢ such that B, C B,
and B, \ B, € ¢ fort < t', |B,| = t for all ¢, and B, = B. Since B is aligned with
the coordinate axes, this can be achieved by cutting B by a hyperplane with
normal in the first coordinate direction, and displacing the hyperplane in the
direction of its normal. Define

Y(t,u) = E(ee“WB))  0<t<b ucR.

For h > 0, W(B,, ;) — W(B,) = W(B,,,\ B,) which tendsin L, to 0 as 2 |0, by
(5.4.5); hence, Y(¢, u) is continuous in ¢ to the right, at each ¢, u with ¢ < b.
Similarly it is continuous in ¢ to the left. Joint continuity of ¢ in ¢ and u,
throughout the region of definition, is then clear.

Define A, ;= W(B,,, — B) and c(z)=e“—1—iz+ }z°. As noted in
[1, page 162] we have both |c(z)|< 2% and |c(2)| < |2|?, for real z. Therefore for
each real u and 0 < ¢ < b,

h 'Ele(ud, )| < [u’a®?h'/? + w?E(h 'A% 1 {h AL, > a})
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whence, on letting A |0 then a — o0, by (ii),
. _
(5.4.6) }Ilrll’(l'h E|c(uA, ,)| =o0.

We now have
V(t+ h,u) —y(t,u)= E{e"ze’”w""’[iuA,y,, — U, + c(uA,’,,)]};
hence,
|B e+ hyu) =t u)] + Juy(t,u)|
<h 1|ul‘E (ei%e ‘"W‘B’A,,h)‘ + %h"uZIE{e'Ze"“W""’(A%,,, - h)}’
+h7'E|c(ul, )|
By (5.4.1), (5.4.2), and (5.4.6) the right-hand side tends to 0 as A |0, so

d
%¢(t,u)= —lun(t, u), UER,0<t<b,

there being only a right-hand partial derivative here. Billingsley’s [1, page 155]
argument, that because of contlnu1ty the derivative is in fact two-sided, applies.
The solution of the p.d.e. is (¢, u) = e *“*/%a(u), continuous on the definition
strip, and on setting ¢ := 0 we identify a(u) as Ee'”. Then taking ¢ :== b we have
shown that W(B) has a N(0, | B|) law and is independent of (W(C,),..., W(C,)).
By induction it follows that W(B,),..., W( B,) are independent and, respectively,
N(0, | B,|) whenever the B, are disjoint elements of _#. The argument at the end of
Section 5.2 now gives the result. O

5.5 PROOF OF THEOREM 2.6. Let Z, be any subsequence of Z,. Let S :=
[0,11 N Q, let Z; be the class of intervals in # whose bounding points have
only rational coordinates, and let %2 be the ring of all finite unions of elements
of Z;. As in Section 5.3, by (iii) we may find a subsequence Z, of Z,. that
converges weakly on %g. But in this proof we shall argue that because of (ii), Z
must then converge weakly on Z itself. We replace n’ by n.

Note first that (ii) yields for the null family {D,} in question the existence of
constants h,, K > 0 such that limsup, ,  EZ* D,) < K|D,|for all & < h,.

So, assuming Z, on Z¢ converges weakly to W, choose 4,,..., A, € £, 1> 0,
and u,,..., u, real nonzero. Take & := n/(8L% |u;]). For each j = 1 , k we can
find B, € js such that B; is a subinterval of A and so close to A; that

limsup EZ2(A;\ B;) < £°n/(8k).

n—oc

This is because A, \ B; is the union of a fixed (depending only on d) collection of
disjoint intervals to each of which applies the above consequence of (ii). We then
have, by Chebychev’s inequality and additivity,

(5.5.1) limsup P(|Z,(A;) — Z,(B;)| > ¢) <u/(8k), Jj=1,... k.

n—x
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Consider the joint characteristic function ¢,(u) := E exp(iZf= wu;Z,(A))). Now

|¢,(1) — o, ()|

<E exp(iZujZm(Aj)) - exp(i¥ujzm(3j))’

+E

exp(i;ujZn( Aj)) - exp(i?ujZn( Bj)) ‘

+ Eexp(iZuJ-Zm(Bj)) - Eexp(igujzn(Bj))’

<E

exp(iZuj(Zm(Aj) - zm(B,))) -1

J

+ 1n (for large m, n)

+ E!exp(iz;;uj(Zn(Aj) - Zn(Bj))) -1

k k
<2Y P(|2,(4;) - Z,(B)|z¢) +2 L P(|z,(A,) - Z,(B)| > ¢]
j=1 J=1
k
+2 ) Juje+in  (since|e*—1|< |2])
J=1
k
<4Y n/8k) + in+in (for large m, n, by (5.5.1))
j=1
(—3 n.
Thus the sequence {¢,(u)}, ., is Cauchy and so converges, to ¢(u), say. We must
check that ¢ is continuous at 0. Again, take n > 0 and now & := 1/(4k). Take
B,,..., B, € ¢ such that (5.5.1) holds. Take u,,...,u, so small that |u|<1
(j=1,..., k) and |Eexp(iL u,W(B;)) — 1| < n/4. Then

|¢,(u) —1| < E exp(iZujZn(Aj)) - exp(iZuJZn(Bj))}

+

Eexp(i?ujZ,,(Bj)) - Eexp(i%;uj (Bj))}

+

Eexp(iZujW(Bj)) - 1’, .

Ttle last term is less than n/4, the middle term on the right is at most n,/4 for
large n, and the first term on the right is at most

k k
2 Y P(|Z,(A) - Z(B)| 2 ¢) + Llujle < in+ke=3n
J=1
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for large n. Thus [¢p(u) — 1] < n; hence, ¢(u) > 1 as u = 0. So
(Z(A)),..., Z,(A,)) converges in law, whence Z, converges weakly on %.

We have now shown that the original arbitrary subsequence Z,. contains a
further subsequence Z, converging weakly on %, to W, say. To show W is a
standard Wiener process it suffices to verify that it satisfies the conditions of
Theorem 2.3. First, it is additive. Write n for n’ and set Z, , = ZXD,)/|D,,
W, == W% D,)/|D,|. For each a >0 let p, [0,00) = [0,00) be continuous
and nondecreasing, with p(x) =0 for x < a, p(x) =1 for x > a + 1. Since
H{x>a+ 1) <p(x)<1l{x>a) for all x >0, 2.6(ii) and 2.3(ii) are, respec-
tively, equivalent to

(5.5.2) lim limsup limsup E[Z, ,p.(Z, ,)] =0,
= hlo n—oc
(5.5.3) lim limsup E [W,, p(W,)] = 0.

=X Lo

But (5.5.2) implies (5.5.3), by Loéve [13, Theorem A(i), page 185]. Thus 2.6(ii)
implies 2.3(ii).

It remains to verify 2.3(i). Set X, = exp(2f=1iujZ,,(Cj)), X =
exp(Z’,’= jiu,W(C;)). Now

|E[X(W, - 1)]|
= |E[X,.(Zn,h - 1]+ E[(W,+ 1)p(W,)] + E[(Z, , + 1)pa(Zn,h)]
+|E[X(W,, = 1)1 = p(W,))] = E[X(Z, » = D(1 = pZ, :))]]-

For fixed a, kA, the last term tends to 0 as n — oo, being the difference in
expectation between a particular bounded continuous function of (X,,, Z, ;) and
of its weak limit (X, W,). Let n — o, then 2|0 and a — o0, then the other
three terms on the right tend to 0, by (2.6.2), (5.5.3), and (5.5.2), respectively. This
establishes (2.3.2), and (2.3.1) is immediate from (2.6.1) because of (iii). O

5.6 PROOF OF THEOREM 3.1. Let W be the weak limit of Z, on %.
Choose AV, ..., A% € o/ and let (W,,..., W,) be normal with mean 0 and
cov(W,, W) = |A" N AV)|. Let {C{"},., be a sequence for which (ii) holds
relative to A, Choose z,,...,2, € R and ¢ n > 0. By (iv) there exists L such
that limsup, , . P(|Z(A") — Z(C{")| > ¢) <n/kforalll> Landi=1,..., k.
Then for [ > L, with z] = z, + ¢,

limsup P(Z(AV) < 2,,..., Z,(A®) < z,)

n—xc

< limsup P(Z,(C") < 2},..., Z,(C{®) < z},)

n—xc .

k
+ X timsup P(|Z,(AV) = Z,(C{")] = ¢

(=1 n—ox
< P(W(CM) < 2;,..., W(CP) < 23) + .

l.et / = oc; then since the multinormal laws with mean 0 and covariance |- N - |
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are continuous in probability with respect to the d,-pseudometric, the right-hand
side converges to P(W, < z{,..., W, < z;,) + 0. Thus

limsupP(Z,(AV) < zy,..., Z,(AM) < z,) < P(W, < 2},..., W, < 2},)

n—x

and the reverse inequality for the liminf is proved similarly. Finally, let 0. O

5.7 PROOF OF REMARK 3.2. For each ! we can find open G, > A such that
|G,\A| < 1/1. Now G, is the countable union of open intervals, each of which
has a boundary of Lebesgue measure zero, hence so does G,. Since the closure of
G, is compact, for each m we can find a set B, ,, which contains G, and which
is a finite union of intervals (x — m~'l,x — m~'1] N [0,1]¢ for x € G,. Now
B, .\ G, C (bndy G,)"/™ (notation from (1.0.2)), and the measure of the latter
set tends to JondyG,| = 0 as m — oo; hence, by choosing m = m(l) large we
ensure |B, ,,,,\ G| < 1/l. Then |B, ., \ A < 2/1. Take C,=N|_|B; ;- O

5.8 PROOF oF COROLLARY 3.3. Because of Remark 2.11, what remains to be
shown is that the uniform integrability implies 2.2(iv), (v) and 3.1(ii). Condition
2.2(v) is immediate, as is 3.1(ii), using additivity. For 2.2(iv), pick ¢, n > 0; then
we can make m so large that

5 Zf(A)l{Z,f(A)

> std}] < e, n>1, A€ %.

|A] |A]
Then
Z:(C,, ; Z:C, ;
L AE(Cu)= ) = X tenty | | Bl s )
j€, j€d, | 'm,j| | m,j|
< Y oqm t=n,
jEJln

hence 2.2(iv). O

5.9 PrROOF OF THEOREM 4.1. By [7] Theorem 4.1 we have uniform integra-
bility of the set {Z2(A)/|Al} -1 ac 4 So Corollary 3.3 applies once we have
checked 2.2(iii). For the strong mixing coefficient

a,(x) = sup sup |P(ENF)—- P(E)P(F)|,

1,Jcd, Eeo(§,; i€l
pUl, J)zx Feo(t,;j€d)

obviously «,(x) < p,(x). Because p,(x) is nonincreasing in x, condition 4.1(iii)
implies p,(x) = 0 (n = oo) for each fixed x. Thus a,(x) = 0 (n - o). Clearly
the left-hand side of (2.2.1) has absolute value at most (2 — 1)a,(p) where p > 0
is the least separation distance between the sets C,, ..., C,. Thus 2.2(iii) holds. O

5.10 PROOF oF THEOREM 4.3. We show 2.6(i), when the result follows by
Theorem 4.1. Thus, pick C,,...,C, € ¢, with |U*C,| < 1, pick real u,,..., u,,
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and a null family (D,}y< ., in £ with 2x = p(D, ,U*C;) > 0. Now Z,(D,)
and (Z,(C)),..., Z,(C,)) are measurable with respect to respective o-algebras

F, :='o{£n’j:j S D},‘/)”}, G = o{%n,j:j € (Uj;lcj)l/n},

which are based on sets of £, ; at separation distances > 2x — 2/n, and we keep
n large enough that this is always > x. We may also, by reducing A, if need be,
‘and on account of (iv), assume that limsup,_,  EZ2%(D,) < o for all h < h,,
Write U, := exp(iZ%_,u;Z,(C))).

By Peligrad’s inequality, whose proof is valid for complex-valued r.v.s,

|E(U,Z,(D)))| < 2¢,(x)U,lIoll Z(Dy) I, < 2¢,(x)[1Z,( D) |,

For fixed A, the right-hand side tends to 0 as n — oo, hence (2.6.1). Likewise,
ertlng ‘/n,h = Z)?(Dh)/thl - 17

|E(Un‘/n,h)| SIE'(l]n‘/n,h) - EUnE‘/n,hl + |E‘/n,h|
< 20,()U M1V ally + IEV,, 4l
whence for each h < A,
limsup |E(U,V, ,)| < limsup|EV, ,|

n—c n—oc

and (2.6.2) follows. O
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