BROWNIAN MOTION AND HARMONIC FUNCTIONS ON ROTATIONALLY SYMMETRIC MANIFOLDS¹

By Peter March

New York University

We consider Brownian motion X on a rotationally symmetric manifold $M_R = (\mathbb{R}^n, ds^2)$, $ds^2 = dr^2 + g(r)^2 d\theta^2$. An integral test is presented which gives a necessary and sufficient condition for the nontriviality of the invariant σ -field of X, hence for the existence of nonconstant bounded harmonic functions on M_g . Conditions on the sectional curvatures are given which imply the convergence or the divergence of the test integral.

1. Introduction. When \mathbb{R}^n is given a Riemannian metric which can be written in polar coordinates as

$$ds^2 = dr^2 + g(r)^2 d\theta^2,$$
 $g(0) = 0, \qquad g'(0) = 1, \qquad g(r) > 0 \quad \forall r > 0,$

it becomes a rotationally symmetric manifold $M_{\rm g}$ whose Laplace–Beltrami operator in these coordinates is

$$\Delta_g = \frac{\partial^2}{\partial r^2} + (n-1)g^{-1}(r)g'(r)\frac{\partial}{\partial r} + g^{-2}(r)\Delta_{\mathbb{S}^{n-1}}.$$

Of course when g(r) = r, M_g is the Euclidean \mathbb{R}^n . M_g is called a weak model by Greene and Wu (1979) and a Ricci model by Cheeger and Yau (1981). Choi (1984) gives a characterization of manifolds isometric to some M_g . These manifolds are used as comparison manifolds in geometry.

Recent interest has centered on the question of the existence of nonconstant harmonic functions on general Riemannian manifolds [e.g., Yau (1975), Greene and Wu (1979), Choi (1984), and Anderson (1983) using geometric methods; Prat (1971), (1975), Pinsky (1978), Kifer (1976), and Sullivan (1983) using probabilistic methods]. In this note we settle the question for weak models as follows:

The invariant σ -field of Brownian motion on M_g is nontrivial if and only if $J(g) = \int_1^\infty g^{n-3}(r) \, dr \int_r^\infty g^{1-n}(\rho) \, d\rho < \infty$.

In case $J(g) < \infty$ the existence of nonconstant bounded harmonic functions follows easily and if $J(g) = \infty$ there are none such. Let $c_2 = 1$, $c_n = \frac{1}{2}$, $n \ge 3$. Under the assumption that the radial curvature k(r) = -(g''/g)(r) is nonpositive we find that

$$J(g) < \infty$$
 if $k(r) \le \frac{-c}{r^2 \log r}$ for $c > c_n$ and large r , $J(g) = \infty$ if $k(r) \ge \frac{-c}{r^2 \log r}$ for $c < c_n$ and large r .

Received August 1984; revised November 1985.

¹Research supported in part by NSF grant MCS-82-01599.

AMS 1980 subject classifications. Primary 60G65; secondary 58G32.

Key words and phrases. Skew product, invariant σ -field, sectional curvature.

This alternative has been observed before by Milnor (1977) in dimension 2 and in part by Choi (1984) in dimension $n \geq 3$.

2. An integral test. Brownian motion X_t on M_g can be represented as a skew product as follows. Introduce a one-dimensional standard Brownian motion β_t and consider the process r_t satisfying

$$dr_t = d\beta_t + \frac{n-1}{2}g^{-1}(r_t)g'(r_t) dt.$$

It has scale function

$$s(r) = \int_1^r g^{1-n}(\rho) d\rho$$

and speed measure

$$m(dr) = 2g^{n-1}(r) dr.$$

Because g(0) = 0 and g'(0) = 1, it is easy to check that r = 0 is an entrance, nonexit boundary [Itô and McKean (1965), pages 130–131].

Let l(t, r) be the local time (with respect to m) of r_t . With

$$\begin{split} \lambda(dr) &= 2g^{n-3}(r)\,dr,\\ \tau(t) &= \int l(t,r)\lambda(r) = \int_0^t &g^{-2}(r_s)\,ds, \end{split}$$

and θ_i the Brownian motion on \mathbb{S}^{n-1} we consider the skew-product diffusion [Itô and McKean (1965), Section 7.15]

$$X_t = \left[r_t, \theta_{\tau(t)} \right].$$

Its generator acting on smooth, compact functions of $\theta \in \mathbb{S}^{n-1}$ and r > 0 is

$$\begin{split} &\left(\frac{d}{dm}\frac{d}{ds} + \frac{1}{2}\frac{d\lambda}{dm}(r)\Delta_{\mathbb{S}^{n-1}}\right)u(r,\theta) \\ &= \frac{1}{2}\left(\frac{\partial^{2}}{\partial r^{2}} + (n-1)g^{-1}(r)g'(r)\frac{\partial}{\partial r} + g^{-2}(r)\Delta_{\mathbb{S}^{n-1}}\right)u(r,\theta) \\ &= \frac{1}{2}\Delta_{g}u(r,\theta). \end{split}$$

Following the discussion in Itô and McKean (1965, Section 7.16) and modifying it slightly to account for the possibility that the lifetime of r_t may be finite, one finds that because $\int_0^1 \!\! s(r) \lambda(dr) = -\infty$, X_t can be considered as a diffusion on all of \mathbb{R}^n . Thus X_t is a representation of Brownian motion on M_g via the exponential map.

LEMMA 1. (i) r_t is transient if and only if $\int_1^{\infty} g^{1-n}(r) dr < \infty$. (ii) $P_r[\tau(\zeta) < \infty] = 1$ or 0 according as

$$J(g) = \int_1^\infty g^{n-3}(r) \int_r^\infty g^{1-n}(\rho) d\rho \leq \infty,$$

where ζ is the lifetime of r_t .

PROOF. (i) Recall that r_t is recurrent if $P_r[T_\rho < \zeta] = 1$ for each 0 < r, $\rho < \infty$, transient if $P_r[T_\rho < \zeta] = < 1$ for some 0 < r, $\rho < \infty$, where T_ρ is the passage time to ρ , and that r_t is either recurrent or transient. If $r \le \rho$ then because $s(0) = -\infty$

$$\begin{split} P_r\big[T_{\rho} < \zeta\big] &= P_r\big[T_{\rho} < T_{0+}\big], \\ T_{0+} &= \lim_{\epsilon \downarrow 0} T_{\epsilon} = \lim_{\epsilon \downarrow 0} \frac{s(r) - s(\epsilon)}{s(\rho) - s(\epsilon)} = 1. \end{split}$$

On the other hand, if $r > \rho$ then

$$P_rig[T_
ho \le \zetaig] = P_rig[T_
ho \le T_\inftyig],$$
 $T_\infty = \lim_{R o \infty} T_R = \lim_{R o \infty} rac{s(R) - s(r)}{s(R) - s(
ho)},$

whose limit is 1 if $s(\infty) = \infty$ and less than one otherwise. Since $s(\infty) = \int_1^\infty g^{1-n}(r) dr$ this proves (i).

(ii) Since $s(0) = -\infty$, we have for each R > 0, $P_r[T_R < T_{0+}] = 1$, hence $P_r[\zeta = T_{\infty}] = 1$. Because $\tau(t)$ is increasing

$$\begin{split} \tau(T_R) &= \inf \big\{ \tau(t) \colon r_t = R \big\} \\ &= \inf \big\{ t \colon r_{\sigma(t)} = R \big\}, \end{split}$$

where $\sigma(t)$ is the inverse of the additive functional τ . Thus $\tau(T_R)$ is the passage time to R of $r_{\sigma(t)}$, a process with speed $\lambda(dr)$ and scale s(r). This means $P_r[\tau(T_\infty) < \infty] = 1$ or 0 according as $+\infty$ is an exit or nonexit boundary for $r_{\sigma(t)}$, that is according as

$$\int_{1}^{\infty} ds(\rho) \int_{1}^{\rho} \lambda(dr) = 2 \int_{1}^{\infty} g^{-3}(r) dr \int_{r}^{\infty} g^{1-n}(\rho) d\rho = 2J(g) \leq \infty. \qquad \Box$$

To discuss the invariant σ -field let us regard X_t as a diffusion process $X=(\Omega, \mathscr{F}, \mathscr{F}_t, \theta_t, X_t, P_x)$ with state space \mathbb{R}^n . (In this paragraph only θ_t is the shift operator; in the sequel the letter θ denotes spherical Brownian motion). An event $\Lambda \in \mathscr{F}$ is an invariant event if its indicator function is invariant under the shift: $I_{\Lambda} \circ \theta_t = I_{\Lambda}$. The invariant σ -field is

$$\mathscr{I}(X) = \{ \Lambda \in \mathscr{F} : \exists \Lambda^0 \in \mathscr{F} \text{ such that } P_x [\Lambda = \Lambda^0] = 1 \ \forall \ x \text{ and } \Lambda^0 \text{ is invariant} \}.$$

Let us recall the relationship between bounded harmonic functions h and bounded invariant random variables H:

- 1. If h is bounded and harmonic then $h(X_t)$ is a bounded P_x -martingale and $H \equiv \lim_{t \to \infty} h(X_t)$ is an invariant random variable.
- 2. If H is bounded and invariant then $h(x) \equiv E_x[H]$ is a bounded harmonic function and $\lim_{t\to\infty}h(X_t)=H$, P_x a.s.
- 3. h(x) is a harmonic function [i.e., $h(X_t)$ is a P_x , martingale for each $x \in \mathbb{R}^n$] if and only if $h \in C^2$ and $\frac{1}{2}\Delta_{\sigma}h = 0$.

These facts are discussed in Dynkin (1965, Chapters XII and XIII), for example.

LEMMA 2. The σ -field $\mathcal{I}(x)$ consists of exit sets Λ_A , $A \in \mathbb{R}^n$, A open, where

$$\begin{split} &\Lambda_A = \big\{\omega\colon there\ exists\ T(\omega) \geq 0\ such\ that\ X_t(\omega) \in A\ \forall\ t \geq T(\omega)\big\} \\ &= \big\{X_t \in A\ eventually\big\}. \end{split}$$

PROOF. Certainly the exit sets Λ_A are invariant. Let $\Lambda \in \mathcal{I}(X)$. Then $h(x) = P_x[\Lambda]$ is a harmonic function and $h(X_t)$ a bounded martingale. By 3 above $A = \{x \in \mathbb{R}^n \colon h(x) > \frac{1}{2}\}$ is open. Now $\Lambda_A = \{h(X_t) > \frac{1}{2} \text{ eventually}\}$ and by the martingale convergence theorem (2 above) $P_x[\lim_{t \to \infty} h(X_t) = I_{\Lambda}] = 1$ for every $x \in \mathbb{R}^n$. Thus $P_x[\Lambda = \Lambda_A] = 1$, which proves the lemma. \square

THEOREM 1. The invariant σ -field $\mathscr{I}(X)$ is nontrivial if and only if $J(g) = \int_{1}^{\infty} g^{n-3}(r) dr \int_{r}^{\infty} g^{1-n}(\rho) d\rho < \infty$.

PROOF. Suppose r_t is recurrent. Then X_t can have no nontrivial exit sets. By Lemma 1, $\int_{1}^{\infty} g^{1-n}(\rho) d\rho = \infty$ which forces $J(g) = \infty$.

Let us suppose r_t is transient and $J(g)=\infty$. Then $\tau(\zeta)=\infty$, P_r a.s., which means that $P_r[\theta_{\tau(t)}]$ is recurrent] = 1, since θ_τ is just a time change of spherical Brownian motion. Denote $P_{r,\,\theta}=P_r\times P_\theta$ where P_θ is spherical Wiener measure starting at θ . By Lemma 2 it is enough to check that $P_{r,\,\theta}[\Lambda_A]=0,1$ for sets $A=(a,b)\times B,\,B\subset\mathbb{S}^{n-1}$ an open set. Write $C=(a,b)\times\mathbb{S}^{n-1}$ and $D=(0,\infty)\times B$ so that $A=C\cap D$. Then

$$\begin{split} P_{r,\,\theta}\big[\,\Lambda_A\big] &= P_{r,\,\theta}\big[\,\Lambda_C \cap \Lambda_D\big] \\ &= E_r\big[\,I_{\Lambda_C}P_{\theta}\big[\,\Lambda_D\,\big]\big] \\ &= \delta P_r\big[\,\Lambda_C\big], \end{split}$$

where $\delta = P_{\theta}[\Lambda_D] = 0,1$ by the recurrence of θ_{τ} . Because r_t is transient, $P_r[\Lambda_C] = 1$ if $(a,b) = (a,\infty)$ and zero if $b < \infty$, and this proves the 0,1 statement above.

Finally, assume $J(g) < \infty$. Then r_t is transient and $P_r[\tau(\zeta) < \infty] = 1$. Thus

$$egin{aligned} P_{r,\, heta}ig[heta_{ au(\zeta)} &\in d\phiig] = \int_0^\infty &P_{ heta}ig[heta_t \in d\phiig]P_rig[au(\zeta) \in dtig] \ &\equiv d\phi\int_0^\infty &p(t, heta,\phi)q(r,dt) \end{aligned}$$

[$p(t, \theta, \phi) d\phi$ the transition density of spherical Brownian motion] is a probability density on \mathbb{S}^{n-1} . This shows that nonempty, disjoint open sets in \mathbb{S}^{n-1} determine distinct, nontrivial exit sets. \square

Remarks. 1. In dimension 2 transience of X_t is equivalent to the nontriviality of $\mathscr{I}(X)$, i.e., to the existence of nonconstant, bounded harmonic functions.

2. The random variable $\theta_{\tau(\zeta)}$ generates the invariant σ -field so that every bounded harmonic function has the representation $h(r,\theta) = E_{r,\theta} f(\theta_{\tau(\zeta)})$ for $f \in L^{\infty}(\mathbb{S}^{n+1})$.

- 3. It is natural to guess and not hard to prove, following the argument of Kifer (1976), that $K(r, \theta, \phi) = \int_0^\infty p(t, \theta, \rho) q(r, dt)$, the density of $\theta_{\tau(\xi)}$, is the Martin kernel of Δ_{ϱ} .
- 3. Radial curvature. For each $p \in M_g$ and any 2-plane σ in $T_p M_g$ containing the radial vector dr, the sectional curvature $K(\sigma)$ is a function of r = r(p) alone, call it k(r), and one has Jacobi's equation

$$g'' + kg = 0,$$

 $g(0) = 0,$ $g'(0) = 1.$

Thus k = -(g''/g)[k] is called the radial curvature, Greene and Wu (1979)].

LEMMA 3. Suppose f and g are positive functions satisfying f(0) = g(0) = 0, f'(0) = g'(0) = 1, and $-(g''/g) \le -(f''/f)$ for r > 0. Then $f'/f \le g'/g$ and $f \le g$ for r > 0.

PROOF. The proof is based on the identities

$$\left(g^{2}\left(\frac{f}{g}\right)'\right)' = (gf' - fg')' = fg\left(\frac{f''}{f} - \frac{g''}{g}\right).$$

The details are omitted. \Box

LEMMA 4. Suppose f and g are C^2 functions such that

$$f(0) = g(0) = 0,$$
 $f'(0) = g'(0) = 1,$ and $-\frac{g''}{g} \le -\frac{f''}{f} \le 0$

for all r > 0. Then $J(f) < \infty$ implies $J(g) < \infty$ and $J(g) = \infty$ implies $J(f) = \infty$.

PROOF. By Lemma 3, $1/r \le f'/f \le g'/g$ and $r \le f(r) \le g(r)$. Consider solutions of the equations

$$dr_t = d\beta_t + \frac{n-1}{2}g^{-1}(r_t)g'(r_t) dt,$$

$$d\rho_t = d\beta_t + \frac{n-1}{2} f^{-1}(\rho_t) f'(\rho_t) dt$$

defined up to their respective lifetimes ζ and η . Since zero is an entrance, nonexit boundary for both processes we have as in Lemma 1, $\zeta = \inf\{t: \ r_t = +\infty\}$ and $\eta = \inf\{t: \ \rho_t = +\infty\}$. With the understanding that $r_{\zeta+t} = \rho_{\eta+t} = +\infty$ for all $t \geq 0$, we claim $P_r[\rho_t \leq r_t \ \forall \ t \geq 0] = 1$. This follows directly from the comparison theorem for one dimensional diffusions [e.g., Ikeda and Watanabe (1981), Chapter VI, Theorem 1.1] since by Lemma 3 $((n-1)/2)f'/f \leq ((n-1)/2)g'/g$. However, our situation is simple enough that we recall the proof here.

Let ϕ_N be a sequence of smooth functions satisfying

$$\phi_N(x) = 0, \quad x \le 0; \quad \phi_N(x) \uparrow x^+ = \max\{x, 0\} \text{ and } 0 \le \phi'_N(x) \le 1.$$

Let us set F = ((n-1)/2)f'/f, G = ((n-1)/2)g'/g and suppose that F and G are bounded and globally Lipschitz with constant K. By Itô's formula:

$$\begin{split} \phi_{N}(\tau_{t} - r_{t}) &= \int_{0}^{t} \phi_{N}'(\rho_{s} - r_{s}) \big[F(\rho_{s}) - G(r_{s}) \big] ds \\ &= \int_{0}^{t} \phi_{N}'(\rho_{s} - r_{s}) \big[F(\rho_{s}) - F(r_{s}) + F(r_{s}) - G(r_{s}) \big] ds \\ &\leq \int_{0}^{t} \phi_{N}'(\rho_{s} - r_{s}) \big[F(\rho_{s}) - F(r_{s}) \big] ds \\ &= \int_{0}^{t} \phi_{N}'(\rho_{s} - r_{s}) I_{\{\rho_{s} > r_{s}\}} \big[F(\rho_{s}) - F(r_{s}) \big] ds \\ &\leq K \int_{0}^{t} I_{\{\rho_{s} > r_{s}\}} |\rho_{s} - r_{s}| ds \\ &\leq K \int_{0}^{t} (\rho_{s} - r_{s})^{+} ds. \end{split}$$

Taking expectations and letting $N \to \infty$ one finds

$$E_r(\rho_t - r_t)^+ \leq K \int_0^t E_r(\rho_s - r_s)^+ ds$$

hence $P_r[\rho_t \le r_t] = 1$ for each $t \ge 0$. Thus $P_r[\rho_t \le r_t \, \forall \, t \ge 1] = 1$ by continuity of paths. Now the bounded Lipschitz hypothesis can be removed by a simple localization argument.

Since f, g are increasing and $f \le g$ we have $f(\rho_t) \le g(r_t)$. Since $f(\infty) = g(\infty) = \infty$ and $\zeta \le \eta$ one finds

$$\tau_g(\zeta) = \int_0^{\zeta} g^{-2}(r_t) dt \le \int_0^{\eta} f^{-2}(\rho_t) dt = \tau_f(\eta) \quad P_r \text{ a.s.}$$

The lemma follows if one remembers (Lemma 1) the probabilistic meaning of J(g) and J(f). \square

REMARK. The reader is referred to the appendix for an alternative proof of Lemma 4 which was kindly supplied by the referee.

Lemma 5. Suppose f and g are C^3 with the same initial conditions as before. Suppose that

$$-\frac{g''}{g} \le 0, \quad -\frac{f''}{g} \le 0 \quad \text{for all } r > 0$$

and

$$-\frac{g''}{g} \le -\frac{f''}{f} \quad \text{for all } r \ge R > 0.$$

Then $J(f) < \infty$ implies $J(g) < \infty$ and $J(g) = \infty$ implies $J(f) = \infty$.

PROOF. Set $K_+ = \max\{-(g''/g), -(f''/f)\}, k_- = \min\{-(g''/g), -(f''/f)\}$. These functions are Lipschitz. Let u_+ be the C^2 solutions of

$$w'' + k_{\pm}w = 0,$$

 $w(0) = 0, \qquad w'(1) = 1.$

There are positive constants such that

$$\alpha_1 u_+(R) \le f(R) \le \alpha_2 u_+(R), \qquad \alpha_1 u'_+(R) \le f'(R) \le \alpha_2 u'_+(R).$$

On (R, ∞) , u_+ and f satisfy the same equation, hence

$$\alpha_1 u_+(r) \leq f(r) \leq \alpha_2 u_+(r), \qquad r \geq R,$$

and so

$$\gamma_1 + \beta^{-1} J(u_+) \le J(f) \le \gamma_2 + \beta J(u_+)$$

for some constants γ_1, γ_2 , and β . Similarly $\gamma_1 + \beta^{-1}J(u_-) \leq J(g) \leq \gamma_2 + \beta J(u_-)$. By Lemma 4, $J(u_+) < \infty$ implies $J(u_-) < \infty$ and $J(u_-) = \infty$ implies $J(u_+) = \infty$. By the inequalities above these implications hold with f, g replacing u_+, u_- , respectively.

Theorem 2. Let M_g be the weak model with metric $ds^2 = dr^2 + g(r)^2 d\theta^2$, $g \in C^3$ and $k(r) \le 0$ the radial curvature. Let $c_2 = 1$ and $c_n = \frac{1}{2}$, $n \ge 3$. If $k(r) \le -c/(r^2 \log r)$ for $c > c_n$ and all large r then M_g has nonconstant bounded harmonic functions. If $k(r) \ge -c/(r^2 \log r)$ for $c < c_n$ and all large r, then M_g has none.

PROOF. Define $\phi(r) = r(\log r)^{\alpha}$, $\alpha > 0$. Choose $\beta > 1$ such that $\phi'(\beta) > 0$ and $\phi''(\beta) > 0$ and set $f(r) = (\phi(r+\beta) - \phi(\beta))/\phi'(\beta)$. Then f(0) = 0, f'(0) = 1, $-f'''/f \le 0$ and

$$\frac{-f''}{f}(r) \sim \frac{-\phi''}{\phi}(r) = \frac{-\alpha}{r^2 \log r} \left(1 - \frac{\alpha - 1}{\log r}\right) \text{ as } r \to \infty,$$

Because $f(r) \sim \phi(r)$ as $r \to \infty$, J(f) and $J^* = \int_2^{\infty} \phi(r)^{n-3} dr \int_r^{\infty} \phi(\rho)^{1-n} d\rho$ are finite or infinite together. When n = 2, $J^* < \infty$ if and only if $\alpha > 1$. When $n \ge 3$ one finds

$$\int_{r}^{\infty} \phi(\rho)^{1-n} d\rho \sim \left((n-2)r^{n-2} (\log r)^{(n-1)\alpha} \right)^{-1} \quad \text{as } r \to \infty.$$

Thus J^* behaves like $\int_2^\infty dr/(r(\log r)^{2\alpha})$. Hence $J^* < \infty$ if and only if $\alpha > \frac{1}{2}$. Applying Lemma 5 to f and g finishes the proof. \square

APPENDIX

Alternative proof of Lemma 4. Define

(1)
$$J_{s}(f) = \int_{1}^{s} f^{n-3}(r) dr \int_{r}^{\infty} f^{1-n}(\rho) d\rho, \qquad s \ge 1.$$

We want to show under the assumptions in Lemma 4 that $J_s(f) \geq J_s(g)$, $s \geq 1$.

From Lemma 3, this inequality is obvious for n = 2. Therefore if suffices to show the inequality under additional assumptions; $n \ge 3$ and

(2)
$$\int_{1}^{\infty} f^{1-n}(\rho) d\rho < \infty.$$

Then

$$\frac{dJ_s(f)}{ds} = f^{n-3}(s) \int_s^\infty f^{1-n}(\rho) d\rho \ge 0.$$

So

(3)
$$\frac{1}{f^{n-3}(s)} \frac{dJ_s(f)}{ds} = \int_s^\infty f^{1-n}(\rho) \, d\rho \downarrow 0 \quad \text{as } s \uparrow \infty.$$

Differentiate (3):

$$\frac{d}{ds}\left(\frac{1}{f^{n-3}(s)}\frac{dJ_s(f)}{ds}\right) = -f^{1-n}(s).$$

Thus

$$\frac{d^2 J_s(f)}{ds^2} - (n-3) \frac{f'(s)}{f(s)} \frac{dJ_s(f)}{ds} + \frac{1}{f(s)^2} = 0.$$

From the assumptions in Lemma 4, we have

$$\frac{d^2 J_s(f)}{ds^2} - (n-3) \frac{g'(s)}{g(s)} \frac{d J_s(f)}{ds} + \frac{1}{g^2(s)} \le 0, \quad s \le 1.$$

Thus

(4)
$$-\frac{1}{g^{n-1}(s)} \ge \frac{1}{g^{n-3}(s)} \frac{d^2 J_s(f)}{ds^2} - (n-3) \frac{g'(s)}{g^{n-2}(s)} \frac{d J_s(f)}{ds}$$

$$= \frac{d}{ds} \left(\frac{1}{g^{n-3}(s)} \frac{d J_s(f)}{ds} \right).$$

Integrate (4) from s to ∞ :

$$-\int_{s}^{\infty} \frac{d\rho}{g^{n-1}(\rho)} \ge \lim_{\rho \to \infty} \left[\frac{1}{g^{n-3}(s)} \frac{dJ_{s}(f)}{ds} \right] - \frac{1}{g^{n-3}(s)} \frac{dJ_{s}(f)}{ds}.$$

Hence

(5)
$$g^{n-3}(s) \int_{s}^{\infty} g^{1-n}(\rho) d\rho \leq \frac{dJ_{s}(f)}{ds}.$$

Integrate (5) from 1 to $s (\ge 1)$:

$$J_{s}(g) = \int_{1}^{s} g(r)^{n-3} dr \int_{r}^{\infty} g(\rho)^{1-n} d\rho \leq J_{s}(f) - J_{s}(1) = J_{s}(f). \qquad \Box$$

REFERENCES

- Anderson, M. T. (1983). The Dirichlet problem at infinity for manifolds of negative curvature. J. Differential Geom. 18 701-722.
- CHEEGER, J. and YAU, S. T. (1981). A lower bound for the heat kernel. Comm. Pure Appl. Math. 34 465-480.
- Сної, Н. І. (1984). Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds. Trans. Amer. Math. Soc. 281 691–716.
- DYNKIN, E. B. (1965). Markov Processes 1, 2. Springer, Berlin.
- GREENE, R. E. and Wu, H. (1979). Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Math. 699. Springer, Berlin.
- IKEDA, N. and WATANABE, W. (1981). Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam.
- ITÔ, K. and McKean, H. P. (1965). Diffusion Processes and Their Sample Paths. Springer, Berlin. Kifer, Yu. I. (1976). Brownian motion and harmonic functions on manifolds of negative curvature.
- Kifer, Yu. I. (1976). Brownian motion and harmonic functions on manifolds of negative curvature.

 Theory Probab. Appl. 21 81–95.

 MILNOR, J. (1977). On deciding when a surface is parabolic or hyperbolic. Amer. Math. Monthly 84
- 43–46.
- PINSKY, M. A. (1978). Stochastic Riemannian geometry. In *Probabilistic Analysis and Related Topics* 1 (A. T. Bharucha-Reid, ed.) 199–236. Academic, New York.
- PRAT, J. J. (1971). Étude asymptotique du mouvement Brownien sur une variété Riemannienne à courbure négative. C.R. Acad. Sci. Sér. A 272 1586-1589.
- Prat, J. J. (1975). Étude asymptotique et convergence angulaire du mouvement Brownien sur une variété a courbure négative. C.R. Acad. Sci. Sér. A 280 1539–1542.
- Sullivan, D. (1983). The Dirichlet problem at infinity for a negatively curved manifold. J. Differential Geom. 18 723-732.
- YAU, S. T. (1975). Harmonic functions on a complete Riemannian manifold. Comm. Pure Appl. Math. 28 201–228.

Institute for Mathematics and its Applications University of Minnesota 514 Vincent Hall 206 Church Street S.E. Minneapolis, Minnesota 55455-0436