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CONVOLUTION OF THE IFRA SCALED-MINS CLASS

By EMAD EL-NEWEIHI! AND THOMAS H. SavITs?
University of Illinois, Chicago and University of Pittsburgh

The class of nonnegative random vectors T = (T},...,T,) for which
min, ., _,a;T; is IFRA for all 0 <@; < o0, i=1,...,n, is closed under
convolution.

1. Introduction and statement of main result. In recent years various
multivariate extensions of the univariate classes of life distributions that are
important in reliability theory have been proposed. A survey of many of these
classes may be found in Block and Savits (1981). Central to the study of these
classes is the determination of whether or not they are closed under the
operation of convolution. In reliability theory, convolution corresponds to the
natural operation of standby redundancy, i.e., replacing failed components with
new ones.

In this paper we focus on an important extension of the IFRA (increasing
failure rate average) class due to Esary and Marshall (1979): A nonnegative
random vector T = (T,..., T,) is said to satisfy condition (F) if min, _,_ a7 is
IFRA for all choices 0 < a; < o0, i = 1,..., n. (Recall that a nonnegative ran-
dom variable T is called IFRA if F(at) > F*¢) for all ¢ >0, 0 < a < 1, where
F(t) = P(T > t) is the survival probability.) Here we interpret oo - 0 = c0. We
will denote the class of all nonnegative random vectors satisfying condition (F)
by # and call it the IFRA scaled-mins class.

Since the life length of a series system corresponds to the minimum of its
component life lengths, any life class that is closed with respect to minimums is
natural and important in the reliability context. The mechanism of considering
minimums and scaled minimums has also been considered by several authors:
Marshall and Olkin (1967a, b) and Esary and Marshall (1974).

Although Esary and Marshall (1979) considered some closure properties of the
class £, they did not study closure with respect to the operation of convolution.
Recently, El-Neweihi (1984) showed that the class is closed under convolution
provided one of the two vectors has independent components; however, the
general problem was not resolved. The purpose of this paper is to prove the
general result as stated below.

THEOREM 1.1. The IFRA scaled-mins class £ is closed under convolution.

The proof of this result is contained in Section 2. In Section 3 we consider a
further characterization of the class #. As usual R” denotes the nonnegative
orthant.
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(1.2) REMARK. The standard Gumbel exponential distribution (cf. Johnson
and Kotz (1972), page 250) F(x,y) = exp{—x —y — dxy}, 0 <8 <1, can be
easily shown to belong to the IFRA scaled-mins class. Consequently our result
shows that the convolution of any two such distributions belongs to the IFRA
scaled-mins class. Block and Savits (1980) proposed another multivariate IFRA
class called MIFRA. This class has all the properties that one would expect for a
multivariate IFRA class including closure under convolution. It is not known,
however, whether the Gumbel distribution belongs to the MIFRA class.

2. Proof of the main result. We shall make use of the following characteri-
zation of the class # due to El-Neweihi (1984).

THEOREM 2.1 (El-Neweihi). A nonnegative random vector T = (T, ..., T,)
belongs to # if and only if

2.1) E[ [1nm)| = 5| [h(z/e

for all 0 < a <1 and all nonnegative nondecreasing functions h; defined on
[0,0),i=1,...,n.

Thus to show that £ is closed under convolution, we need only show that if
S=(S,...,8,)and T = (T, ..., T,) are independent vectors in .#, then

B[ Fins + ] = 27 s+ o)

for all 0 < a < 1 and all nonnegative nondecreasing h; on [0,0), i = 1,..., n. As
usual we may assume without loss of generality that each A, is continuous and
bounded (see, e.g., Block and Savits (1980)).

First we prove a lemma.

LEMMA 2.2. Let H(s,t) be bounded, nonnegative, and continuous on
R™ X R". Let p and v be two finite measures on R’;. For 0 < a <1, define
WH(-, Dl = {/H*(s,t) dv(s))'/*. Then

| /0 auce

ProoF. If m>0 and i= (iy,...,i,), let AT =[(i; — 1)/2", 1,/2™) X
e XxX[@G, -2 Q2M for1<i;<m- 27, j=1,...,n, m=12,.... Set
H,(s,t) = H(s,2”™i) for ¢t € AT" and zero otherwise. Since H is bounded and
continuous, H,(s,t) = H(s,t) boundedly as m — oo. Hence |H,(-,t)|,
|| H(-, t)||, boundedly and

JIH D], dp®) > [IHC D], dp(®) asm > oo
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by the bounded convergence theorem. But

JIHAC )], do(®) = TIH(- 27 )| (A7)
= Tlu(AP)H, (- 27D |,
AMH, (-,2”

=“me(-,

The inequality follows from Minkowski’s inequality for 0 < a < 1 (cf. Hewitt
and Stromberg (1965), page 192). The desired result is obtained by passing to the
limit as m — c0. O

a

(2.3) REMARK. The above lemma remains valid if we weaken the continuity
assumption on H. It suffices that H(s,t) be measurable and right-continuous in t
for each fixed s. We can also replace right-continuity with left-continuity if we
redefine H,(s,t) as H(s,2"™(i — 1)) on A" wherel = (1,...,1).

We are now ready to prove the main result. Let S = (S,,...,S,) and T =
(T,,...,T,) be independent vectors in # with corresponding distribution func-
tions F and G, respectively. Fix 0 < @ <1 and let A; be nonnegative, nonde-
creasing, continuous bounded functions on [0, c0). Then

E[E[hi(s,. +T)| = ff_]f[lh,.(s,.+ t,) dF(s) dG(t)

< f[f]_[h“ + ¢ dF(s)] dG(t) (since S € .#)

i=1

< { / [ / [f[1 hi(% + ti) dG(t)]a dF(s)}l/a (by Lemma 2.2)

(Ml &) aoo) T arw]

- o] (2]

(2.4) REMARK. Suppose 5 is any class of nonnegative functions and we
define T to be H#IFRA if E[A(T)] < EV*[h%T/a)] for all h€#,0 < a < 1.
Then this same argument shows that such a class is closed under convolution
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provided whenever h € 5, it follows that h(s + t) belongs to 5 for fixed s and
for fixed t.

3. Another characterization of 4. As was mentioned in Section 2,
El-Neweihi characterized the class # by the requirement that

(3.1) E[H(T)] < EV*[HX(T/a)]

for all 0 < @ < 1 and H(t) of the form IT" ,A,(t;), where each A, is nonnegative
and nondecreasing on [0, o). With the help of Lemma 2.2 we can extend the
inequality (3.1) to a larger class.

Let 5# denote the class of all nonnegative distribution functions on R%; i.e.,
H € s if and only if there exists a measure p on R” such that H(t) = ([0, t]).
We denote this unique measure p by dH.

THEOREM 3.2. T € . if and only if
E[H(T)] < EV*[HX(T/a)]
forall 0 <a <1landall HeE .
ProoF. The sufficiency is clear since A(t) = I1"_,h;(¢;) € # whenever each

h; is nonnegative, nondecreasing, and right-continuous. Now suppose T € .# and
H € s#. Let F be the distribution of T. Then

E[H(T)] = [H(t) dF()) = [[Iig,(s) dH(s) dF(®)
=/ [ [T or(® dF(t)] dH(s)
<[ [ [T ft/2) dF(t)]V“ dH(s) (sinceT €.5)

< { / [ [To.ra®) dH(s)] ) dF(t)}m (Remark (2.3))
_ EVa[H(T/a)].

(3.3) REMARK. The characterization of the NBU class considered by
El-Neweihi (1984) also extends to this class 2.
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