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INDEPENDENT SUBSETS OF CORRELATION
AND OTHER MATRICES

By TiMoTHY C. BROWN!

University of Melbourne

It is known that the set of correlation coefficients formed from % indepen-
dent normal samples exhibits pairwise independence of its members (Geisser
and Mantel (1962)). Here it is shown that many much larger subsets of the
matrix are fully independent. The main result characterises such subsets in a
simple way. Because the results are framed in abstract terms, they also apply
to rank correlation coefficients and x? statistics.

Suppose X, ..., X, are independent uniform random elements of a metric
space (S, d). By uniform we mean that the distribution of X;, i=1,..., %,
attributes equal probability to balls of equal radius. The existence of a uniform
distribution is a consequence, in most cases, of an additional group of transfor-
mations on S (when the uniform distribution is normalised Haar measure), but it
is specified uniquely by the above requirement (Christensen (1970)).

This note is concerned with the random variables d(X;, X;), 1 <i<j <k,
each of which will henceforth be shortened to #. Similarly, the random element
X, will be abbreviated to i. The motivation for studying these pairwise distances
comes from the fact that they are one-to-one functions of statistics commonly
used to test certain null hypotheses. Hence, the dependence or independence of
subsets of the statistics is equivalent to the dependence or independence of the
corresponding distances.

For example, suppose A,,...,A, are normal samples each with n (> 3)
independent and identically distributed observations and that X; is the n
random vector

ColA - A
where A, is the sample mean of A; and || - || is the usual Euclidean norm in R”™.

Then, X,,..., X, lie on the sphere, S, in n — 1 dimensions,

n n
S={xEIR": Y xi=1, in=0}.

i=1 i=1
Moreover, the product moment correlation coefficient is
r(Ai,Aj) =X, X,

which is in one-to-one correspondence with the usual distance d(X;, X;) on S.
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Finally, under normality X|,..., X, have uniform distributions over S (Fisher
(1915)) and the null hypothesis of no correlations among the A’s implies the
independence of X|,..., X,.

Other statistical examples include rank correlation coefficients, in which

S = {i € N™: iis a permutation of (1,2,...,n)}.

Spearman’s rank correlation coefficient is then a one-to-one function of Euclidean
distance on S and Kendall’s tau is a one-to-one function of the pairwise-inter-
change metric on S. If, for some natural number N,

=1

J

then, by thinking of i; as the presence or absence of an attribute among n people
(in which a total of N have the attribute), the random elements X,,..., X, on S
record the presence or absence of k& attributes among each of the n people. Any
two of these X|,..., X, generate a 2 X 2 contingency table whose margins are
both fixed at N and n — N. A common distribution used to test the null
hypothesis of no association between the attributes is that of independence and
uniformity of X,,..., X,—this distribution corresponds to multinomial alloc-
ation into the 27 cells of the table, conditional on the margins for each attribute
being N and n — N. Further, Pearson’s x2 in such tables is a one-to-one function
of the Euclidean metric on S. [The more realistic case of nonbinary attributes
and differing margins will be considered later.]

It is known that product moment correlation coefficients are pairwise indepen-
dent (Geisser and Mantel (1962)) and it has been pointed out that this pairwise
independence extends to the above framework (Silverman (1978), Brown and
Eagleson (1984), Brown, Cartwright and Eagleson (1986)). This is at first sight
surprising since 12 and 13 share 1 in common. What is perhaps even more
surprising is that there are many sets of the distances which are fully indepen-
dent. The theorem below characterises these precisely in graph theoretic terms.
Let K = (*). A subset (i jy,..., i,J,} (P < K) of distances may be visualised by
a graph whose vertices are {i,, j;,...,,, j,} and edges are i, jy,..., i,j,- We
then have

THEOREM 1. Suppose X, ..., X, are independent uniform random elements
of a separable metric space, (S, d), with more than one element. A subset of the
distances formed from X, ..., X, is independent if, and only if, the correspond-
ing graph has no cycles.

REMARK 1. The separability is only used in the proof that an independent
subset has a graph with no cycles. The existence of a uniform distribution
implies precompactness and thus there are virtually no cases in which the
theorem has content but the metric space is not compact.
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REMARK 2. In the trivial case where the metric space has one element, the
theorem is obviously false since all distances are deterministically zero and hence
fully independent.

PrOOF. Assume first that the corresponding graph has no cycles. Then, by a
theorem of graph theory (e.g., Street and Wallis (1977), Lemma 9, page 389), the
graph has at least one vertex with valency 1. Without loss of generality, we may
label this vertex 1. Suppose that this is connected to vertex 2 alone and label the
other edges in the subset i, j,,...,1,J, (p < K). For arbitrary r;,..., r, > 0 we
seek

P12 <1y, igfy < Tyyenyiply S 1)

= E(P(12 < 1y, igjy < Tayenns ipdy < Tpl2y dgs Jose-os g )
= E(I[igfy < 1y, ipdp < 1,| P(12 < 1,[2))

using the independence of 1,2,..., % and standard properties of .conditional
expectation. But, for all x in S,

( P(12 < ry2 = x) = P(1 € closed ball, centre x, radius r,)
1
) =P(12<r)

since the second probability is the same for all x, by assumption. Combining this
with the last equation gives

P12 < 1y, igjy S Tyyevsipjp < 1)
= P(12 < 1))P(igjy S Tyyevsipp < 7).

Since the subgraph with edges i, j,.. ., i, j, cannot have cycles when its parent
does not have them, we may apply the same argument to remove one more
marginal probability from the joint probability. Applying the same argument a
further p — 3 times yields the required factorisation and independence is estab-
lished.

Suppose on the contrary that the corresponding graph does have a cycle.
Without loss of generality, we may suppose that the edges in the cycle are
12,23,..., p1 (2 < p < k). An r > 0 will be found such that

(2) P23 <r)P(34<r)--- P(pl<r)P(12> (p—1)r) > 0.

This suffices to show that 12,23,..., pl are dependent because by the triangle

inequality 23 < r,34 <r,...,pl <r =12 <(p — 1)r and so
P(23<r,34<r,...,pl<r,12>(p—-1)r)=0.

We first show that P(12 > 0) > 0. If not, then P(12 = 0) = 1. Choosing any x
in S, we then have P(1 = x) = 1, by applying equation (1) with r, = 0. Since S
has more than one element a contradiction is obtained.

Since

0<P(12>0) = ;imo P(12 > R)
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1 2

Fia. 1.

there must exist R > 0 such that P(12 > R) > 0. We set r = R/(p — 1) for
such R, so that the last factor of the left of inequality (2) is positive. To see that
the others are also positive, note that, by separability, S may be covered by a
countable number of closed balls, B,, B,,... of radius r. Then, if P(1 € B)) =
P(1 € B,) = --- =0, we would have

PleS)< ¥ PeB)=0.

n=1

Thus, P(1 € B;) > 0 and this is enough by equation (1) with r; = r and the fact
that 1,2,..., k are independent and indentically distributed. O

ExAMPLESs. (a) It is perhaps not immediately apparent, without the theo-
rem, that {13,23, 34,26,56,67} is an independent set of random variables. How-
ever it is trivial to confirm this from the corresponding graph drawn in Figure 1.

(b) The set {12, 23,25, 45, 56,36} is dependent as may be seen from Figure 2.

1 2 3

@
4

FiG. 2.
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Corollary 2 below expresses the theorem without using the language of graphs.
A direct proof of the corollary is possible, but is lengthier than that obtained by
showing the corollary’s condition for independence is equivalent to that in
Theorem 1.

COROLLARY 2. With the same setup as Theorem 1, a subset I of the distances
is independent if, and only if, for each subset J = {i,j,,-..,1,J,} of I, the set
{215 J1s- -5 ips Jp} has at least p + 1 members.

Proor. We show that the graph corresponding to I has a cycle if, and only
if, there exists a subset J of I with {i,, jl,...,ip, j;,}, having at most p

members. A cycle J = {iljl,.i2j2,..., i,Jp} has j, =1, jy =15,..., J,_, =1, S0
(i1 Jiseeer ips Jp) = {i1,--+,0p), @ set of cardinality p. On the other hand,
suppose J is a subset of smallest size with {i,,..., j,} having at most p

members. If the graph corresponding to J had a vertex of valency 1, we could
remove that vertex and obtain a smaller subset still having the same property.
Hence, every vertex has valency at least 2 and the previously used combinatorial
result gives the existence of a cycle. (A little thought shows that </ actually is a
cycle.) O

As stated previously, Theorem 1 only applies to Pearson’s x? in the marginal
tables of a 2”7 contingency table with all margins fixed identically. We can
however generalise the setup to obtain an independence condition for subsets of
similar x2 statistics in general, nonbinary, p-way tables with differing but fixed
margins. Suppose now that X, takes values in a closed subspace S; of the space
S. We suppose that S is a homogeneous space under a group G (for definitions
see Federer (1969)). We assume moreover that each S; is a homogeneous sub-
space, so that for each y and z in S; there exists g in G for which gy = 2. The
function d is now only required to be symmetric and is thus not necessarily a
metric. However, it is required that the distribution of X; be invariant under G
and that d be invariant, so that for all g in G,

(3) ng=d Xi’ i=1,...,k,
and, for all x, y in S,
(4) d(gx, gy) = d(x, y).

Then we may adapt an argument of Silverman (1978) to prove

THEOREM 3. In the above setup, a subset of {d(X;, X;), 1 <i<j<k}is
independent if the corresponding graph has no cycles.

Proor. Unexplained notation is the same as in the corresponding part of
Theorem 1. Assume again that 1 is a vertex with valency one and that its
connection is to 2. Fix x € S,.

The mapping

$:G—>8,, ¢(g)=gx
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is continuous and onto S, by assumption. If S, is countable, say S, = {¥;, ¥,...},
then we may choose g; such that g;y, = x and the mapping g*: y,~— g, is
automatically measurable. If S, is uncountable, we may use Theorem 2.7 of
Parthasarathy (1967) to construct a subset C of G such that ¢ restricted to C is
a homeomorphism, with inverse = (say). The mapping 7: S, = C is then
measurable because it is continuous. In this case let g*(y) = {7(y)} ! so that
{8*(y)}y = x. Set G* to be the random element of G equal to g*(2). We then
have

G*2 = x.
Since S is separable and 1, 3, ..., & are independent of G*, G*1, G*3,..., G*k are
also random elements of S, S,,..., S, (see Brown, Cartwright and Eagleson

(1985)). Moreover, conditioning on G* and using equation (3), it can be seen that
the joint distribution of G*1, G*3,..., G*k is the same as that of 1,3,..., k. But
d(i, j) = d(G*i, G*))

by equation (4). Hence

P12 <r,iyjy <Tyyoosipfy <T,)
= P(d(G*1,x) < r, d(G*iy, G*J,) < 13,..., d(G*i,,, G*j,) <T,),

which factors as in Theorem 1 since 1 & {iy, Jp,..., i, J,} and thus G*1 is
independent of G*i,,..., G*j,. The argument concludes as in Theorem 1. O

To apply this to x? statistics in a general table, suppose that rn individuals
are classified in %2 ways. By possibly extending the classifications with null
classifications, we may assume that each classification has J levels 1,2,..., J.
Thus

S={ieN"ie{1,..,J}}

where i gives the results for the individuals of a particular classification. If the
marginal number for each level of a particular classification, say 1, is fixed, then
the observations for this classification will lie in a subspace, S;, consisting of
those i for which the number n}” of i,...,i,equal to j (j = 1,..., J) are fixed.
As before, a common distribution for the null hypothesis of no association

between attributes is that the 2 random classifications Xj,..., X, are indepen-
dent and uniform on S,,..., S,. Then x? statistics are then, for 1 <i <j <&,
J

(X X)) = X n(Ny = nfPni/n)’/(nfn),
l,m=1
where N, is the number of individuals with classification / in X; and classifica-
tion m in X;. The spaces S, S,,..., S, are homogeneous under the group G of
permutations. Furthermore x? is invariant under this group, as are the distribu-
tions of X,,..., X,. Thus, Theorem 2 applies with d substituted by x2, making
possible easy analysis of many subsets of the pairwise x? statistics.
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