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LEVEL CROSSINGS OF A CAUCHY PROCESS'

By JiM PITMAN AND MARC YOR

University of California, Berkeley and Université Pierre et Marie Curtie,
Paris -

The asymptotic distribution as ¢ — oc is obtained for the number of
jumps of a symmetric Cauchy process across level x up to time ¢, jointly as x
varies. This result is related to the asymptotic joint distribution of windings
of a planar Brownian motion about several points.

1. Introduction. Let C = (C,, s > 0) be a symmetric Cauchy process on the
real line R, that is a process with stationary independent increments with the
Cauchy distribution,

tdx

P(C,.i = G & dv) = ey

s,t>0, xeR.

Except where otherwise mentioned, it will be supposed that C, = 0, and it will
always be assumed that the paths of the process are right continuous with left
limits.

Let N*(s) denote the number of times ¢ < s that the Cauchy process jumps
across level x. More formally,

N*(s) = #{S*n (0,s]},
where
S*={t:(C,_—x)(C,—x) <0}

is the random set of times when jumps across x occur.

The purpose of this paper is to describe the asymptotic joint distribution of
the level crossing numbers N*(s) as s tends to oo and the level x varies. Some
results have analogues for the symmetric stable process with index a, 0 < a < 2.
See Kesten (1963). But the main result concerns the asymptotic dependence
structure of N*(s) as x varies, a phenomenon which is of interest only for a
process which is recurrent without hitting points. Among symmetric stable
processes, which are recurrent iff 1 < a < 2, and hit points iff 1 < a < 2, this
happens only in the Cauchy case a = 1.

To analyse the dependence of the Cauchy level crossings as the level varies, it
is important to classify crossings according to the magnitude of the jumps
involved. Fix numbers a and b with 0 < @ < b < 0, and call a crossing of x that
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occurs at time ¢

small if0 <|C, — x| < a,
medium ifa<|C,—x|<b,
large if b <|C,— x| < 0.

Then
Nx(s) = stnall(s) + Nrfnedium(s) + Nlj;rge(s)i

where for example N, (s) is the number of small crossings of x up to time s.
Instead of classifying by the size of the overshoot |C, — x|, the crossings could
also be classified by the total size of the jump |C, — C,_|, or the distance from x
to the left limit |C,_ — x|. It is easily shown that the following two theorems, to
be proved in Sections 3 and 4, respectively, hold regardless of which classification
is used.

THEOREM 1. For eachx # 0, as s = o, the distribution of the triple

772 Nq':nall( S) Nrﬁedium( S) Nll:;rge( S)
logs| logs ’ log(b/a) ’ logs

converges to the distribution of the triple
o, L,0.]
defined as follows in terms of the path of a standard Brownian motion
(B,, t > 0) up to its hitting time of 1,
o, = inf{t: B, =1},
o_ =/( 1(B, < 0) dt,

)

the time that B spends negative before o,
o, =/ ]l(B, > 0) dt,
0

the time that B spends positive before o,, and

1 ,o
L=1lim~ [ 1(0 < B, <¢)dt,
g0 & Y

the local time of B at zero up to time o,.

Note that apart from constants the normalisation of the count of medium
crossings is by logs while for the counts of large and small crossings the
rformalisation is by log2s. Also, the normalisation of these latter counts does not
involve the values a and b determining the types of crossing. Thus large and
small crossings occur an order of magnitude more often than medium crossings,
and it is really only the very large and very small crossings which count in the
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limit so far as the total N*(s) is concerned. In particular, Theorem 1 implies

where i denotes convergence in distribution, and the limit distribution of o, is
the stable distribution with index 1. )

This should be contrasted with the different limit distribution obtained by
Kesten (1963) for the number Nj. .. ..(1n) of crossings of level x up to time n of
the discrete time Cauchy random walk C,,C,,...:

2N x
K Ndiscrete(n) L’; o
log®n ©

the same limit as for the large count alone for the continuous time process. The
expianation is that very large crossings of the continuous time process occur so
rarely that they are almost invariably recorded as crossings by the embedded
random walk, whereas when very small crossings occur in continuous time they
tend to do so in such rapid succession that they make no significant ¢ontribution

to the random walk crossings.
The starting point x = 0 is excluded in Theorem 1 because the number of

small crossings of 0 is a.s. infinite in every interval (0, s], s > 0. Kesten (1963)
gave a closely related result with the distribution of o, appearing as the
asymptotic distribution as ¢ — 0 of the number of downcrossings of zero in the
time interval [0, 1] for which the time elapsed since the previous upcrossing is at
least ¢, together with corresponding results for the other symmetric stable
processes. As Kesten’s result suggests, Theorem 1 remains valid when crossings
are classified in size according to the time elapsed since the previous crossing.

The limit distribution appearing in Theorem 1 was encountered by Messulam
and Yor (1982) in connection with the windings of planar Brownian motion. They
found its Laplace transform using martingale calculus, as in the proof of Theorem
4.2 of Pitman and Yor (1986):

Eexp(—aL - No_ - %,uzoJr) =6(2a + A, 1),

where

a -1
o(a,v) = [coshv + —sinho|
v

which for v = 0 is defined by continuity as (1 + a)~'. The present results were
discovered using the method of Spitzer (1958), representing the Cauchy process as
a compiex Brownian motion watched only as it hits the real line. Each jump of
. the Cauchy process across x ‘then corresponds to a winding of either +# around
x by the complex Brownian motion. Asymptotic properties of the Cauchy level
crossings are therefore related to the asymptotic properties of Brownian windings
described in Pitman and Yor (1986) and Lyons and McKean (1984).
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It should be noted that

P(L dl
(1.1a) —(dl—)=:1;€l/2, >0,
and
(1.1b) o _ and o, are conditionally independent given L.

These features of the distribution of [ _, L, 6,] can be seen from the Laplace
transform above, but a deeper understanding is provided by excursion theory, as
explained in Section 5 of Pitman and Yor (1986). It can also be seen either by
excursion theory or transform calculations that the conditional distribution of o _
given L = [ is stable with index ;| and scale parameter ;/. It follows that

d 9
o_=H%,,

d
where = indicates equality in distribution, and H is a random variable indepen-
dent of o, and exponentially distributed with mean 1. Let ® denote the standard
normal distribution function. Burdzy (1984) notes that

P(o_<t)=1-2e"%1- ®(Vt)),

and shows how this limit distribution arises more generally from counting
excursions of complex Brownian motion.

The conditional distribution of o, given L = [ is more complicated. Its
Laplace transform can be calculated as

l
E(exp( - §u2o+)lL = l) = sin‘uhuexl)[g(l — ucoth p,)],

but this formula seems difficult to invert. However series formulae are available
for the unconditional distribution of o .. See, for example, Feller (1966), page 341,
and Kesten (1963), page 402. Lévy (1951) and Pitman and Yor (1986) contain
related formulae.

Consider now the asymptotic joint distribution of the counts of various sizes
across several levels:

THEOREM 2. For each finite subset F of the line with 0 & F, as s — oo, the
Joint distribution of :

{ m? [N;ml.m Nitcdion(5) N.’z.rge<s>} L e F}

logs| logs ’ log(b/a) ' logs
converges to the joint distribution of

{[Uf, L,o+], x € F}
and ’

{WZNX(S) d .
*ﬁ,xEF —*{Oi+0+,xEF},
| (logs) f
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where

(i) for each x, [0, L,o,] has the distribution of [o_, L,0,] as defined in
Theorem 1;

(ii) the random variables (6*, x € F} and o, are mutually conditionally
independent given L.

Each of the various counting processes N(s) introduced above, such as
N(S) =N:1edium(s)7 8207
has a compensator of the form

(1.2) A(s) = ['1(C) ar,

where f is a nonnegative function defined on the line. Since time changing a
counting process by its compensator yields a Poisson process,
N(s)
=

A(s)
Thus the statements of Theorems 1 and 2 are equivalent to modified statements
with counting processes replaced by their compensators. As such, these results
become statements about the asymptotic behaviour of certain continuous ad-
ditive functionals of the Cauchy process.

According to the ratio ergodic theorem for additive functionals A; of the
Cauchy process obtained from functions f; as in (1.2), as s = o0

A(s) N JH(y) dy
Ay(s) Jf(y) dy
See, for example, Maruyama and Tanaka (1959). The intensity f;.qum(y) for

medium size jumps across x initiated when the path is at y is readily calculated
using the Lévy measure of the Cauchy process u(dx) = dx/7x*:

. () 1 1 1
mediumt Y} = a+lx—y b+lx—y|

For each x the integral of this function is (2/7)log(d/a). In view of these
remarks, the asymptotic distribution given in Theorem 1 for Ny 4.(5) amounts
to the result of Kasahara (1982) that for additive functionals A(s) of the
form (1.2), ‘

A a« L
s

log s
‘The corresponding functions for the large and small counts,

. 1 1
flarge(y)=;[b+|x_y|]7
1 1 1
fs:nall(y) = _[ :I,

Tllx—y. a+x—y

(1.3) 1 as. ass— 0.

(1.4)

(1.5)

both fail to be integrable.
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But in the same way, Theorem 2 specifies the asymptotic distribution with
normalisation by log2s for the additive functionals obtained from positive finite
linear combinations of functions of this form. It is a straightforward matter to
push this result further to obtain limit theorems with convergence of finite
dimensional distributions for such additive functionals or level crossing counts of
the Cauchy process, analogous to (2.2) of Kasahara (1982). The limit isa process.
Z *(t) which is a linear combination of the time spent positive and the time spent
negative by a Brownian motion B before the time g, that it first hits ¢.

As will be seen from the proof of Theorem 2, the same limit laws may be
obtained from particular additive functionals of planar Brownian motion. But we
do not know of any general result for Markov processes which would include
these results in the way that Kasahara’s Theorem 2.1 includes (1.5) and its analog
for planar Brownian motion.

2. Spitzer’s embedding and windings. Let Z = (Z(t), ¢ > 0) be a complex
Brownian motion starting at a point Z(0) = x,, on the real axis. That is,

Z(t) = X(t) + iY(2),

where X and Y are independent one-dimensional Brownian motions starting at
X(0) = x, and Y(0) = 0. Let S(t) be the local time of Y at 0 up to tim= ¢, and
(7,, s = 0) the right-continuous inverse of (S(¢), ¢t > 0). The following result was
first exploited by Spitzer (1958):

PROPOSITION 2.1. The process (C(s), s > 0) defined by
(2.1) C(s) = X(7,), >0,

is a symmetric Cauchy process starting at x,,.

The conclusion of Proposition 2.1 is better known with 7, replaced by the
hitting time g, of the point s by the Brownian motion Y. See, for example, Feller
(1966), page 348. According to a well-known result of Lévy, the processes
(0., s >0) and (7,, s> 0) determined by Y are identical in law, both stable
subordinators with index j, so the result holds for 7, as well as for o,. Roughly
speaking, the process C is Z watched only when it touches the real axis, with a
new time parameter. Each excursion of Z away from the real axis corresponds to
a unique local time s. The excursion starts at C(s — ) and finishes at C(s).
Spitzer used this representation of the Cauchy process to calculate the distribu-
tion of C(S, ,), the position of C at the time S, , of its first exit from [x, y] for
x <x,<y.For

C(S.,,) = Z(T.,),
.where .
T, ,=inf{t: Z,€ (o0, x) U (y,00)},

X

and the distribution of Z(T,, ,) may be obtained by solving a Dirichlet boundary
value problem in the plane with boundary (— o, x) U (y, o).
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Our object here is to use Spitzer’s embedding to obtain more detailed informa-
tion about the sequence of times (S}, n = 1,2,...) when C crosses level x # x,,,
and the associated overshoot sequence (V, n = 1,2,...) defined by

Vi=1C(Sy) - x|

For simplicity we shall take x = 0 and x, = 1, since results for a general level x
and starting point x, can easily be derived from this case by simple scaling
arguments. The superscript x will be simply omitted in the notation to indicate
x = 0.

Suppose then that Z starts at Z(0) = 1, so C starts at C(0) = 1. Let T, = 0.
Let T, be the first time that Z hits the negative axis, T, the first subsequent
time that Z hits the positive axis, T, the next time on the negative axis, and so
on. Then the corresponding local times S, = S(T),) are the successive times at
which C jumps across 0, and the successive overshoots are just

(2.2) V, =1C(S,)| =12(T,)|.

Between times T, and 7T, , the planar Brownian motion Z must wind through
an angle of either +7 or —« around the origin. Indeed, T, , is the first time ¢
after T, that the angle between the points Z(T,) and Z(t) reaches +. Consider
therefore the continuous total angle ®(¢) swept around the origin by Z up to
time t, a process which is a.s. well defined for all ¢ > 0 because Z never hits 0 a.s.
Then

(2.3) T, = inf(t > T, ,: |@(¢) = ®(T,_,)| = =}.

More formally, (®(t), ¢ > 0) is the imaginary part of the a.s. unique continuous
determination of the process (log Z(t), ¢t > 0) starting at log Z(0) = 0. According
to the theorem of Lévy (1948) on the conformal invariance of Brownian motion
[see also Getoor and Sharpe (1972) and Pitman and Yor (1986)],

log Z(t) = $yeys
where U(¢) is the radial clock
(2.4) U(t) = [12) % ds
0
and
$, = B, + 16, u>0,
where 8 and @ are two independent Brownian motions starting at zero. Thus
(2.5) 10g|Z(t)| = IBU(I)’ q)(t) = oU(,), t> 0.

The precise form of the time change (2.4) is quite u.nimportant here. All that
matters is that U(t) is strictly increasing and continuous. So if we define

U, = U(T,),
then from (2.2) and (2.5)
(2.6a) logV, = log|Z(T,)| = B(U,),
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where
Uy=0, U, =influzu>U, :|0,-06(U,,)| =7},
n=12,....

Using the strong Markov property of 8 and 6 at the times U,, we immediately
obtain the following proposition:

(2.6b)

PROPOSITION 2.2. (i) The successive overshoots V, of zero by a Cauchy
process C started at C, = 1 are such that

(logV,, n=1,2,...)
is a random walk with independent and identically distributed increments.

d
(ii) log V| = B(U,) where U, = inf{u: |0,| = 7}, and B and 6 are independent
Brownian motions. In particular, the distribution of logV, is symmetric with
med? zero and finite moments of all orders.

Put another way, the expression

i2 in 9
V = Vil —=1|:-- >
n 1 ‘/l V ’ n = ’

n—1

represents V, as a product of n i.i.d. random variables. It is quite easy to see this
by induction, using the strong Markov property and the symmetric stable
property of the Cauchy process. Indeed this argument shows that part (i) of the
proposition holds for a symmetric stable process with index a for any 0 < a < 2.

Let us write simply V for V,. From part (ii) of the proposition we easily obtain
the Fourier transform of log V:

1

cosh tr’

(273) EettlogV Eett&(Ul) — Ee*(l/2)t“U, —

whence [see Feller (1966), page 503]

(2.7b) P(logVE dx) = m,
that is,

) dv

(270) P(VE dv) = m

This formula was obtained by Ray (1958) who also gave the corresponding
formula for a symmetric stable process.

3. Proof of Theorem 1. This section outlines a proof of Theorem 1 based
solely on Proposition 2.2 without further appeal to the theory of windings. By a
simple scaling argument, there is no loss of generality in just treating the case
x, = 1, x = 0. Consider then a Cauchy process (C,, s > 0) started at C, = 1, and
let S, be the time of the nth zero crossing, V, = |C(S,)|, the nth overshoot.
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Put G, = logV,,. By Proposition 2.2,
(G,,G,,...)
may be regarded as a random walk embedded in a Brownian motion S:
G, = B(U,),

where U, U,, ... is a renewal process, independent of B, with EU, = nw?.
Consider first the total number N(s) of zero crossings of C by time s. Let

v(s) =inf{n: V, > s}.
By a simple scaling argument [cf. Pitman and Yor (1986), (3.g)]
d
(3.1) N(s) —»(s) > D ass— w0,
where D is defined as follows in terms of a Cauchy process Y starting at 0:
D=N($,1] itS<1
-N(@1,8) ifS>1,
where N(S, T'] is the number of zero crossings of Y in the interval (S, T'], and
S =inf{s: |Y,| > 1and Y,Y,_ < 0}.

Now,
v(s) = inf{n: G, > log s}

and
U

sy = inf{u: u = U, for some n and B(U,) > logs}.
Let 0, = inf{u: B, = log s}. See Figure 1.
By renewal theory and the strong Markov property of 8 at time o, ,

d
(32) Uy(s) " Ologs -a,

where
a = inf{u: u = U} for some n and B, > 0}.

(UX Uy*,...) is a renewal process independent of 8 with the stationary delay
distribution

P(U* € dt) = ————P(U‘:Q ‘) dt,
and (U}, — UX, n = 1) iid. like U,. By the strong law of large numbers,
v(s 1
v(.‘3.3) ' JM)) - as.
,and by Brownian scaling
(3.4) Dogs 4

log?s
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i M/’v
logs |- ";;H W

PR A
/ %og s Us(s)

Fic. 1.

Putting together (3.1), (3.2), (3.3), and (3.4), it is now plain that
7*N(s) a

—-o0,.

3.5 -
(3.5) log?2s
Consider now N@mall(s)7 Nmedium(s)v and Nlarge(s)‘ NOtlng that V(S) = N(Su(s)) it
is plain from (3.1) that it suffices to obtain the result of Theorem 1 with v,(s)
substituted for N ,(s), where for * = small, medium, or large

va(s)'= Nu(S,,)-
Now define intervals I, by
Lyan = (= o0,loga],
I

medium

= (log a,log b], -

Ilarge = (lOg b7 OO)
The number v () is the number # ,(s) of renewal instants {U,, U,, ...} falling
in the random set % ,(s) = {u: u <o,,,, B, € I}, plus a contribution from

renewals in the interval [o),, ., U,,,], which may be safely neglected by a variant
of (3.2). Now since the random set % ,(s) is independent of the renewal process
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U, U,,..., whose increments have a smooth density, and for each value of * the
Lebesgue measure [,(s) of % 4(s) tends to co as s = oo by the recurrence of the
Brownian motion B, it is to be expected that

. #4(s) p 1
(3.6&) l*(S) - pv
which gives

Nu(s) p 1

On the other hand, Brownian scaling and the definition of local time as
occupation density shows that as s —» o

lsmall( $ ) lmedium( $ ) llarge( $ ) i

log?s " log(b/a)logs’ log%s

[o7,L,0{],

(3.7)

with [0, , L, 0, ] as in Theorem 1. Clearly (3.6b) and (3.7) yield Theorem 1.

To complete the argument, it only remains to verify (3.6a). Because each of the
processes [ ,(s) increases to co a.s. as s = 00, (3.6a) follows immediately from the
following lemma by conditioning on the Brownian motion S:

LEmMA 3.1. Let U,,U,,... be a random walk on the real line such that
EU,=p, >0, E|U)? < 0o, and the distribution of U, has a nontrivial ab-
solutely continuous component for some n.

For a Borel set B let

#(B)=#{n=>0:U, € B},
I(B) = Lebesgue measure (B).
Then there exist constants l, and ¢, depending only on the distribution of U,

such that
( #(B) 1 )2 ¢
El——— - —]| <
B) I(B)
for all Borel sets B C [0, o) with [(B) > I,.

Proor. Let v(B) = E#(B). According to Stone (1966), for B C R
V(B) = l(B N [O,OO))/,U-I + V()(B)’
where »,, is a signed measure on [0, c0), with absolute mass ||7,|| < co. But by the
identity of Pitman (1974), page 41,
E(3#(B)[#(B) + 1]} = [(du)(B,),

where B, = {v: u + v € B}. The right side is easily seen to be bounded above by
2t
2p3 e

+ ||7,l|?, where ¢ = I(B).
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This estimate rearranges to yield the desired result with ¢ = 8||r,||/u,,
Ly = mlzoll + 3)-

4. Proof of Theorem 2. The main difficulty in proving Theorem 2 is to show
that for two different levels, say x and y, as s — oo, the counts NJ ,u(s),
Nyai(s), and Nj, . (s) are asymptotically conditionally independent given

- edium( S )- The fact that the large and medium counts do not depend on the level
in the limit is an easy consequence of Theorem 1, (1.3), and the ratio ergodic
theorem (1.4).

Our approach to Theorem 2 will exploit Spitzer’s embedding and its connec-

tion with Brownian windings much more fully. Suppose that the Cauchy process

(C(s), s = 0) is embedded as in Proposition 2.1 as
C(s) =2Z(7,), s=0,

where C(0) = Z(0) = x,, and (7,) is the inverse of the local time (S,) on the real
axis. For x in the finite set F' let ®*(¢) be the continuous total angle wound by Z

around x up to time ¢.
Let D, ., be the open disc centered at x with radius a, Dy,,,. the complement

small

of the open disc centered at x with radius b. For * = small or large define

®i(t) = /O’chX(s) 1(Z,€ D), ¢=0.

These are the processes of small windings and large windings about x, as
considered in Messulam and Yor (1982) and Pitman and Yor (1986). As in (2.4) let

i(t) = /O'lzs—xr“’l(zs e Di)ds, t>0,

the increasing process of the local martingale (®4(¢), ¢ > 0). Finally, let

A = [ 'ds,1(z, € [0,1]),

the additive functional of Z which measures local time on the unit interval.
According to Theorems 8.2 and 8.4 of Pitman and Yor (1986), as s — oo the
joint distribution of
L( (Dé;)all( Ty ) l]sfnall( Ts ) 2 WA( Ts) (Dil:arge( Ts) Ui;rge( Ts) xeF
|| logs " (log 3)2 " logs ' logs  (logs) |

converges to the joint distribution of
([6%(o%),0%,L,0%(0.),0,], x € F},

where {[¢¥, L,0,], x € F} has the distribution deéscribed in the statement of
Theorem 2, and (6%, x € F) and 6> are further mutually independent Brownian
-motions. Theorem 2 is obtained by applying this result together with the facts
that for * = small or large

Ni(s) p 1
- —
Ui(r) @

S

(4.1)

as s — o0,
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and by a change of variables
A(r,) = [1(C, € [0,1]) b,
0

so by (1.3) and (1.4)
* dium(S) 2 b

(4.2) —medm 77, —log— a.s.
T oa

A(r)

Here (4.1) is established by a variation of the argument in Section 3. To make the
connection with that section, take x, = 1, x = 0, and let T, = inf{¢: |Z,] = s}, so

U:(Ts) = l*(S),

where [,(s) was defined above (3.6), by a change of variables. Now (3.6b) gives
(4.1) with T, instead of 7,. But UYT,) — UY(r,) converges in distribution as
s — oo by Brownian scaling, just as in Pitman and Yor (1986), (3.g).
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