The \nnals of Probabidits
1956, Vol 11 No. 3, 793-801

BROWNIAN MOTION AND HARMONIC FUNCTIONS ON
ROTATIONALLY SYMMETRIC MANIFOLDS'

By PETER MARCH

New York University
We consider Brownian motion X on a rotationally symmetric manifold
M, = (R", ds?), ds? = dr? + g(r)*> d6?. An integral test is presented which
gives a necessary and sufficient condition for the nontriviality of the invariant
o-field of X, hence for the existence of nonconstant bounded harmonic
functions on M,. Conditions on the sectional curvatures are given which
imply the convergence or the divergence of the test integral.

1. Introduction. When R" is given a Riemannian metric which can be
written in polar coordinates as

ds®=dr? + g(r)’de?,
g(0) =0, g'(0) =1, g(r)>0 Vr>0o,

it becomes a rotationally symmetric manifold M, whose Laplace-Beltrami
operator in these coordinates is
2

d d
D=5+ (0= g (g ()5 + 8 (r)dsr .

Of course when g(r) = r, M, is the Euclidean R". M, is called a weak model by
Greene and Wu (1979) and a Ricci model by Cheeger and Yau (1981). Choi (1984)
gives a characterization of manifolds isometric to some M,. These manifolds are
used as comparison manifolds in geometry.

Recent interest has centered on the question of the existence of nonconstant
harmonic functions on general Riemannian manifolds [e.g., Yau (1975), Greene
and Wu (1979), Choi (1984), and Anderson (1983) using geometric methods; Prat
(1971), (1975), Pinsky (1978), Kifer (1976), and Sullivan (1983) using probabilistic
methods]. In this note we settle the question for weak models as follows:

The invariant o-field of Brownian motion on M, is nontrivial if and only if
J(g)= [7g" *(r)dr[7g' ""(p)dp < .

In case J(g) < w0 the existence of nonconstant bounded harmonic functions
follows easily and if J(g) = oo there are none such. Let ¢, =1, ¢, = §, n > 3.
Under the assumption that the radial curvature k(r) = —(g”/g)(r) is nonposi-
tive we find that

—c
J(g) <o if k(r) <——— forc>c,andlarger,
r-logr
—c
J(g) =00 ifk(r)=—; for ¢ < ¢, and large r.
) rélogr
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This alternative has been observed before by Milnor (1977) in dimension 2 and in
part by Choi (1984) in dimension n > 3.

2. An integral test. Brownian motion X, on M, can be represented as a
skew product as follows. Introduce a one-dimensional standard Brownian motion

B, and consider the process r, satisfying

1
dr,=d,8,+ g“(r‘,)g’(r‘,)dt.

It has scale function
s(r)= (g "(p)d
(r) fl g "(p)dp

and speed measure
m(dr) =2g""'(r)dr.

Because g(0) = 0 and g'(0) = 1, it is easy to check that r = 0 is an entrance,
nonexit boundary [It6 and McKean (1965), pages 130-131].
Let I(¢, r) be the local time (with respect to m) of r,. With

ANdr) =2g" " %r)dr,
(-2
(1) = [ie, M) = [0 s,
and 6, the Brownian motion on S” ' we consider the skew-product diffusion [1t6
and McKean (1965), Section 7.15]
X, = [r, 0.,
Its generator acting on smooth, compact functions of § € S”" ! and r > 0 is
d d 1dA
(E;i oty (A l)u(r, 0)
1( 92 . N o
- 3|35 (= D) 5 s futr,0)
1
= gAgu(r, 0).

Following the discussion in It6 and McKean (1965, Section 7.16) and modifying it
slightly to account for the possibility that the lifetime of r, may be finite, one
finds that because [/s(r)\(dr) = — 0, X, can be considered as a diffusion on all
of R". Thus X, is a representation of Brownian motion on M, via the exponen-
tial map.

LEMMA 1. (i) r, is transient if and only if [{°g'~"(r)dr < co.
(i) P[7({) < o0] = 1 or 0 according as

J(g) =flxg""“(r)frxg“”(p)dp < o,

where { is the lifetime of r,.
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ProoF. (i) Recall that r, is recurrent if P[T, <{]=1 for each 0 <r,
p < oo, transient if P[T, <{]=<1 for some 0 <r, p < oo, where T, is the
passage time to p, and that r, is either recurrent or transient. If r < p then
because s(0) = —

RIT, <t = R[T, < T.],

: . s(r) —s(e)
T,, = imT = lim—————~ =1
L0 c10 s(p) — s(e)

On the other hand, if r > p then
P[T, <¢]|=P[T, <T,.],

T - L To— s(R) — s(r)
= lim = lim ———,
*  Rix ®  R-x s(R)—s(p)
whose limit is 1 if s(0) = o and less than one otherwise. Since
s(c) = [7g" "(r)dr this proves (i).

(ii) Since s(0) = — oo, we have for each R >0, P[T, < 7T,.,]=1, hence
P[{ = T,]= 1. Because 7(¢) is increasing

7(Tg) = inf{r(t): r,= R}
= inf{t: r,,, = R},

where o(t) is the inverse of the additive functional 7. Thus 7(T}) is the passage
time to R of r,,,, a process with speed A(dr) and scale s(r). This means
P[7(T,) < ] = 1or0 according as + oo is an exit or nonexit boundary for r,,,,
that is according as

ffdsm f]"x(dr) - 2[I“g-3<r>dr[“g‘-"<p)dp =2J(g)<w. O

To discuss the invariant o-field let us regard X, as a diffusion process
X =(Q, %, %#,0, X,, P,) with state space R”. (In this paragraph only 6, is the
shift operator; in the sequel the letter § denotes spherical Brownian motion). An
event A € % is an invariant event if its indicator function is invariant under the
shift: I, 8, = I,. The invariant o-field is

F(X)={AeF:I\° € F suchthat P[A = A"] =1V xand A is invariant}.

Let us recall the relationship between bounded harmonic functions A and
bounded invariant random variables H:

1. If A is bounded and harmonic then A(X,) is a bounded P-martingale and
H = lim,_ A(X,) is an invariant random variablé.

2. If H is bounded and invariant then A(x) = E,[H] is a bounded harmonic

:» function and lim,_, A(X,) = H, P, as.

3. h(x)is a harmonic function [i.e., A(X,) is a P, martingale for each x € R"] if
and only if A € C* and jA A = 0.

These facts are discussed in Dynkin (1965, Chapters XII and XIII), for example.
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LEMMA 2. The o-field #(x) consists of exit sets A ,, A € R", A open, where
A, = {w: thereexists T(w) > 0 such that X,(w) € AVt > T(w)}
= { X, € A eventually}.

ProOF. Certainly the exit sets A, are invariant. Let A € #(X). Then
h(x) = P[A] is a harmonic function and A(X,) a bounded martingale. By 3
above A = {x € R™ h(x) > }} is open. Now A , = {A(X,) > ; eventually} and
by the martingale convergence theorem (2 above) P [lim,_ A(X,) = I,] =1 for
every x € R”. Thus P[A = A,] = 1, which proves the lemma. O

THEOREM 1 The invariant o-field #(X) is nontrivial if and only if
J(g) = [7g" r)drf7g' " "(p)dp < oo.

PROOF. Suppose 7, is recurrent. Then X, can have no nontrivial exit sets. By
Lemma 1, [*g' "(p)dp = oo which forces J(g) = oo.

Let us suppose r, is transient and J(g) = co. Then 7({) = o0, P. a.s., which
means that P,[6,,, is recurrent] = 1, since 6, is just a time change of spherical
Brownian motion. Denote P, , = P, X P, where P, is spherical Wiener measure
starting at 6. By Lemma 2 it is enough to check that P, ,[A,] = 0,1 for sets
A =(a,b) X B,BC S" ! an open set. Write C =(a,b) X S$"! and D =
(0, ) X B sothat A = C N D. Then

R',O[AA] = Pr,0[A(,‘ NA,l

= Er[IA(.P0[A1)]]
=8P [Ac],

where 8 = PJ[A,]=0,1 by the recurrence of 6,. Because r, is transient,
P[A/]=1 if (a,b)=(a,) and zero if b < oo, and this proves the 0,1
statement above.

Finally, assume J(g) < co. Then r, is transient and P.[7({) < oo] = 1. Thus

P y[b, € dg] = /Oxpo[a, € do]P.[+(t) € di]

= d¢f p(t,0,¢)q(r, dt)
0

[ p(t, 8, ¢) do the transition density of spherical Brownian motion] is a probabil-
ity density on S"~!. This shows that nonempty, disjoint open sets in S$""!
determine distinct, nontrivial exit sets. O

REMARKS. 1. In dimension 2 transience of X, is equivalent to the nontrivial-
ity of £(X), i.e., to the existence of nonconstant, bounded harmonic functions.

2. The random variable 6, ., generates the invariant o-field so that every
bounded harmonic function has the representation h(r,0)=E, ,{(0,,,) for
f = Lx(Sn - 1).
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3. It is natural to guess and not hard to prove, following the argument of Kifer
(1976), that K(r,0,¢) = [p(t,0, p)q(r, dt), the density of 6, ,,, is the Martin
kernel of A .

3. Radial curvature. For each p € M, and any 2-plane o in T, M, contain-
ing the radial vector dr, the sectional curvature K(o) is a function of r = r( p)
alone, call it k(r), and one has Jacobi’s equation

g’ +kg=0,
g(0)=0, g(0)=1.
Thus £ = —(g"”/g)[k is called the radial curvature, Greene and Wu (1979)].

LeEMmMA 3. Suppose f and g are positive functions satisfying f(0) = g(0) = 0,
[10)=g0)=1, and —(g"/8) < —(f"/f) forr>0. Then f'/f < g'/g and
f<gforr>0.

Proor. The proof is based on the identities

f

2
gl -
<

The details are omitted. O

f g

f 1’ gl/ )

) =(gf - fg') = fg(

LEMMA 4. Suppose f and g are C? functions such that

f(0) =g(0)=0, f’(0)=g’(0) =1, and —i < —ff

for all r>0. Then J(f) < oo implies J(g) < oo and J(g)= oo implies
J(f) = co.

<0

Proor. By Lemma 3, 1/r<f{’'/f<g’/g and r < f(r) < g(r). Consider
solutions of the equations

n
dr, = dB[ + Tgﬁl(rt)g’(rt) dt,

n—1
dp, = d, +

f~'(p,)f"(p,) dt

defined up to their respective lifetimes { and 7. Since zero is an entrance, nonexit
boundary for both processes we have as in Lemma 1, { = inf{(¢#: r,= + o} and
n = inf{t: p, = +o0}. With the understanding that .r,,, =p,,, = + o0 for all
t > 0, we claim P[p, <r, Vt > 0] = 1. This follows directly from the comparison
theorem for one dimensional diffusions [e.g., Ikeda and Watanabe (1981), Chapter
V1, Theorem 1.1] since by Lemma 3 (rn — 1)/2)f’/f < ((n — 1)/2)g’/g. How-
ever, our situation is simple enough that we recall the proof here.
Let ¢, be a sequence of smooth functions satisfying

dy(x) =0, x <0 on(x)Tx" = max{x,0} and 0 < ¢y(x) < 1.
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Letusset F = (n—1)/2)f’/f, G = ((n — 1)/2)g’/g and suppose that F and G
are bounded and globally Lipschitz with constant K. By It6’s formula:

on(T,— 1)
- fo’qu(ps = r)[F(p,) — G(r,)] ds

= [9x(o, = r)F(o,) = F(r,) + F(r,) - G(r,)] ds
< [9n(p. = r)F(p,) = F(r,)] ds

= [onte. = r), - [Fp,) = F(r)] ds

< K[ Ty 0lo, = rilds

t +
<K s — TI) ds.
fo (o, — 1)
Taking expectations and letting N — oo one finds

N t
E(p,—r1) < K‘[)E,‘(Ps -r,)" ds,

hence P[p, < r,] =1 for each ¢t > 0. Thus P[p, < r,V¢ = 1] =1 by continuity
of paths. Now the bounded Lipschitz hypothesis can be removed by a simple
localization argument.

Since f, g are increasing and f < g we have f(p,) < g(r,). Since f(x) =
g(2) = o0 and { < 7 one finds

gn=ﬁy%mwsfrmmw=mm P, as.

The lemma follows if one remembers (Lemma 1) the probabilistic meaning of
J(g)and J(f).O

REMARK. The reader is referred to the appendix for an alternative proof of
Lemma 4 which was kindly supplied by the referee.

LEMMA 5. Suppose f and g are C? with the same initial conditions as before.
Suppose that

g <0, f

<0 forallr>0

and
g f”
T ST
Then J(f) < oo implies J(g) < oo and J(g) = oo implies J( ) = 0.

forallr > R > 0.
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ProoF. Set K, = max{-(g”/g), —(["/f)}, k- = min{—-(g"/8),
=(f”/f)}. These functions are Lipschitz. Let u , be the C? solutions of

w’+k,w=0,
w(0) =0, w'(l) =1.
There are positive constants such that .
au (R) <f(R) <au,(R), ou' (R)<f(R)<ou'(R).

On (R, ), u, and f satisfy the same equation, hence

au (r)<f(r)<au.(r), r=R,
and so

Yo+ B I(uy) <J(f) < v, + BJ(uy)
for some constants v,, v,, and B. Similarly vy, + B 'J(u_) < J(g) < v, + BJ(u_).
By Lemma 4, J(u,) < co implies J(u_) < oo and J(u_) = oo implies

J(u ) = . By the inequalities above these implications hold with f, g replacing
u,,u ,respectively.

THEOREM 2. Let M, be the weak model with metric ds® = dr* + g(r)” d6?,
g € C? and k(r) <0 the radial curvature. Let c,=1 and ¢, = },n > 3. If
k(r)y< —c/(r?logr) for ¢>c, and all large r then M, has nonconstant
bounded harmonic functions. If k(r) = —c/(r*logr) for ¢ < ¢, and all large r,
then M, has none.

PrRoOF. Define ¢(r) = r(logr)®, a > 0. Choose 8 > 1 such that ¢/(8) >0
and ¢”(B) >0 and set f(r)=(o(r + B) — ¢(B))/¢¥(B). Then [(0) =0,
f =1 —f"/f <0and

_f ’” _¢// —a o — 1
f (r) ¢ (r) rzlogr( log r
Because f(r) ~ ¢(r)as r = oo, J(f)and J* = [Fo(r)" *dr[>¢(p) " dp are
finite or infinite together. When n =2, J* < oo if and only if a > 1. When
n > 3 one finds

) asr — oo,

[7o(p) " dp ~ ((n = 2)r" 2(10gr)" ") " as 7> oo,

1

Thus J * behaves like [;*dr/(r(log r)**). Hence J* < oo if and only if a > }.
Applying Lemma 5 to f and g finishes the proof. O

APPENDIX

_ Alternative proof of Lemma 4. Define
(1) J(f)= [fr)ydr[ f' 7" (p)dp, sz 1.
1 r

We want to show under the assumptions in Lemma 4 that J(f) > J(g), s > 1.
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From Lemma 3, this inequality is obvious for n = 2. Therefore if suffices to show
the inequality under additional assumptions; n > 3 and

(2) fl f'""(p)dp < 0.
Then
;sf)-f” "(s)["1'"(0)dp 2 0.
So
U al(f) e
(3) fs) ds =j; f (p)dpl0 ass?oo.
Differentiate (3):
d LoodJ(f)y
%(f”yn(s) ds ) = —f (s).
Thus
d( f) fs) di(f) 1
757 (n—3) f(s) ds + e = 0.

From the assumptions in Lemma 4, we have

d*J( 1) gls) () 1

& s e tem =Y 5=t
Thus
L du e )
(4) gn--'l(s) = gnfil(s) dsz gn~2(s) dS
Cd( 1 di(f)
_E(g"“"(s) ds )
Integrate (4) from s to oo:
i U @] )
[ & ‘< Tl s ds | T e s) ds
Hence
dJ( f
(5) g (s) &' "(p) dp < ds)

Integrate (5) from 1 to s (> 1):
J(8) = [a(r)" "dr[Tg(p) "dp < A(f) = () =I(f). O
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