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ON SUBORDINATED DISTRIBUTIONS AND GENERALIZED
RENEWAL MEASURES

BY RupOoLF GRUBEL

Imperial College
Let (X,),en be a sequence of ii.d. random variables with partial sums
S =0, S, = X}.,X,. We investigate the behaviour of Z¥_,a, P(S, € x + A)

as x — too, where (a,),en, is @ sequence of nonnegative numbers and
A C R is a fixed Borel set.

1. Introduction. Various problems in probability theory lead to questions
on the asymptotic behaviour of

0
) Y a,P(S,ex+A), asx > too,
n=0

where (a,),cn, is some sequence of nonnegative numbers, (S,),cy, is the
sequence of partial sums, S, = 0, S, = ¥}_,X,,, of another sequence (X},), <n Of
ii.d. random variables, and A C R is a fixed Borel set such as [0,1] or [0, c0).
Examples of such convolution series are subordinated distributions (X*_,a, = 1)
which arise as distributions of random sums, and harmonic and ordinary renewal
measures (¢, = 0, a, = 1/n for all n € N in the first, a, = 1 for all n € N in
the second case). These examples are in turn essential for the analysis of the
large time behaviour of diverse applied models such as branching and queueing
processes, they are also of interest in connection with representation theorems
such as the Lévy representation of infinitely divisible distributions.

A traditional approach to such problems is via regular variation: If the
underlying random variables are nonnegative we can use Laplace transforms and
the related Abelian and Tauberian theorems [see, e.g., Stam (1973) in the context
of subordination and Feller (1971, XIV.3) in connection with renewal theory;
Embrechts, Maejima, and Omey (1984) is a recent treatment of generalized
renewal measures along these lines].

The approach of the present paper is based on the Wiener-Lévy—Gel’'fand
theorem and has occasionally been called the Banach algebra method. In Griibel
(1983) we gave a new variant of this method for the special case of lattice
distributions, showing that by using the appropriate Banach algebras of se-
quences, arbitrarily fine expansions are possible under certain assumptions on
the higher-order differences of (P(X, = n)), .n. Here we give a corresponding
treatment of nonlattice distributions. We restrict ourselves to an analogue of
first-order differences and obtain a number of theorems which perhaps are
described best as next-term results. To explain this let us consider a special case
in more detail.
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GENERALIZED RENEWAL MEASURES 395

Let Z(t),. o be an age-dependent branching process with lifetime distribution
p and m < 1, where m denotes the mean number of offspring [sée Athreya and
Ney (1972) for the definitions]. It is known that if p is subexponential, i.e., if

xl-if[:o (l“ * M’((x’ w))/”(x’ °°))) =2,

where * denotes convolution, then

i Ez(t) 1
Page p((t,0)) 1-m

[Athreya and Ney (1972, VI, Theorem 3B(ii))]. Now we have

EZ(t) = (1 - m)kizmk-lu*k((t, ),

which displays this situation as a special case of (1), and it follows from the
results to be given in Section 3 below that if p has finite second moment and a
density f which is of bounded variation and satisfies

f(x) =0(x~%), supf(y)=0(f(2x)), V&*f=o(f(x)),

y=x
where V**!f denotes the variation of f on the interval (x, x + 1], then
1
L EI) - m(6%) gy
lim = PE)
t—>o0 f(2) (1-m)

where k denotes the first moment of p.

Banach algebra methods have been applied in the study of subordinated
distributions with exponentially decreasing weights by Chover, Ney, and Wainger
(1973) and in ordinary renewal theory by Borovkov (1964), Essén (1973), Rogozin
(1976b), and others. Especially in renewal theory much attention has been paid
to expansions giving the respective next term: Consider the renewal function U,

0 0

U(x) = Z P(Sn < x) = Z l“*n(( - °°’x])’
n=0 n=0

where p denotes the distribution of X;. Assume that p is nonlattice and has

finite positive mean m,. A first refinement of the elementary renewal theorem,

U(x) = %l- + o(x),

has been given by Smith (1964): If m, = EX? < oo, then
Ulx) = — + 2 + o(1)
=—+ .
¥ m, 2m? ol
This has in turn been refined by Stone (1965): If p satisfies Cramér’s condition,
then

x my 1 (0,0
= — 4 - —
U) = =+ g~z [ [ s 0) dedy + (),
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" where &(x) = o(x!""log x) if E|X}| < o (Y € N). Recently Carlsson (1983) has
given the next term: if p satisfies Cramér’s condition and has finite third moment
mg, then

U) = -t gt ~ f [ (2, ) ey

2m1
+?ﬁ'§7f p((t, o)) dt + e(x),

where &(x) = o(x "Ylogx) if E|X)|< o0 (y=3,y€EN).

Roughly, U has been expanded down to the order of the tails of the
underlying lifetime distribution u. We will obtain an expansion with error term
of magnitude p([x, x + 1]): If some convolution power of u has nonvanishing
absolutely continuous part and if p has finite fourth moment, then

U) = o+ gt f [7nlCe co)) dedy + 5 [7((t, ) e

2m1

dmmg — 9m2

e () + (),

where &(x) = o(x~7) if p,([x, x4+ 1]) = o(x ") (y = 5, not necessarily an in-
teger).

Beyond adding new terms our method and its extensions to higher-order
differences may be regarded as an effective tool for obtaining arbitrarily fine
expansions in this situation and many others.

The paper is organized as follows.

Section 2 contains a Wiener—Lévy-Gel’fand result which is basic for every-
thing which follows. In the third section we apply it to the situation (1) in the
case of exponentially decreasing a,’s, on using these results we then obtain
information relating the asymptotic behaviour of infinitely divisible distributions
and their Lévy measures in Section 4. In Section 5 we consider harmonic renewal
measures; Section 6 then gives applications to ordinary renewal measures. The
last section contains some concluding remarks, indicating extensions and related
results. Some lemmas of a more technical nature are deferred to the Appendix.

2. A Wiener-Lévy-Gel’fand result. We first introduce some notation.

Let .# denote the space of all complex-valued measures on the Borel subsets
# of the real line. For any p €. let i denote the corresponding Fourier
transform, |p| the corresponding total variation measure, and ||p|lpy = |p|(R) its
total variation norm. Further let / denote the Lebesgue measure and 4, the
distribution concentrated on x (x € R). We write p <l if p € A is absolutely
continuous. For any #, C A put A, = {(j: pE M)}, M= {pE M p <)
Ifpe A, A € B, then p|, denotes the element of # with u|,(B) = u(A N B)
for all B € #. Finally,

U(z) = (2 €C: = 2/|<p}, Te) = {2’ €€C:lz—2'| < p)

P
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for all z € C, p > 0. We define an operator 2: D(Z) — # as follows,
D(3) = {,L e ﬁmdz < oo},

where
F(x) = p(R)Ijo, )(x) — n(( = o0, x]),

Sp(A) = LF;dl, forall A € 2.

Let 2 denote the space of all u € # representable in the form p = ad, + Z»
with some a € C, » € D(Z); define A: 2 — D(Z) by the requirements Au(R) = 0,
p = n({0})8, + Z(Ap). In the first lemma of the appendix some simple computa-
tion rules for = and A are listed; we will use these throughout the paper without
further comment. Let A”, =" denote the nth iterates of A and =, respectively.

We call a monotone decreasing function : R, - R, dominatedly varying (=
is a DVF for short) if :

(%)

C(7) = sup < 0.

x=0 7(2x)
In dependence on some DVF 7 we introduce subspaces .#(7) and 9(7) of A:
M (1) = {p e |p|((x, x + 1]) = o(r(x))},
D(r)={pe2: Apes#(r)}
[here and in the following o(7(x)) refers to x — oo if not qualified otherwise].
THEOREM 1. Let v be a DVF with (x) = O(x~?%). Suppose p, € 9(r),

ko €M, and ¥: G — C are such that G C C is open and contains the closure of
fi,(R), ¥ is analytic on G, and

fis(0) = ¥(i,(0)), forall6€R.
Then p, € 9(r).

In the first step of the proof we introduce a norm || - ||§ on 2(7) such that
(2(7), | |5, *) is a Banach algebra. In this step we will use the fact that
(A, |l - llzv, *) and (A(7), || - ||", *), where

I = Or) ey + sup () (w2 + 11) , forall p € (2),

are Banach algebras [see Gel’fand, Raikow, and Schilow (1964) and Rogozin
(1976a)]; clearly all convolution algebras are commutative and §, is the unit
element. In the second step we characterize its maximal ideals. In the third step
we complete the proof of the theorem by using a standard procedure from the
general theory of Banach algebras.
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ProOF OF THEOREM 1. (i) We define a norm on %(7) by
1115 = Colr) (Nl + 18y + sup7() ~'1ARI((, = + 1)),
where C,(7) is as in Lemma A.3. With the help of this lemma we obtain
convolution closure of 2(7) and also the norm inequality,

[y * wally < llpallGlleglly, for all py, py € D(7).
To prove completeness, consider a Cauchy sequence (k,), - We may assume
1,({0}) = 0 for all n € N. Then there exist p € #, v € #(7) such that
lim ||p, — pllrv =0, lim [|Ap, — »||" =0,
n— oo n— oo

and it remains to show p = Zp.
We choose a subsequence (4,,);en Such that |lp, —p, o< 2% for all
k € N. Then F,

FE) = 3 [ = 0, ]) = B, (= 20,2

b

is l-integrable, and since Ap,, ((— o0, t]) = »((— o0, t]) for all £ € R we obtain

Jim f|8u,,((= 00, 2]) = #(( = 0, ])|dt = 0

by dominated convergence. This means lim,, , ,[lp,, — 27|y = 0, so p = Z» as
required.

(ii) For any p € 92 let ||ullo = l|ltllrv + |Ap|lry Which is easily seen to be a
norm on 2. It is also simple to prove closure of 2 with respect to convolution
and the corresponding norm inequality, completeness follows by the same argu-
ments as in the case (2(7), || - ||5)- So (2, || - |lo» *) is a Banach algebra.

Let I be a maximal ideal in 2(7), let ¢: 9(7) — C denote the corresponding
(multiplicative and continuous) homomorphism, so I = ¢ ~({0}) [see, e.g., Rudin
(1974, 11.5 Theorem)]. Then

) |¥(8, *p)| =|¥(n)|, forallpe2%(r), x€R,

since otherwise n — (8, * p) would increase exponentially for some p € 2%(7),
x € R, which contradicts Lemma A.2(i) because of

|9 (8p % 1) | < 118, pll5-
Let & denote the set of those .#-elements which have compact support. Then
(3) AN D(7)isdensein D(7).
Given any p € 2(7) an approximating sequence is (4,,), ey With
po=0({0})8 + Zv,, v, = Au((—00, —1))8_, + Apli_p, y + Ap((n, 00)) &

[use 7(x) = O(x ~2)].
By adapting an argument from Chover et al. (1973, page 281) we show

(4) [¥(k)| < Clipllg, forall p & I(r)
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with a suitable constant C. We have
1ullg < Cllullo, for all p € D(r) with support in [0,1],

with a suitable constant C. Because of (3) we can find a sequence (p,),cn C
2(7) N A" such that (—n, n] contains the support of p, and p, — p in 9(7).
We may assume p({0}) = p,({0}) = 0. Then we obtain on using (2)

n—1
MMIE ’}_I{T:O‘IP( > 8k*8—k*”‘n|(k,k+1])

k=—n

n—1
<limsup Y [¥(8_,*pylce,ein)|

n—o k=-n

n—-1
< limsup Y [|6_,*ple, pig ":)
n—o0 k=-—n

n—-1
< Climsup )Y, ||3_k*ﬂn|(k,k+1]||o

n—o0 k=-n
n—1
= Climsup Z ”""nl(k,k+1] "o’
n—>ow k=-n

the last step following with the translation invariance of |||, on 29 ie.,
186, * illo = |lpllo for all p € 29, a € R. We have

A(p‘nl(k,k+l]) =—(Ap,)((k, 0))s, + (Ap'n)l(k,k+1] + Ap,((k +1,0))8,,,

and

k+1
[(Bma) (R, o)) | < [ 8pa(,c0) | + 1Am,I((R, & + 1),
which gives
n—1
. Z ””"nl(k,k+1] ”0 < 3””‘n”0’
=-n

and so (4) follows.

Since 9(7) is dense in (2, || - ||,) (4) enables us to extend y to the whole of 2.
Let I’ denote the corresponding null space. Then I’ is a maximal ideal in 2 and
I=I'n9().

Now let I be a maximal ideal in 2. Using arguments from the proof of
Theorem 1 in Yosida (1978, X1.16) we show that

eitherI> 9, = {(pe2:p<i, Ap <}
5
®) orI=1(6,,2) = {p € 2: i(6,) =0}, forsomef, < R.

Let ¢ again denote the corresponding homomorphism and assume () # 0 for
some p, € 9,. We define F: R - 9, h: R - C by

F(x) =8%po,  h(x)=y(po) "W(F(x)).
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Because of p, € 2,, F is continuous and so is h. The multiplicativity of ¢
entails A(x + y) = h(x)h(y); h is bounded because of ||F(x)||, = |1l for all
x € R. Evidently A # 0, so for some §, € R

h(x) = exp(if,x), forall x € R.

Now take an arbitrary p, € 2 N X#". According to Theorem 3.3.2 in Hille and
Phillips (1957) there exists an element p, of 2 such that

9(hg) = [¢(F(x))ny(dx),

for all continuous linear functionals ¢: 2 —» C. For a fixed A € &, p — p(A) is
such a mapping—this identifies p, as g, * ;. ¥ is also such a mapping so

V(pa) = [R(x)¥(o)ia(dx) = ¥ (1o)is(8)-

This implies Y(p;) = fi,(8,) for all p; € 2N A" and since 2 N K is dense in 9
this extends to the whole of 2 which completes the proof of (5).
We show next

(6) I>9,=1=2°(={n<c2:p({0}) =0}).
Suppose I 5 2, and p € I with a = p({0}) # 0. We then have p*? € I. Since
p*? = a8, + 2aZAp + Z(Ap *ZAp)
and Z(Ap * ZAp) € 9, we obtain
a®8, + 2aZAp € I.
But then

1
8= ——(ad, + 2ZAp — 2u) €1,
a

which is impossible. From I c 22, I = 9 follows since I is a maximal ideal in
2 and 2° is an ideal in 2.

We may summarize this part of the proof as follows: The space of maximal
ideals of 2(7) is {I(6,, 2(7)): 6, € R U {00}}.

(iii) Let g, py, G and V¥ satisfy the assumptions of the theorem. If z & fi,(R)
then p, — 2§, is not contained in any maximal ideal of 2(7) which implies the
existence of a convolution inverse (p, — 28,)*("? in 2(7). Integrating the
2(7)-valued function z — (1/27i)¥(2)(p, — 28,)*¢"D over a contour I C
G — i,(R) which has index 1(0) with respect to any point of fi,(R)(G¢) we
obtain an element of 9(7) with Fourier transform ¥ o i, [see, e.g., Hille and
Phillips (1957, 5.2) for a detailed presentation; a similar argument has also been
used by Chover et al. (1973, page 264)]. O

In Sections 5 and 6 we will need an analogous result on the spaces .#(7). This
result follows from the characterization of the maximal ideals of these spaces
given by Rogozin and Sgibnev (1980), Gel'fand et al. (1964, Section 30), and step
(iii) of the above proof.
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THEOREM 2. Let 7 be a DVF. Suppose p, € #(7), py € M, and ¥: G - C
are such that G c C is open and contains fi,(R), ¥ is analytic on G,
fio(0) = ¥(4,(0)), forall <R,
and

z€ @G, forallz e C with p, — 28, € I for some I,

I>#®, Imaximalidealin /.

(7)
Then p, € A (7).

Condition (7) is satisfied:
—if 1 € G and p, = §, + p with some p € #°,

—if U,(1) € G and g, = §, — p with some probability g, a convolution power
of which has nonvanishing absolutely continuous part.

The first case is obvious. Here is an elementary argument for the second: Let
(*)abs> (*)sing denote absolutely continuous and singular parts, respectively. Then
p — 28, € I implies p*" — 2”8, € I which because of (p*"),,, € I gives

80 — z—n(p’*n)sing el

So if |z| > 1, I (which is closed) would contain a sequence which tends to §,.

The final result of this section gives another property of the spaces 2(1), #(71),
its proof follows from Lemma A.2(i) and an argument on page 263 in Gel’fand
et al. (1964).

LEMMA 3. Let 7 be a DVF, let a,b,c,d € R be given witha < b <c <d.
Then there exists an absolutely continuous p. € 2(7) N M (7) N D(Z) such that
i(0) €[0,1] forall 8 € R and i(0) = 1on [b,c], i(f) =0 on [a, d]°

3. Subordinators with exponentially decreasing weights. Throughout
this section we assume that a, = o(exp(—an)) for some a > 0, and we put
m, = X2 n*a, (k=1,2).

THEOREM 4. Let 7 be a DVF with 7(x) = O(x ~ %), suppose p has a density f
of bounded variation satisfying V:*'f = o(7(x)), and let v = X¥2_,a,p*". Then v
has a density g satisfying VZ*g = o(7(x)). If moreover 1(x) = O(x ~3) and p
has finite first moment, then

g(x) = m, f(x) + o(r(x)).

ProoF. Put ¥(z) =X¥_,a,z" then »(0) = ¥(i(f)) for all § € R. Since
A(R) c U,(0) and ¥ is analytic on U,, (0) for some & > 0 Theorem 1 implies
v € 9(1), which is the first part of the assertion. Further we have

¥(2) = ¥(1) + (z - )¥’(Q) + (2 — 1)°®(2),
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for some ® analytic on U, , (0), which gives

5(6) = 5(0) — ¥/(1) + ¥/(D(8) + [Su(6)"i6@(3(9))]i6.
We have Ep(ﬂ)zz() € 9(7) by Lemma A4 and ®(4(6)) € 9(r) by Theorem 1, so
the term in square brackets is in @('r) Since the corresponding measure has no

point mass in 0 its product with if is in M(7). So v — ¥'(1)p € A(1), which
means

[ 18(6) = ¥ @)i(0) | dt = o(r()).

We know that V**1g = o(7(x)) from the first part of the proof, V*'f = o(7(x))
by assumption. Putting this together we get the second assertion of the theorem.
0O

The next result gives an expansion of the distribution function of ».

THEOREM 5. Let v be a DVF with 1(x) = O(x ~?), let u, v, and f be as in
Theorem 4. Assume that p has finite first moment k. Then
»((x,00)) = (2m; — my)p((x, 0)) + 3(my — my)p*p((x, 0)) + o(7(x)).
If moreover 1(x) = O(x~*) and p. has finite second moment, then
v((x, 0)) = mp((x,0)) + (my — my)ef(x) + o(r(x)).

Proor. With ¥ as in the proof of Theorem 4 and a suitable ®, analytic on
U, . [0) for some & > 0, we have

S(6) - (¥/(1) — ¥7(1)Su(6) - 1¥7(1)Z(u*p)(0) = [Zu(6)%i62(a(6))]i8,
from which we deduce as in that proof
o, =3v — (¥'(1) - ¥7(1)Zp — $¥7(1)Z(p*p) € 4(7).

Using Theorem 4 we obtain o, € 2(7), so Ac((x, )) behaves as o(7(x)). This
gives the first equation. The second will follow from the first once we have shown
Aoy((x, )) = o(7(x)), where g, = Z(p * p) — 2Zp — 2kp, which in turn will fol-
low from o, € 9(7) N A (7). The first set contains o, because of p*p — 2p €
(1), which we know from Theorem 4. Since p has finite second moment we
have Zp € D(2) and using Lemma A.5 we see that

NS s S%) € A(r).
This measure differs from o, only by a multiple of §,. O

If f itself is “nearly” dominatedly varying, we have the following result on
asymptotic equality.

COROLLARY 6. Let p. be a probability measure with finite first moment x and
a density f of bounded variation which satisfies
supf(y) = O(f(2x)), V"' f=o(f(x)), f(x)=0(x"?).

y=x
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Then
lim @ =
x—oo f(x)
If moreover f(x) = O(x ~*) and the second moment of u is finite, then
() = manl(x, ) _
x—00 f(x)

ProoF. Apply Theorem 4 and Theorem 5 with 7(x) = sup, . . f(y). O

m,.

(my — my)x.

4. Infinitely divisible distributions. Let P be an infinitely divisible (i.d.)
distribution with Lévy measure »; then for some a € R, 02 > 0 we have

ifx
1+ x2
It is well known [see, e.g., Feller (1971, page 572)] that the tails of P and v are
asymptotically equal, i.e.,
P((x, o0
(8) lim —(( ) =1,
x>0 »((x,00))

A 1 .
P(8) = exp(iao - 50202 + f(e“’" -1- )v(dx)), for all § € R.

if »((x, o0)) is regularly varying. In the one-sided case P([0, o)) = 1, Embrechts,
Goldie and Veraverbeke (1979) obtained a necessary and sufficient condition for
(8); see Griibel (1984, Section 4.2) for a partial generalization. As another
example of how our method leads to next-term results we have the following
theorem.

THEOREM 7. Let P be i.d. with Lévy measure v and let T be a DVF with
7(x) = O(x ~*). Suppose [x%v(dx) < co and assume that the restriction of v to
some [—C, C]¢, C > 0, is absolutely continuous and has a density f of bounded
variation satisfying V¥*'f = o(1(x)). Then

P((x,00)) = v((x,0)) + kf(x) +o(7(x)),
where k denotes the first moment of P.

Proor. If » has compact support we can continue P to an entire function
which implies that P has exponentially decreasing tails [Lukacs (1970, Theorem
7.2.1)], Lemma A.2(i) then gives the assertion.

Assume ¢ = »([— C,C]°) > 0 and define p = (1/¢)v|;_ ¢, ¢;-- Let P, denote the
i.d. distribution with transform

)vl(dx)),

1+ x2

1 .
ﬁl(o) = eXp(iOot1 — 50202 + f(ewx _1-
where

a =a-— f x/(1 + x%)v(dx)
[-¢cl
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and », = »|[_¢, ¢} Further let

o ok
— 2: k
P2_e ¢ k'.u'*’
k=0""

then P = P, * P,. From the results of Section 3 we know that P, € 2(7) and
Py((x, »)) = »((x,0)) + 1, f(x) + o(7(x)),
APy((x,0)) = f(x) + o(7(x)),

where «, denotes the first moment of P,.

Now consider ¢ = 2P — 3P, — k, P,, where «k, denotes the first moment of P,.
P, has exponentially decreasing tails, so P, € D(X), 2P, € D(Z), and =P,
S3P, are in A#(7). We have P~ P, =3P, *AP, + e~ °P, — e ~ “§, which im-
plies 0 € 2(7). Similarly we can show that 6 = Z3P,* AP, + e " °ZP, — ke~
which gives o0 € #(7). So Ao((x, 0)) = o(7(x)), that is

P((x,®)) = Py((x,0)) + k,APy((x, 00)) + o(7(x)), .
which together with (9) and «k = k, + k, completes the proof of the theorem. O

(9)

Theorem 1 is used in the above proof in case of (1) with weights decreasing
faster than exponential. The results of Section 2 are not needed in full generality
since completeness and norm-inequality of the respective algebras suffice. A
similar situation may arise in the case of exponentially decreasing weights; see
Omey and Willekens (1984) which contains some related results in the case of
measures concentrated on the half-line [0, 00) and Chover et al. (1973, page 267,
Remark 2).

5. Harmonic renewal measures. In this section we consider the special
case a, =0, a,=1/n (n € N) of (1). We then obtain the harmonic renewal
measure v, = X% _(1/n)u**. Such measures have been investigated by
Greenwood, Omey and Teugels (1982) and Griibel (1986). In Gritbel (1986)
A (7)-spaces have been used to estimate v, down to the order of p((x, o)), on
using the spaces 2(7) and Theorem 1 we obtain an expansion with error term of
magnitude p([x, x + 1)]. Let I} denote the measure on (0, o) with l-density
(1/x) A 1.

THEOREM 8. Let v be a DVF with 7(x) = O(x ~?%). Suppose that some
convolution power of p. has nonvanishing absolutely continuous component and
that p has finite second and positive first moment m,. Then p([x,x + 1]) =
o(71(x)) implies

([x, x + 1]) = o(r(x)).

1
vy — l; + ;EM
1

PrOOF. Let v, be the measure on (0, o) with l-density (1/x)(1 — e~ *) and
put », = », — »,.Letlog: G » C, G = {z € C: Re(z) > 0 V Im(2z) # 0}, denote
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the principal branch of the logarithm. Then, under the assumptions of the
theorem, v, € # and 7,(0) = —log(1 — A(6) + Zp(0)) [see Gritbel (1986)] and
we have to show », + (1/m,)Zp € #(7). Since m, = Sw0) > 0 we can find

a > 0 such that Re(ip(l?)) >1/2m, > 0if |f]| < 4a. Because of Lemma 3 we can
find some g, € #(7) N D(Z), depending on a, such that

ﬁl(R) c [0’1]’ ﬁl(a) =1, if|f|<a, ﬁl(o) =0, if|0]>= 2«,

and Zp, € #(7). We consider separately y, = (v, + (1/m,)Zp)*p, and vy, =

(v, + A/m)Zp)*(8 — py).
Choose p, € A(7) N D(7) with

g.(R) c [0,1], fi,(8) =1, if |§|<2a and {,(0) =0, if |0 > 4a,
and put
B3 =108 —py+ py*Zp
and
Ba=108— po+ py*p,,

where p, denotes the exponential distribution with parameter 1. Then
7(0) = ~Tog(0) + ~-2(0) + log 1) | (0).
For some function ® analytic on G and some constant C we have
log 14(0) = ~-8(6) = C + (i) Ty(0)"(1,(0)).

Since fi4(8) is on the line connecting 1 and Eﬁ(ﬁ) we have [i,(0) € G on || < 4a
by the choice of «; if |6] > 4a we have fi(f) = 1. So Theorem 1 applies and on
using Lemma A.4 we obtain (10)22u3(0)2fl>(u3(0)) € A(71). Further we get
log i ,(8) € A(7) from Theorem 2, so v, € #(r) follows.

In order to handle y, we first choose some py € #(7) with

ﬁ5(R) c [071]7 ﬁ5(0) =1, onlf<a/2, ﬁ,5(0) =0, on|f]>a,
and put
Be=08 —p+ps*p.
Then

72(6) = (,(6) — 1)log fig(8) + i0Zp.(8) log(1 + Zps(9))
1
+—2u,(0)(1 - 4(9)).
m,
Theorem 2 and the remarks following it glve log fi4(0) € A(7). Since

Re(2p.5(0)) = 0 Theorem 1 gives log(1 + Eu5(0)) € 9(r), also Sp, € 9(7). From
this we obtain y, € #(7) which completes the proof of the theorem. O
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The main result of Embrechts et al. (1984) gives conditions for

vu([x, x + R]) ~ i ([x, x + R]).

These also apply to the more general situation where the sequence (a,),cn,
from (1) is only assumed to be regularly varying with index — 1. However, for the
asymptotic behaviour of the differences »,([x, x + A]) — I} ([x, x + h]), the pre-
cise form of the coefficients a,, is decisive—this may readily be seen on using the
results of Embrechts et al. (1984).

6. Renewal measures. The special case of (1) which has most extensively
been dealt with is the one with a, =1 for all n € N;,. We then obtain the
(ordinary) renewal measure v = L%_ou*”". In this situation an expansion of
v([x, x + 1]) with error term of magnitude pu([x, x + 1]) has already been given
by Essén (1973). Our first result complements Theorem 3.2 of Essén (1973) with
respect to the conditions on the reference function 7 (see also 7.4 below). The
second part of our result makes more concrete a remark following this theorem.
Let I* denote the restriction of  to (0, ).

THEOREM 9. Let v be a DVF with 7(x) = O(x~2). Suppose that some
convolution power of u has nonvanishing absolutely continuous component and
that u has finite second moment m, and positive first moment m,. Then

p([x, x + 1]) = o(7(x)) implies
([x, x + 1]) = o(7(x)).

If moreover p. has finite third moment and 7(x) = O(x ~*), then p([x, x + 1]) =
o(7(x)) implies

1l+ 222+122 p
RN & - *
v ) z [ 3 p*2p

1
e A —22 + —2
e p

([x, x + 1]) = o(r(x)).

Proor. It follows from the calculations in Section 3 of Carlsson (1983) that
N
(v— —-l+) (9) = —f—\(—l
m,2p(0)
We are thus led to expand ¥(z) = 1/z about 2;1(0) = m, which gives

o —_ 9
1 " SSpu(O)NZp(8) — m
v——l+——22u+—22p*2 ) (9) = & )(,’.LS ) 1) .

m.om miZp(0)

On using the same arguments as in the proof of Theorem 8 we will show that the
right side of this equation is in /(7).
Choose a > 0 with Re(2u(0)) > im, on |0| < 4a and then p, € D(7) N A (7T)
with
ﬁl(R) c [0’1]’ ﬁl(o) = 1’ if Iol <a, ﬁl(o) = 0’ if Iol > 2a.
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We then have

SZ(0)(Sk(8) — my)”

= 1(8) - v,(9),

Su(0)
with
== ey Aa(6)
,(8) = 10[(22p(0) w)(iﬁ(a) )]
and

15(8) = [ia(ﬁu(ﬂ)ziﬂ)(ﬁn(‘?)i”)][IT_:%‘((%]’

where the brackets are meant to indicate that because of Lemma A.4 it remains
to prove

p(0) 1-4,00)
Eﬁ(a) E.@(T), 1_—M E.//l('r).

Since z — 1/z is analytic on G, the domain of analyticity of the principal
branch of the logarithm, these relations follow with exactly the same construc-
tions as in the proof of Theorem 8 (use p,, p3 on the first and pg, pg on the
second relation).

The second part of the theorem will follow from the first part and

23p*Zp = m23p + my3p + v,

for some y € #(7). Since p has finite third moment now we may apply =
to 23p again and then use Lemma A.5 as done at the end of the proof of
Theorem 5. O

Our final result deals with the renewal function. The relevance of the different
expansions may perhaps be understood best by applying it to a special class of
measures such as mixtures of Pareto distributions and a distribution with
support bounded from above.

THEOREM 10. Let 7 be a DVF with 7(x) = O(x ~3). Suppose that some
convolution power of p has nonvanishing absolutely continuous component and
that u has finite second moment m, and positive first moment m,. Put U(x) =
v((— o0, x]) for all x € R. Then p([x, x + 1]) = o(7(x)) implies

x  my
U(x) = — +

3 3
—2 — —33u((x, ) + —5 33 Sp((x,
m o T (5 )) 533 Zu((x, 00))

_ mifEEu* Sp+ Zp((x, 0)) + o(7(x)).

If moreover p has finite third moment m, and 7(x) = O(x~*), then
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p([x, x + 1]) = o(r(x)) implies

U M 2 ( ) LSSz ((x, )
= - + *
(x) m, 2m! m? w(x, ) m3 wx Zp((x, 0))

er((x,0)) + o(r(x))

If moreover p has finite fourth moment and t(x) = O(x~°), then
p([x, x + 1]) = o(7(x)) implies

U L TR ( B2y
(x) - m, 2m% m% M (x’oo)) m? -u'((x’w))

2
4m mgz — 9m;

() + o(r(2).

Proor. Put

1 1 1
;?22,1 + mzz,m(zp - m8,) - Ezzn*(zu — m,8,)*".

1

1
-

v,=v—
1
m,

We know from the preceding theorem that

1 1
—33p + —Z3p*(Zp — m8y) € A(1),
my m,

1
v — —I*t -
m,

which together with Lemma A 4 gives v, € #(7). Further we have

SZp(6)(Su(8) = my)”
miZu(8) ’

using the same construction as in the proof of Theorem 9 we see that Zv, € #(7).
Hence v,((x, 0)) = o(7(x)), which is the first assertion of the theorem.
Lemma A.5 gives A(23u * 23u) = Zp, for some g, € Z(1), so we obtain

A%+ ZPu+3%) e A(r),
with Lemma A.4. This means 3¢ € .#(7) where

gl(a) =~

o=3Zux(Zp- ”"180)"=2 — my(Zp - m180)*2 + mip.
We also have o € #(r), so o((x, 0)) = o((x)), which gives
S3p* (Zp = mydy)* (%, 00)) = my(Zp — my8)**((x, 0))

—im3u((x, 00)) + o(7(x)).
Similarly we obtain

Zp Zp((x, 00)) = 2m Zp((x, 0)) + map((x, )) + o(7(x)),

and on inserting we get the second part of the theorem. The same procedure,
using additionally Lemma A.6, also gives the third formula of the theorem. O
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7. Concluding remarks. It should be clear that, e.g., Theorem 7 admits a
corollary on asymptotic equality similar to Theorem 5, that the harmonic
renewal function can be analyzed in the same way as the renewal function in
Theorem 10, etc. In this section we indicate some less obvious extensions, some of
these are carried out in my habilitation thesis [Griibel (1984)], on which the
present paper is based.

7.1. The limit x > —oo. In Sections 3 and 4 it is enough to switch to p _,
p_(A) = p({x: —x € A}), apply the x — oo result and then transform back in
order to obtain the corresponding x — — oo results. This simple argument fails
in Sections 5 and 6 since the assumptions on p are no longer symmetric. It is
convenient to introduce 2_(7) = {p: p_ € Z(r)} and similarly # _(7), the
results of Section 2 also hold for these spaces. Replacing 9, # by 2_, # _ we
obtain the desired result (the expansion in Theorem 8, e.g., is stated such as to
remain valid if x - — o0).

7.2. Big-O results. The analogue of Theorem 1 for spaces such as
29%7) = {p € 2: |Apl((x, x + 1]) = O(7(x))}

holds if 7(x)= O(x~2) is replaced by 7(x)= o(x~2). The only point in
the proof to be observed is that measures with compact support are no longer
dense in 29(7). We may however approximate any pu € 29(r) by a sequence
(1) en € 2 of measures with compact support in the sense of

J(6 = p)*[, >0 asn— o,

because of the multiplicativity of the homomorphisms this suffices (the details
are somewhat laborious). This together with the corresponding result on .#-spaces
[Rogozin (1976a) and Rogozin and Sgibnev (1980)] leads to O-versions of the
theorems in Sections 3-6.

7.3. Noninfinitesimal differences. Let A_: M — M (¢ > 0) be defined by
Ap(A)=p(A) —p(A +e), forall A €2,
and put
D(r)={neM: ApcH(r)}.

Using such spaces of measures characterized by the asymptotic behaviour of
their “noninfinitesimal differences” we obtain weaker conclusions under weaker
assumptions. A typical result is the following which should be compared with
Theorem 7: Let P be infinitely divisible with Lévy measure », let 7 be a DVF
with (x) = O(x ~*), &€ > 0. Suppose [x*»(dx) < o0 and »|;_¢ ¢} € D7) for
some C > 0. Then

L x+E)P((t, o)) dt = f(x x+s)v((t, 0)) dt + rv((x, x + ¢]) + o(r(x)),

where « denotes the first moment of P.
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7.4. Other reference functions. DVF’s can exhibit oscillatory behaviour, e.g.,
for every a > B > 0 it is possible to find a DVF 7 such that

7(x) = x~#, forall x in some unbounded set,
7(x) <x~% for all x in some unbounded set.

Also there does not exist a constant y such that 7,(x) = O(x'r(x)) for all
integrable DVF’s r—this is the reason for the additional upper bounds on 7 in
our results. The situation is easier if 7 is assumed to be regularly varying (such
functions are asymptotically equal to DVF’s) since 7,(x) = O(x7(x)) then. We
could have worked with an extra condition such as r,(x) = O(x7(x)) [this leads
to a conceptual simplification, see Essén (1973)] which would exclude heavy
oscillating reference functions but include more slowly decreasing ones.

7.5. Higher-order 9-spaces and Wiener—Hopf factors. Perhaps the most
substantial extension of our method would be the introduction of higher-order
Y-spaces. In principle this should lead to arbitrarily fine expansions (under more
and more restrictive conditions on p, of course). A particular case in which
the results then possibly might be of interest is that of the distribution u* of the
first positive sum Sy, N =inf(n € N: S, > 0} [(S,),cn, still denotes the se-
quence of partial sums of an i.i.d. sequence with distribution p]. Then the har-
monic renewal measure corresponding to p* is the restriction to (0, o) of the
harmonic renewal measure of u. Results relating the behaviour of a probability
to that of its harmonic renewal measure can be obtained with the methods of
Section 3, so putting this together with the step described in Section 5 we get

" expansions of p* in terms of p. The results obtainable along these lines at the
present stage, i.e., with first-order Z2-spaces, are much easier to come by directly,
see e.g., Griibel (1985). Higher-order Z-spaces however should lead to expansions
no longer attainable by elementary means.

APPENDIX

Here we collect some lemmas of a more technical nature. The first lemma lists
some properties of = and A, we omit the simple proofs. Lemma A.2 gives some
elementary properties of dominatedly varying functions, all others are concerned
with estimating the total variation of convolution products.

LEMMA A.l. (i) Z and A are linear operators.

(ii) If p, € D(2) satisfies p,(R) = 0, then for any p, € # we have p,* p, €
D(E): and Z(py*py) = po*Zp,.

(i) A(py* py) = p({ODAR, + po*x Apy for all py, py € D.

(iv) 2Ap = p — p({0})8, for all p € P, ASp = p — p(R)S, for all p € D(Z).

(v) 2(0) = [A(0) — [(0)]/i6 for all p € D(Z), A(8) = i0(fi(8) — f(c0)) for
all p € 9, where fi() = lim, _ ,A(0) (= p({0})).

If 7 is a DVF with 7(x) = O(x " ""!), let 7y =1, 7, = [P1,_,(t) dt for k =
1,...,n.
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LEMMA A.2. Let v be a DVF.
(i) There existk € N, C > 0 such that 7(x) > Cx ~* for all x > 1. Moreover,

() X
sup —— = 0(x*), forsomek € N.
yso0 (¥ +x) (=, f
(i) Assume 1(x) = O(x~""') for some n € N. Then t,...,17, are DVF’s

again and for k =1,...,n,
(%) 71 #(x) = O(7(x)).
Proor. (i) See Feller (1971, page 289) for the first part. Further, by definition
of C(71),
(x +y) < C(r)"@7(y), forall y>1

with F(x) = [log,x] + 2.

(i) m(x) < C(7)[P1(2t) dt = 1C(7)[2r(t) dt = 3C(7)7(2x), so 7, is a DVF
again. This gives the first part of the statement. To prove the second part we
note that

Tk+1(x) = O(Tk(x)l—l/('”’l*k)), k= 0,...,n - 19

since 7,(x) < Cx "~ '** for all x > 0 with some suitable C and then, with
F(x) = m(x) 71+ 178,

F o0
Tpi1(x) sf (x)’rk(x)dt-i' C . )t‘”‘“kdt
x x

< F(x)m(x) + F(x) ™ "**.

n—k
On using an induction argument we obtain

m(x) = O('r(x)l*k/("ﬂ)), k=1,...,n,
which gives the assertion. O

We write S(D(Z)) for the range of . This set is easily seen to be closed with
respect to convolution.

LEMMA A3. Let t be a DVF with (x) = O(x ~2). For any p € 2(D(X)),
x >0, put

C(p, x) = supr(y) ap(y, y + 11).

y=zx
Then there exists a constant C,(t) > 1 such that
x
Cp *py, x) < Cl(”')[C(l‘q, 5)“”‘2”TV
x x\ x
| +C(”’2’§)””1”TV+ C(I‘l,g)c(ﬂz"i)]’
for all p,, p, € Z(D()), x > 0.
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ProOF. Suppose p; = Zv; with »(R) =0 for i =1,2. Let neN, 0 <x =
xy< +++ <x,=x+1be given. Then for any % € {1,..., n}

(A(Hl * Mz))((xk—v xk]) =V Mz((xk—n xk])

= (2 _1 — 3, %, — y)mo(dy)
(—oo,x/2]

+ (2,1 = 3,0, — yDno(dy).
(x/2,0)

We use partial integration and »,(R) = 0 to transform the second term:

f(x/2 oo)vl((xk"l = 5,%, = ¥1)vo((y,0)) dy

S P P | )

+ (21 = 3, %, — y)vo(dy).
(x/2, 00)

Taking absolute values, summing over k& and then taking suprema with respect
to partitions of (x, x + 1] we obtain

B s (x+ 1D < [ il =+ 1= yDikal(d)

+ Il((x =y, x + 1 = y])|v,)(dy)

(B2l

The first term is not larger than ([p,|rvC(py, x/2)7(x/2). If y € (x/2 + J,
x/2 + j + 1] we have

il =341 =50 <l (5 -7 1, 5—1+1])

SO

f(w oo)Iml((x —y,x+1—y)l(dy) < 2/uI(R) sup [»,)((y, y + 1]).

y=x/2
This yields the upper bound 2||p;||rvC(ks, x/2)7(x/2) for the second term.
Further we have

(505 + 1) = )l 3 on 53y

o (50)) | = e 2 3oum -2

So putting the pieces together and using Lemma A.2(ii) we obtain the assertion.
a
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LEMMA A4. Let v be a DVF with 7(x) = O(x~%) and suppose p,, py €
D(Z) N 9(r). Then

A((Zpy) *(Zp,)) € 2(r).

Proor. We may assume p,({0}) = py({0}) = 0. We first prove the lemma
under the additional assumption p,(R) = 0. Then AA(Zp, *3p,) = Ap, *Zp,.
Let0<x=x,< --- <x,=x+ 1 be given. Then

(Apy*Zpy) (415 %))

= (f + ) Ap’l((xk»l =Y, X, — y])z,u.Q(dy).
(—o0,x/2] (x/2,00)

If we take absolute values, sum over £ and then take the supremum with respect
to partitions of (x, x + 1], the first integral leads to

f(_ /2]|Aull((x -y, x+ 1= y])Zp,l(dy),

which is o(7(x)) because of Ap, € #(7) and |Zp,|(R) < co. We integrate twice
partially the second term,

[ Am((xy %~ yD)Zuy(dy)
(x/2,0)

= _l"l((xk—1 —x/2,x, — x/2])l-‘2((x/2’ ©))
_El-"l((xk—l - x/2’xk - x/2]) Af"‘2((x/21 00))

+ /2 )EMI((xk—l_y’xk_y])Ap‘Z(dy)'

Because of Ap; € #(7) we have
wal([x/2, 2/2 + 1]) = o(my(x)),  18p,l((x/2,0)) = o(n(x)),

and

lpa((x/2,0))| = o(mp(x)),  1Zpl((x/2, 2/2 + 1]) = o(my(x)),
so the first two terms lead to terms which on using Lemma A.2(ii) may be
estimated as o(7(x)).
The last integral will lead to

f( y )IEMII((x —y,x+ 1= y])|Ap,|(dy).

On estimating the integrand on intervals (x/2 + j,x/2 +j + 1], j € N, and
using Ap, € #(7) as in the proof of Lemma A.3 we obtain o(7(x))-behaviour for
this term too. This settles the lemma in the case p,(R) = 0.
In the general case put p,,;, = p; — p;(R)p, i = 1,2, where p denotes the
uniform distribution on [0, 1]. Then
Su; = Spy,; + 1, (R)Zp, i=1,2,
SO
A(Zp, *Zpy) = A(Zpy*Zpy) + pi(R) A(Zp, * Zp)
+po(R) A(Zpy* Zp) + py(R)po(R) A(Zp * Zp).
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The first three terms are in 2(1) by the first part of the proof, and the last term
leads to a measure with compact support. O

The last two lemmas are higher-order analogues of the preceding one; a sketch
of how refinements of the above arguments lead to a proof of the second should
suffice.

LEMMA A5. Let v be a DVF with 7(x) = O(x~*). Then p,, py € 2(1) N
D(Z?) implies

A} (3%, %« 32%,) € D(7).

LEMMA A6. Let v be a DVF with t(x) = O(x ~%). Then p,, py € D(1) N
D(Z?) implies

D%, % Z3,) € 9(r).
ProoF. We first give the proof under the additional assumptions pu,(R) =

Sp,(R) = =%u,(R) = 0. Then we obtain as in the proof of Lemma A.4, integrating
by parts four times now,

6
|84(3%,+ 3%,) (e, x + 1] < LI,
i=1
with

L= 1Apl((x = 3, % + 1 = y])IZ%,I(dy),
(-Oorx/z]

L=[  [Zwl(x-yx+1-5])Anl(dy),
(x/2,00)

(o2 )
ol 5+ o).
=505+ (502))
RERNS

I, I, = o(7(x)) follows with the now familiar arguments. Further we have
I, ; = o(t(x)715_(x)), i = 1,...,4, so o(r(x))-behaviour of the remaining terms
follows from Lemma A.2(ii).

In the second step we remove the additional assumptions. This is easy once we
have shown that there exists a measure p, with compact support such that

p3(R) = my(R), Spy(R) = Zpy(R), 2%u,(R) = 2%, (R).
Let p denote the uniform distribution on (0,1). Then for some a;, a,y, a3 € C,
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B3 = a;p + a,Zp + a;=% will do since the above conditions lead to a system of
linear equations with regular matrix of coefficients. O
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