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LIMITING DISTRIBUTIONS AND REGENERATION TIMES FOR
MULTITYPE BRANCHING PROCESSES WITH IMMIGRATION
IN A RANDOM ENVIRONMENT

By Eric S. KEY

University of Wisconsin-Milwaukee

Sufficient conditions for the existence of a limiting distribution for a
multitype branching process with immigration in a random environment,
Z(t), are given. In the case when the environment is an independent,
identically distributed sequence, sufficient conditions are given which insure
that the tail of the distribution of v = inf{¢ > 0: Z(¢) = 0} decreases ex-
ponentially fast, and an application of this fact to random walk in a random
environment is indicated.

1. Introduction and statement of main results. A population consisting
of several types of individuals may evolve in many ways. One possibility is
described by a multitype branching process with immigration in a random
environment (MBPIRE).

To describe such a process, let ¢ be an integer, denoting time, and let V be the
nonnegative orthant of Z% Elements of V will be written in boldface.

A d-type branching process with immigration in a random environment is the
superposition of a sequence of d-type branching processes in a random environ-
ment that begin at different times. D-type branching processes in a random
environment are discussed by Athreya and Karlin (1971) and by Tanny (1981).

More specifically, let F be the set of d + 1 tuples of measures on V with finite
mean. The random environment is a stationary, ergodic sequence e = {e(¢, *):
t € Z} of F-valued random variables. We partition the vector e(Z, *) into the
first d components, which we denote by p(¢, *) and the last coordinate, which
we denote by a(t, *). The mth coordinate of p(t, *) gives the offspring distribu-
tion at time ¢ for type-m parents. a(t, *) gives the distribution at time ¢ for the
immigrants. For each integer £ we define Z(k, t) to be the branching process in a
random environment which begins at time k. That is to say, conditional on e,

(1) P[Z(k,t) =0le] =1, ift<E,
(2) P[Z(k, k) = v]e] = a(k,V),
3) P[Z(k,t) =v|Z(k,t — 1) = b(m),e] = p(¢t,v),,, ift>E,

where b(m) is the mth standard basis vector in V. In addition to the assumption
that conditional on e each of the processes Z(k, *) have independent lines of
descent, we also assume that conditional on e, each of the processes Z(k, *) are
independent.
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The d-type branching process with immigration in a random environment
starting at time 0, Z(t), is the offspring born at time ¢ to the immigrants who
arrived between time 0 and ¢ — 1 inclusive:

(4) Z(0) = o,
) 2t)= X 2kr),  t>o.
k=0

Kaplan (1973) investigated multitype branching processes with immigration,
in the setting of time-homogeneous offspring distributions. He gave necessary
and sufficient conditions for the existence of limiting distributions for these
processes.

The existence of limiting distributions for MBPIRE can be addressed as well.
Let I(t) = E[Z(t, t)|e], and let M(t) be the d X d matrix whose mth row is the
expected number of offspring born to a type-m parent at time ¢, conditioned on
e: E[Z(t - 1, 8)|Z(t — 1, t — 1) = b(m), e]. {M(¢): t € Z} is a stationary, ergodic
sequence. .

Athreya and Karlin (1971) and Tanny (1981) use the maximal Lyapunov
exponent of {M(t): t € Z} to give extinction criteria for multitype branching
processes in a random environment. For x € R? let |x| = X% ,|x,|, and for any
d X d matrix M let |M| be the operator norm of M induced by |x|. We have
from Section 3,

THEOREM 3.3. Suppose that Z(t) is a MBPIRE with
(i) E(log*|I(0)|) < 0,  E(log*|M(1)|) < o, and
(i) Jim k7 E(log| M(1) - - - M(k)]|) < 0.

Then w(v) = lim,_, P(Z(t) = v) exists and defines a probability distribution
on V.
If in addition to (i) and (i)

(iii) P(p(1,0); >0, fori=1,2,...,d) > 0,
then m(0) > 0.

Condition (iii) means that with positive probability no offspring will be
produced by any of the individuals present so that the process starts over with
the next wave of immigrants.

Kesten, Kozlov and Spitzer (1975) used a single-type branching process with
immigration in a random environment, B(%), to give limit laws for a random
walk in a random environment, Y(t), satisfying P(|Y(¢) — Y(t—1)|=1)=1
and P(lim,_ Y(¢) = 00) = 1. One main lemma is

(6) If v=min{t > 0: B(t) = 0} then there are positive constants
k, and k, such that P(v > t) < k.exp(—k,t).

Key (1983) showed that if P(|Y(¢) — Y(¢ — 1)] <1) = 1 and P(lim,_ Y(¢) =
00) = 1, then Kesten, Kozlov and Spitzer’s program can be carried out using a
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two-type MBPIRE. Since one of the two types never had offspring, (6) was still
sufficient. To extend the analysis to the case where P(—L < Y(¢) — Y(¢ — 1) <
1) =1 and P(lim,,Y(¢) = ©) =1 one must prove the analog of (6) for a
general L + 1-type MBPIRE. We have, from Section 4,

THEOREM 4.2. Suppose that Z(t) is a MBPIRE with random environment
e = {(p(¢, *), a(t, *)): t = 0}. Let v =min{t > 0: Z(¢) = 0). If

(i) E(JI(0)|?) < 0 and E(|M(1)|?) < oo for some q > 0,
(i) im, _, 2 'E(log|M(1)- - - M(k)]) <0,
(iii) P(p(1,0); >0 fori=1,2,...,d) >0,
(iv) e is an iid sequence,
(v) p(t, *) and a(t, *) are independent for each t,

then there exist positive constants k, and k, such that
P(v > t) < kiexp(—k,t).

2. Generating functions and an auxiliary process. Since a(t, *) and the
coordinates of p(t, *) are measures on V given e, we may define

f,: 10,114 > [0,1]¢ and g, [0,1]% - [0,1]

to be the (random) generating functions of p(¢, *) and a(¢, *), respectively.
From the discussion of Z(k, *) and Z(*) in Section 1 and using the multinomial

notation, s¥ = s --- s¥% for s € [0,1]% we have
(7) E[s?%*:Ble] = gy(s),
(8) E[s”®%%e]gyo fyro - o fs), t>k,

and from (5) it follows that

E[s%le] = T E[s40)c]
9) ho

t—1
= ng°fk+1°"'°ft(s)’ t>0.
k=0

For ¢ > 0 we define the auxiliary process Z’(t):

-1
(10) Z'(t) = Y. Z(—k,0).
k=0
Since Z(k, t) € V we have
(11) Z'(t+1);22'(t);, fori=1,2,...,d.

(8), (10) and the conditional independence of the Z(%, *) imply that

t
(12) E[s 0| = ¥ g o f e ohle), >0,
k=1
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LEMMA 2.1. For each t > 0, Z(t) and Z'(t) have the same distribution.

Proor. Use (9), (12) and that e is stationary to show that Z(¢) and Z’(¢)
have the same generating function. O

LEMMA 2.2. Let v € V. Then lim,_,  P[Z'(t) = v|e] exists almost surely.

PROOF. For x and v in V let x <v mean x;,<v; for i=1,...,d. (11)
implies that for any x € V,
P[Z'(t+1) <x|e] < P[Z'(t) < x|e] almost surely.
Therefore, for any x € V,
tl_ifxoloP[Z’(t) < x|e] exists almost surely.
Since P[Z'(t) = v|e] is determined by a linear combination of terms of the

form P[Z’(t) < x|e], and the number of terms and the coefficients depend only
on d,

lim P[Z’(¢) = v]e]
t— o0
exists almost surely. O

3. Moment estimates and products of random matrices. Suppose that
{A(J): j € Z} is a stationary, ergodic sequence of d X d matrix-valued random
variables with E(log*]|A(0)|) < co. Then it is a simple consequence of Kingman’s
subadditive ergodic theorem that there exists a € [0, 0) such that

lim. n~'E(log|A(1) - - - A(n)|) = lim n~'E(log| A(—n) ---A(-1)|) =log(a),

(13) lim n~'log|A(a) --- A(n)| =log(a) as.,
n— oo

(14) lim n~'log|A(—n)A(-1)| =log(a) aus.
n—oo

log(a) is called the maximal Lyapunov exponent of the sequence {A(j): j € Z}.
If {A(j): j € Z} is a constant sequence then a is the spectral radius of A(0).
The chain rule and (8) imply that for ¢ > k,and 1 = b(1) + --- +b(d),

E[Z(k,t)e] = D(gyo frero - o f/(8))ls=1
(15) = Dg,(1) - Dfy,,(1) - -- Df,(1)
=I(R)M(k +1)--- M(2).
LEmMMA 3.1. Suppose that E(log™|I(0)|) < oo, E(log*|M(0)]) <  and

lim,_,  n~'log|M(—n)--- M(0)| = log m < 0. Then there exists a random vari-
able K = K(e) <  a.s. such that for all t > 0, E[|Z’(t)||e] < K.
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Proor. By (10),

Il
M-

E[|Z'(¢)]e] E[|Z(-k,0)|le] (since |v] is linear in v)

1

bl
~

[I(—k)M(~k + 1) --- M(0)]

k=1

;Elll(_k)l |M(-k+1)--- M(0)].

8 1

IA

By hypothesis, lim,, _, .n"'log|M(—n) - - - M(0)| = log m < 0, and by the ergodic
theorem lim, _, ,n"'log|I(—n)| < 0. Therefore,

0
2 | I(=k) - IM(—k+1)--- M(0)]
k=1
is convergent almost surely by the root test, which proves the lemma. O

LEMMA 3.2. Foreach vin V,lim, , P(Z'(t) = v) = n(v) exists, and under
the hypotheses of Lemma 3.1, w(v) is a probability measure on V.

Proor. Using the dominated convergence theorem we have
I!lim P(Z'(t)=v) = tlim E(P[Z'(t) = v]e])

= E(tlilgP[Z’(t) = v|e]),

so 7(v) exists by Lemma 2.2.
By Lemma 3.1 and Chung [(1974), Problem 6, page 94], the probability
measures P[Z'(t) = *|e], ¢ > 0, on V are tight a.s., so

(16) Y lim P[Z'(t)=v]e] =1 as.

vEVt_>°°

Therefore, ¥, . y7(v) = 1 as well. O

THEOREM 3.3. Suppose that Z(t) is a MBPIRE with
(i) E(log*|1(0)]) < 0,  E(log*|M(1)|) < 0, and
(ii) Jlim k7 'E(log| M(1) - - - M(%)]) <o0.
Then lim,_,  P(Z(t) = v) = n(v), a probability distribution on V.
If in addition to (i) and (ii)
(iii) P(p(1,0);> 0 fori =1,2,...,d) > 0,
then =(0) > 0.

Proor. P(Z(t) =v) = P(Z'(t) = v) by Lemma 2.1, so the first assertion
follows from Lemma 3.2. :
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To show that #(0) > 0 we proceed by contradiction. If #(0) = 0, then
(17) lim P[Z(t) =0le] =0 aus.
t— o0

For each vin V let

q(t,v) = Y p(t+ 1,00 Va(¢,x)

xevV
=P[Z(t+1) =0|Z(t) = v,e], ift>0.

Then for each v in V,

(18) P[Z(t + 1) = 0le] > P[Z(t) = v|e] - q(¢,v)
Taken together, (17) and (18) imply that for all v in V,
(19) lim P[Z(t) = vie] - q(¢,v) =0 as.

t— o0

Since e is a stationary sequence, (9) and (12) show that for each ¢ > 0 and each v
in V, P[Z(t) = v]|e] - q(t,v) and P[Z’'(t) = v|e] - ¢(0,v) have the same distri-
bution.

Lemma 2.2 shows that lim,_, P[Z’(t) = v|e] - q(0, v) exists almost surely for
each v and V, and (19) implies that this limit must be 0. Therefore, ’

tlirgP[Z’(t) =vle] =0 on {q(0,v) > 0}.

On the other hand, {p(1,0); > 0,i=1,2,...,d} € {g(0,v) > 0} foreachvin V,
so (iii) implies that
Y lim P[Z'(t) = v|e] =0
-0

vev?

on a set of positive measure, which contradicts (16). O

REMARK. Hypothesis (iii) may be replaced by other hypotheses and the
second conclusion of the theorem will still hold. For example, suppose that there
are only two types, and each type-1 particle only gives birth to type-2 particles,
and all of the immigrants are type-2 particles. Then (iii) may be replaced by

(iii") P(p(1,0),p(2,0), > 0) > 0.
This type of behavior might be observed in a stratified population model.

4. Regeneration times. Kesten, Kozlov and Spitzer (1975) and Key (1983)
used branching processes with immigration in a random environment to find
limiting distributions for random walk in a random environment. (See Key
(1984) for the definition of random walk in a random environment.) If {X(¢):
t > 0} denotes a random walk in a random environment satisfying

lim X(¢) = as., |X(¢t+1)-X(¢)|<1 as,

t— 00
we found limiting distributions for {X(¢): ¢ > 0} by finding limiting distribu-
tions for T(n) = inf{t: X(¢t) = n}, as n - oo.
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To find a limiting distribution for T(n) we constructed a branching process
with immigration in a random environment with nonrandom immigration, Z(t),
and examined the limiting behavior of

(20) Z:lof(Z(t))

for certain linear functionals f. Z(¢) and f were chosen in such a way that (20)
and T(n) had the same limiting distributions.
The key to finding a limiting distribution for (20) is to use the sequence of
regeneration times v(n) defined by
v(0) =0, v(n+1)=inf{¢>v(n): Z(¢t) =0},
to replace (20) with
v(n) n v(J)

tgof(z(t))=2 X f(2(2)).

J=1t=v(j-1)
If the environment for X(¢) is an iid sequence, then so is the environment for
Z(t), which makes
o(J)

Y f(z(r), J=12,...,

t=v(j-1)
an iid sequence. One key tool in studying this sequence is the estimate
(21) P(v(1) > t) < kiexp(—k,t)

for some k, and %k, > 0. Kesten, Kozlov and Spitzer (1975) obtained this
estimate in the case where Z(¢) is a single-type branching process.

If the hypothesis | X(¢ + 1) — X(¢)| < 1 a.s. is weakened to —L < X(¢ + 1) —
X(t) <1 as., the general argument for finding limiting distributions for X(¢)
seems to go through, except now Z(¢) is multitype. The only part that seems not
to be a line by line rewriting of Kesten, Kozlov and Spitzer’s argument is the
proof of (21).

LeEMMA 4.1. Let {A(Jj): j =1} be an iid sequence of d X d matrix-valued
random variables with

(1) E(|A(1)|q) < oo forsomeq >0,
(i) lim n~'E(log|A(1) - -+ A(n)|) = loga < 0.

Then for some h in (0, q] there are positive constants C and w with w < 1 such
that

E(|AQ1) -~ A(1)]") < Cw.

Proor. By (ii), there exists an integer & such that
¢ = E(logl A(1) -+ A(k)]) < 0.
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For this value of %
lim E(|A(1) -+ A(R)["
Therefore there exists & > 0 such that
E(|AQ) - A(R)[") =u<1.
Since the A(j) are independent we have for all n > 0
E(|AQ1) -+ A(n)|") < Cwm,

where w = u'/%. Since w < 1, the lemma is proved. O

h
)1/ =exp(c) < 1.

THEOREM 4.2. Suppose that Z(t) is a MBPIRE with random environment
e = {(p(t *), a(t, *)): t = 0}. Let v=min{t > 0: Z(¢) = 0}. If

() E(1(0)|?) < o0 and E(IM(1)|?) < oo for some q > 0,

(ii) lim,_, k" 'E(log|M(1) - - - M(k|) < 0.

(iii) P(p(1,0); > 0,i=1,2,...,d) > 0,

(iv) e is an iid sequence,

(v) p(t, *) and a (t, *) are independent for each ¢,
then there exist positive constants k, and k, such that

P(v > t) < kexp(—k,t).

REMARK. The version of this proof for a single-type MBPIRE with nonran-

dom immigration was given by Kozlov, but never published.

Proor. It is sufficient to prove that the power series
o0
F(z) = Y P(v(1) > t)z*
=0

has a radius of convergence which exceeds 1. Let v = v(1). Let
o(t) = P(v>1t),

h(r,t) = P|Z(r, ) 0, .tf 2(j,t) = 0),
g(r t) =P tglz(j, £) = o).
Then
o(t) = P(v > t, Z(¢) + 0)
- P(v ot Y Z(kt) £ 0
(22) k=0

t—2 t—1
= ZP(v>t,Z(k,t)=#0, Yy Z(j,t)=0)
k=0 Jj=k+1

+P(v>t,Z(t—1,¢t) # 0).
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Next,
t-1
P(v >t,Z(k,t)+0, Y Z(j,t)= 0)
J=k+1
t—1

=Plv>k,Z(k, t)#0, Y Z(j,t) =0)

(23) J=k+1
t-1
= P(v > k)P(Z(k, t)+0, Y Z(jt) = 0)
j=k+1
(by the independence hypotheses on the environment)

=o(k)h(k,¢t).
Since e is a stationary sequence,
(24) g(k,t)=P(Z(t - k) = 0).
Let g(t) = P(Z(t) = 0). It follows from (24) that
(25) 8(k,t) = g(t—k).

Next, let A(t) = g(¢) — g(¢t — 1). Since h(k,t) + g(t,t) = g(k + 1,¢), (25)
implies that
(26) h(k,t) = h(t - k).

Substituting (23) into (22) and then using (26) gives

t—1

o(t) = Y v(k)h(t— k).

k=0
In addition, we have v(0) = 1, A(k) > 0 for all £ > 0,
Y h(k) = lim 1-g(n)
k=1 n—o

lim 1 — P(Z(¢t) = 0)
n—oo
<1 (by Theorem 3.3).

Therefore, {v(k): k=0,1,2,...} is a renewal sequence, and standard renewal
theoretic arguments show that if

V(z) = iv(t)z‘
and -

H(z) = ¥ h(t)z,
then -

V(z) = (1 - H(z))™".
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Since H(1) < 1, F(z) will have a radius of convergence larger than 1 if H(z)
has a radius of convergence larger than 1. That the radius of convergence of
H(z) is larger than 1 follows from this estimate of A(%), with A, C, and w as in
Lemma 4.1:

h(t) = h(0, ¢t)
< P(Z(0,¢t) # 0)
= E(P[Z(0, t) + 0le])

= E(E[|2(0, £)[%e]

(since [v] is a linear function of v and x* > 1 for x > 1)
< E(I10)["|M() --- M(2)]")
< CE(|1(0)|")w’ (by Lemma 4.1).

Since w < 1 the radius of convergence of H(z) is greater than 1.0 .
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