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A NEW PROOF OF THE COMPLETE CONVERGENCE
THEOREM FOR CONTACT PROCESSES IN
SEVERAL DIMENSIONS WITH LARGE
INFECTION PARAMETER

BY ROBERTO HENRIQUE SCHONMANN
Universidade de Sdo Paulo

A new proof is given of the complete convergence theorem for the
d-dimensional basic contact process provided that the infection parameter is
larger than the critical value in the one-dimensional case. This proof is much
more elementary than the known one since it does not depend on exponential
estimates and does not use the subadditive ergodic theory in the extension
from one to more dimensions.

In [2] Durrett and Griffeath proved a growth theorem for a class of systems,
including the contact processes, in any dimension, provided that the infection
parameter A is larger than the critical value in the one-dimensional case, which
we call A;. One of the main corollaries is the complete convergence theorem
(Theorem 1 below). ‘

Here we give a much more elementary proof of this theorem. Our main tools
are the complete convergence theorem in the one-dimensional case, proved for
A > A, in [1] and the lemma on page 383 of [3]. The idea is to find imbedded
one-dimensional contact processes. We do not need exponential estimates, and
the subadditive ergodic theory is used only in the proof of the theorem in the
one-dimensional case [1] and not in the extension for d > 1. (One should observe
that for A > A\ = critical value of A for the one-dimensional contact process
with infection in only one direction [4], the proof of the analogue of Theorem 1 is
then very elementary since, in this case, there are elementary proofs in the
one-dimensional case given in [3] and [4].) On the other hand, we must observe
that the present approach does not give a proof of the pointwise ergodic theorem
and the law of large numbers for the number of infected individuals on Z ¢ (when
one starts with one infected individual) as in [2].

Notation. (£%(t), t > 0) is the basic contact process in d dimensions, with
initial configuration taken randomly with distribution p and A as the infection
parameter. It is defined on #(Z¢) through the rates

A—> AU {x} withrate A|[AN {y:|x —y| =1} ifx&A,

A > A\ {x} withratel ifx €A,
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where | - | is the euclidean norm on Z <,
7 =inf{t > 0: ¢4(t) = @ }.
v, is the weak limit of £2(¢) as ¢ — oo.

Ag=sup{A>0:p,=25,}.

THEOREM 1. For any A > A\, and any p
(1) £4(t) » P(74 < )8, + P(7} = o)y,

weakly, as t > oo.

ProoF. We employ the lemma on page 383 of [3]. Since the d-dimensional
basic contact process is self-dual we construct two independent versions of this
process, which we represent, respectively, by (£4(¢), ¢ > 0) and (£5(¢), ¢t > 0),
where A, B C Z¢ are the initial configurations. The above mentioned lemma
states that (1) is equivalent to .

lim P(£4(¢) N E3(¢) = @, 78 = o0, 78 = ®) =0,
(2) t— o0
VA,BCZ?, 0<|A|<w, 0<|B|<os,
where
T8 =inf{t > 0: £5(¢) = @},
7. =inf{t > 0: £5(¢) = @}.

To simplify the notation and ideas we consider first the case d = 2 and later we
indicate the differences in the general case.

The reader is assumed to be familiar with the construction of the contact
processes with percolation structures (see [4], page 5) and the corresponding
terminology. This construction will be needed for the definition of the imbedded
one dimensional processes (see Definition 4 below).

Definitions and remarks. Until the last paragraph, where we discuss the
case of general d, we are always considering d = 2.

DEFINITION 1. Q:Z% - Z, Q(x, y) = x.
DEFINITION 2. Given n € N,
K,={(C,D)cz®*x 2% 3{cy,cy,...,c,} € C, 3{d,,d,,...,d,} cD,
s.t. Q(c,) <@Q(c,1) < -+ <Q(e) <Q(dy) < -+ <Q(d,)}.

DEFINITION 3. Given ¢y, ¢y,..., ¢,, dy,..., d, which satisfy the conditions of
Definition 2 and ! € N such that for each i, ¢; € [—1, +1]%, d, €[, +1]2,
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consider for i = 1,2,..., n the one-dimensional paths
H;={(x,y) €R* (x=@Q(¢,)and y < I+ i)or
(Q(c;) <x<Q(d;)and y =1+ i)or
(x=Q(d;)and y < I+ i)},
L,=H,nZz%

REMARK 1. ¢;,d;€L;,i=12,...,n
REMARK 2. L,NL;=&,if i #.

DEFINITION 4. The percolation structure defining (£4(¢)) defines on each L,
a percolation structure corresponding to a one-dimensional contact process. It is
enough to consider the arrows of the percolation structure only when they join
sites on L;. We use the notation (£, ,(¢)) for these processes

Analogously the percolatlon structure defining (£2(¢)) defines the processes
(51’ {(t),oneach L, i=1,...,n.

REMARK 3. Remark 2 implies that the 2n processes

(£1,1(8)), 5 (81, 2(0)), (£1,1())s -, (&, u(8))

are mutually independent.

DEFINITION 5. Given n € N we define the stopping time
@, = inf{¢ > 0: (£4(¢), £5(t)) € K, or (£5(2), £4(t)) € K.}

DEFINITION 6. Given [ € N and ¢ € R, we define the event
E,,=[e4(s) c [-L11% E8(s) < [, 1T, Vs < ¢].

DEFINITION 7. Given n € N, [ € N, and ¢t € R, we define the event
Fo..= [6,<t]NE,,

REMARK 4. We will use the notation £%(¢) instead of £{*)(¢) for x € Z<.
Now we prove (2). Foranyn €N, /e N,and {, ER ,
P(rf = w, i = w0, £4(2) N £X(¢) = 2)
< P(rf = 0, 7 = 0,(F, 1) ) + P(F.1. £4(2) N E5(2) = 2)
< P(1f = 0,7 = ,0,> t,) + P((E,,)°)
+P(F, ., £6(2) 0 E5(2) = 2).

(3)
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We will show that given & > 0 it is possible to choose 7, I, and t, in such a
way that the three terms on the right-hand side of (3) are smaller than e/3 for
large ¢. The first term is controlled in the following way: For fixed n (its value
will be specified later) define the events

G,~=[7j‘>i,if>i,®n>i], ieN,
and the number
a=P(£5(1) > {(-n,0),(-n + 1,0),...,(n,0)} and
£3(1) > {(-n,0),(-n + 1,0),...,(n,0)}).

Then a > 0 and by translation invariance, additivity, and the fact that A + @ ,
B+ g,

P(G))<1-aq, P(G|G;_)) <1—a, i=2,3,...

Then for i = 2,3,..., ‘
P(G;) = P(G;N Gi_,) = P(G||G,_,)P(G;_,) < P(G;_,)(1 - @)
and
P(G) < (1-a)".

So

P(rt =0, 7f = ©,0, > t,) < P(Gy,;) < (1 — o)™,
where [¢,] is the integer part of #,. Then we can take t, such that
(4) P(1f=o0,7F = 0,0, > t,) <e/3.

Now, for fixed ¢, € R,, almost surely |£5(¢)| < o, and |£3(¢)| < o0 for
0 <t < ¢,. So there is [ € N such that

®) P((E,,,)) <o/5.

To control the last term in (3) we employ the imbedded one-dimensional
contact processes. As (1) is in force in the case d = 1 [1], it follows that (2) is
valid also in this case. In particular for any x, y € Z

lim P(£&5(¢) N €(¢) = @, 1¥ = 00, 77 = ) = 0.
t— o0
This convergence is not uniform in (x, y) € Z X Z, but it is uniform in (x, y) €

M= {(i,J)€EZXZ: |i-j <6l+2n), by reduction to a finite (except for
translations) number of cases. Then there exists ¢, > 0 such that if ¢ > ¢,,

P(£5(t) N &(t) = @, 1§ = o0, 7 = 0) < p?/2
for any (x, y) € M, where
p=P(£(t) # @,Vt>0),
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and p > 0 since A > A,. Then, if ¢ > ¢,
P(&(t) N &(2) # @) = P(§i(¢) N §(¢) # 2, 7§ = 0, 7} = )
= P(7 = o0, 7/ = )
—P(£() N £(t) = @, 17 = 0, 77 = )
> p? - p?/2 = p?/2.

Now we use (6) and the processes in Definition 4 to control the last term in
(3). We use a notation which corresponds to the case (£4(0,), £2(0,)) € K. In

(6)

this case take c¢y,...,c,, dy,...,d, € Z% as in Definition 2 and such that
{cp-..,c,} C EXO,)and {d,,...,d,} C £5(©,). The case (£5(®,), £4(©,)) € K,
is analogous; just interchange the roles of {c,,...,c,} and {d,,..., d,} in what
follows.

We employ the processes (£, ;(¢)) starting at time ®, with configuration {c,}.
For them we use the notation (g £7;(¢),¢> ©,). Analogously we define

(o,61:(2), t > ©,).
By additivity, for ¢ > ¢,

(7) [ig(t) NER(t) = g] NFE,,,C N [@n‘fffi(t) n@,,g_‘li,ii(t) = g] NF, 4,
i=1

On the event F, ,, we have: (a) the distance between ¢; and d; along H, is
bounded above by 6l + 2n. (b) O, < ¢,. Using these facts plus Remark 3, (6), and
the strong Markov property we get, for ¢ > ¢, + ¢,,

(8) Pl N [engffi(t) ne,,g_ii,'i(t) = Q] NE, ;. |<(1- 0?/2)".
i=1
So it is enough to fix n such that (1 — p%/2)" < ¢/3. Then (7) and (8) imply

(9) . P(F,, .. £8(t) N EE8(t) = @) < ¢/3.

(4), (5), and (9) applied to (3) complete the proof (in the case d = 2).

In dimensions larger than 2 we just need to modify the definition of L;. This
must be done preserving the properties of Remarks 1 and 2 and the statements
in Definition 4. A solution is to construct H; in the following way: Keep the
definition of K,, where now Q(x,,..., x,) = x;. Take points ¢; = (¢;1,--., ¢;4),
d;,=(d;,...,d;;) as in Definition 2. Trace a half straight line through ¢; along
which only the last coordinate varies and which ends at the point
(Ci1s Cigs v+ 5 Cin_1, 1). Now join this last point to (¢;;, ¢j0,..., Cip_s, I, ) using a
straight segment Join this to (¢;5, €55+, Cin_3, 1, 1, 1) and so on until we reach
(i1 Cins 1, 1,...,1); then to (c;,1+ i, l, l,...,1) and from this to (d;,!+
i,L1...,10), then to (d;, diy, 1, 1,..., 1), and now invert the rule above to reach
(dy, digy. .., d;,_y, 1). Finally, trace a half straight line starting at this point and
passing through d;. The definition of E; , must be changed in an obvious way
and the bound 6! + 2n for the distance between c¢; and d; along H; may be
changed to 4ld + 2n. 0O
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