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We study the asymptotic behaviour of the solution of the stochastic
difference equation X, ., = X, + g(X,)A + £,,,), where g is a positive
function, (£,) is a 0-mean, square-integrable martingale difference sequence,
and the states X,, < 0 are assumed to be absorbing. We clarify, under which
conditions X, diverges with positive probability, satisfies a law of large
numbers, and, properly normalized, converges in distribution. Controlled

Galton—-Watson processes furnish examples for the processes under considera-
tion.

1. Introduction. In this paper we investigate the asymptotic behav10ur of a
recursively defined, discrete time stochastic process

(1) Xp1 =X, +8(X,)1 + §,00),  Xo>0, EX< oo,

where g(¢) = o(t) is a strictly positive function and (£,)) is a zero-mean, square-
integrable martingale difference sequence, the conditional second moments of
which,

(2) o*(X,) = E[&11X,,..., X,],
depend only on the present state of the process (X,,) and do not grow too fast If
X, < 0 is absorbing we show that under suitable conditions

P(Xn - owor lim X, < Oexists) =1,

n— oo

P(X, = o0) > 0 and investigate the asymptotic behaviour of (X)) on {X,, = o0}.

The interest in (1) is fueled by Markovian growth models such as controlled
Galton—-Watson processes which, in contrast to the classical Galton-Watson
process, admit a state-dependent reproduction behaviour of the population
under consideration [see Kiuister (1985) and the literature cited therein].

In Keller et al. (1984) we have analyzed the corresponding stochastic differen-
tial equation

dX, = g(X,)(dt + o( X,) dW,), X,=1.

Our main tool was the transformation Gt = [!ds/g(s), which applied to X,
yields a process with constant drift 1. This process GX, admits a rather exact
asymptotic description from which information about the process X, can be
regained. In particular one can state conditions on the functions g and o which
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are equivalent to X, ~ u, on {X, - oo}, where p, = G~'¢ is the solution of the
corresponding deterministic equation (¢ = 0).

Although the results for the discrete process defined in (1) turn out to be
analogous to those for the process X,, and although the basic idea of the proof,
namely to study the process GX,, first, is the same, too, there are considerable
technical differences due to the fact that stochastic calculus is no longer at our
disposal. In particular It6’s formula (for the transition from X, to GX,) must be
replaced by a Taylor-approximation, and this gives rise to error terms which are
more difficult to control. In fact, our assumptions are a bit stronger than those
made in Keller et al. (1984) and two of our results (Theorems 4 and 5) are weaker
than the analogous ones for X,.

In the next section we formulate and discuss the precise assumptions and
derive some simple consequences. In Section 3 we prove a strong law of large
numbers for the process GX,,, which is the key to an asymptotic expansion for
(GX,, — Ga,) [a, is the solution of (1) for o = 0] relating it to the martingale
Y% _1&, (Theorem 2 in Section 4). In Section 5 we come back to the original
process X, and show that if o(¢) does not grow too fast then X,/a, — 1 in
probability on {X, = oo} and that in this case (X, — a,)/g(a,) either con-
verges a.s. or, properly normalized, is asymptotically normal (Theorems 3, 4, and
5). If, on the other hand, the growth of ¢(?) is too rapid, then X,/a, — 0 in
probability (Theorem 6).

There is a sharp boundary between these two different types of asymptotic
behaviour of X, which can be described in terms of a joint growth-condition on
the functions o(¢) and g(¢). Exactly “on that boundary” a third type of
stochastic behaviour of X, occurs: X,, suitably normalized, is asymptotically
log-normal on {X, — oo}. Although the growth-condition is a bit involved, we
do not discuss it here but refer the reader to Section 5 in Keller et al. (1984). In
Section 6 we give almost sure approximations to X,,, and in Section 7 we present
examples for which our results apply and counterexamples violating some of our
assumptions which exhibit a different asymptotic behaviour.

Some auxiliary results are proved in the Appendix.

2. Notation and assumptions. We recall the defining equation

(1) Xn+1 = Xn + g(Xn)(]‘ + §n+1)’ XO > 0’ EX(? < ®
of the process (X,), where (£,, %,), ., is a martingale difference sequence, i.e.,’
E(¢,.1%1=0, %4, C -+ €%, C &%, C -, X, is F,measurable such that

X, is %,-measurable. Motivated by the applications to Markovian growth-mod-
els we have in mind, we assume a kind of weak Markov property; namely that
there exists a measurable function 62 such that

(2) E[617] = o*(X,) ae.

In particular [P(¢2,,/0%(X,) > 2|%,) dz < oo a.e. We shall assume a bit more,
namely that this integrability is uniform in the following sense: There exists a
nonincreasing function F such that

(3) P( 2 /0%(X,) = zl.%,) <F(z) ae.foraln>0and z €R,
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and
0 0
/ F(z2)dz = -/ 2dF(z) < o.
0 0
This is implied, e.g., by E[|£,,,]**%%,] = O(¢%*%(X,)) for some & > 0. Before

we make further assumptions on the functions g(¢) and o(¢) we list all notation
used repeatedly in this paper:

4 Z,=X,+8(X,),
_8(X,)
(5) §n+1 - g(Zn) gn+1’
(6) Api1 = Ay + g(an)’ a, = 1.

Note that a, is the solution of (1) for £, , = 0, X, = 1. Next we introduce some
auxiliary functions:

(7) Gt=f1t%, t> 0.

If f is a function on the positive axis, f denotes the function given by
f(t) = f(G~'t), G" being the inverse function of G. Note that G~ ¢ satisfies the
differential equation (d/dt)G 't = g(G™'t). Further for ¢ > 0 let

®  we) - /g—((% B, e, §(0) = [44(s) s,

© o0 =3 [T s 0,40 = - L [oe)F ),

(10) r(t)=G(t+g(t)) - Gt—1.
We now formulate our main assumptions:

(A1) g R - R is positive and twice continuously differentiable on {t > 0}
and g(t) = 0 for t < 0. g and g’ are both ultimately concave or convex and

&(t) = o(2).

(A2) 6% R* — R™ is positive and continuously differentiable. Additionally
J262%(8)t 2 dt < 0 and 6%(t) is ultimately concave or convex.

(A.3) g'(t)a?(t) = 0, t > oo.

(A.4) If Y(0) = oo we suppose that |g’'~ | is ultimately convex, which is
equivalent to A(t) = |(8"(t)&(t))/0?%(t)| being ultimately decreasing, because
Aoy~H(t) = |(g" oy~ Y(2)|, whereas if Y(0) < oo we assume that |g’> G| is
ultimately convex or, equivalently, that |g"(¢)g(t)|is ultimately decreasing.

(Ab) (@) ¢,.1/0(X,) > —C> —0 a.e. forall nor

(b) ¢t~ g(t)o(t)VGt - 0, t - oo,

[For decreasing g assumption (A.5b) follows from (A.1) and (A.2); see (11) and
(19) below.]
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We discuss these assumptions.
The convexity- and differentiability assumptions are not necessary, of course,
but convenient. In particular, (A.1) implies:

Either g is decreasing and then it is convex and g'(¢t) <0,
£"(t) > 0 ultimately, or g eventually increases and is concave such
that g'(¢t) < g(t)/t for large t. In any case

g(t)—»0, t- .

In order to understand the importance of (A.1)—(A.3) for the results we are going
to prove consider the following Taylor-expansion of GX,,,; at X :

GX,,.,=GX,+(1+¢,.,) — g(X,)1+ £n+1)2 + remainder
= GX, +1 - 38'(X,) + £,.,(1 - £'(X,))
-1g'(X,)e%(X,)(£2,,/0%(X,)) + remainder.

Suppose for the moment that the remainder is negligible. Then GX,/n — 1 a.e.
on {X, — oo} will not hold unless g'(¢) - 0 and g'(H)oX(t) > 0 as t - oo, ie,
(A.1) and (A.3), and T}Z3&,,, = o(n) a.e. on {X, = o}. The best general con-
dition for the latter requirement is ©_0%(X,)/(k + 1)* < o0 a.e. on {X, > o0},
and in view of GX,/n — 1 a.e. on {X, — oo} this is equivalent to (A.2).

The law of large numbers for ©¢, may hold under slightly weaker assump-
tions, but it will fail to be true if 62(¢) ~ const ¢. Therefore

(11) 62(t) = o(t), i.e.,o?(t) =0(Gt),

which is a consequence of (A.2), is a rather natural requirement, and in fact, this
is all we need from (A.2) once we have established that GX,/n — 1 a.e. on
{X, = oo} in Theorem 1.

The reason that in Keller et al. (1984) g(¢) = o(t) could be replaced by the
weaker assumption G(o0) = o is due to the fact that the unperturbed (¢ = 0)
solution u, = G~ of the corresponding differential equation referred to in the
introduction satisfies trivially Gu,/t = 1, whereas the Taylor expansion

Ga,,, = Ga, + 1 - 1g'(a,) + remainder

shows (negligibility of the remainder is assumed) that Ga,/n — 1 only if
g'(t) = 0, ie., g(t)=o(t), and this is essential for our approach. Hence
g(t) = o(t) [in contrast to G(co) = o] is the price we have to pay for the time-
discretization.

In the above considerations we did not care about the remainder terms in the
Taylor expansions. A considerable amount of work, however, will be devoted to
the control of these terms in later sections, in particular a more complicated
expansion will be used in the proofs.

A look at the process log X, sheds some more light on condition (A.1):
Suppose that the £, are i.i.d. Then

lOg Xn+1 = log Xn + lOg (1 + g(Xn)/Xn(]' + ‘Sn+1))
= log X, + g(log X,,)(1 + £,.,,),
for a suitable £, , if Z(log X,) = E[log(1 + &(X,,)/X, (1 + £, )IZ].
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Thus we have a recursion for log X, which is formally identical to that for X,,.
If g(t)/t does not tend to 0 as ¢ - o, the function £ is strongly influenced by
the whole distribution of the &,, but if g(¢)/t - 0 fast enough, then the
influence of the second moments predominates for large X,,: In fact, Theorem 5
will show that, properly normalized, X, or log X, have limiting distributions
depending only on g and o2 if g'(¢)y'/%(¢) = ¢ < o, t = o0, which in the case
of iid. ¢, means g'(t)GY%*t - c¢/o, and this is equivalent to g(¢)t logt —
2¢? /62 [see Section 5.C in Keller et al. (1984)]. We mention without proof that
the closer g(¢) comes to the identity the higher are the moments determining the
limiting distribution of log X,,.

As (A4) is only a convexity assumption, we turn to (A.5). Note first that
(A.5b) and (A.2) imply (A.3) [in view of (11)]. In Section 7 we show that (A.5) is
sharp in the following sense: If g(t), o(t) satisfy the regularity assumptlons
(A1), (A2) and ¢~ g(t)o(t)y/_t — 00 as ¢t = oo, then a sequence of i.i.d. random
variables 7, can be chosen in such a way that E[q,] =0, E[nn] =1, and
£, = o(X,)n, is a martingale difference sequence which gives rise [V1a (1)] to a
process X, violating Theorem 1.

For later use we list some further simple consequences of (A.1)-(A.3):

(12) t6%(t) = 0(¥(¢)),  from (11),

(13) . $V2(t) = o(t), from (8) and (11),
(14) 62(¢) = o(¥(2)"?), from (12) and (13),
and if ¢ is large enough, (A.2) implies

(15) 62(ct) < c6%(t), forc=>1,

(16) d(ct) < e¥f(t), fore>1,

(17) é(ct) < c%(t), fore>1.

As

(c*(£)8(2)) = (82)(Gt)G1g(¢) + o*(t)g'(t)
= (6%)(Gt) + o*(t)g'(t) >0, t— oo,
by (A.2) and (A.3), we infer from ’'Hopital’s rule that
(18) o%(t)g(t)/t—>0, t- .

These facts will be used freely in the sequel. For ultimately decreasing g we have
some further properties:

(19) &(t)/t=0(1/Gt) by (A1),
and it has been shown in Lemma 1 in Keller et al. (1984) that (A.1) implies for
decreasing g

(20) g'(¢) = o(t™),
which entails in view of (A.3) and (13)

(21) g(t)o(t)WGt -0,  g@)v(t)* >0, t- .



310 G. KELLER, G. KERSTING AND U. ROSLER

Finally we note that
8Z2,)
&(X,)

for some nonrandom constant, where X, < X, < Z,.

(22) 1| =|g'(X,)] < const,

3. A strong law of large numbers for the transformed process. The
main result of this section is

THEOREM 1. Assume (A.1), (A.2), (A.3), and (A.5). Then

(a) lim X,<0 or X,—> c,n— o a.e.
(b) P{X,— o} > 0.
(c) lim GX,/n=1 a.e.on {X, > o}.

The same holds for the process Z, = X, + g(X,,).

Stopping rules will play an important role in the proof of the theorem. By
a stopping rule [adapted to the filtration (%#,)] we mean a random variable
 taking values in {0,1,2,..., 00} such that the event {7 = k} is #,-measurable
for all £ and P(r < o) > 0. 7 gives rise to the restarted process (£,,,),>1
which is defined on {7 < }. Each £, ,, is measurable with respect to % ., =
{(BC {r< o) BN {r=Fk) €%, forall k}. The normalized restriction of P
to {7 < o0} will be denoted by P, and expectation with respect to P, by E.[-].
Observe that (3) implies for n > 0 and all z € R:

P‘r('sf+n+l/°2(X‘r+n) 2 ZIZ_,_n)
(23) - kz I(r = B)P(£2, 1er/0%(Xss) 2 2|Fiss)
=0

<F(z) ae.

In particular’ ('s$+n+l/02(Xﬂr+n) - 1)n20 and (§‘r+n+ II{X‘r+n = Cn})nzO (Cn any
sequence of constants) are integrable martingale difference sequences to which
martingale convergence theorems can be applied.

We preface the proof of the theorem with some lemmas, the first of which will
be used in later sections, too.

LEMMA 1. Assume (A1), (A.2), (A.3), and let f(t) = 1/Gt, f(t) = $(t)"/?,
or f(t) = s " Y()G(t)" /2

(@) f(t)o*)(t) > 0, t > oo.
(b) Let c,d > 0. Then

P sup [ (16X, o i nerl {GX, 0 = (m + M)} > d) >0

n>0
as M — oo uniformly for all stopping rules .



STOCHASTIC GROWTH PROCESSES 311

(© fGGX)|E, |[{GX, > cn} - 0 a.e. (n > ) for each ¢ > 0.
If g is ultimately decreasing, the same is true for f(t) = |g'(t)| and f(t) = g(¢t)/t.
Proor. (a) follows from (11), (14), (A.3) and (18). From (11), (12), (19) and

(20) one deduces that in any case fA(t)262(t) < a/t for some @ > 0 and all ¢ > 1.
Hence

f:Gx,)*6%(GX,) < 2f(1GX,)6%(1GX,) < 4a/GX,,
and it follows that for ¢, d > 0,

> P,(GXH,, > e(n+ M)and f ( ,+n)|sf+n+1| > d)

< Z E, I{G r+n 2 C(n +M)}P (§$+n+l/o2(X'r+n) = i GX1'+n ~r+n):|
d% :
<Y E [I{G ez c(n M)}F(——(n + M))] [by (23)]

n=0

IA

nE()F(£(n+M)

< F(d—EM) + wa(ii-z—ct) dt
4a M 4a
-0 as M — .
This proves (b), and with M = 0, r = 0 the Borel-Cantelli lemma yields (c). O

LeEmMA 2. Suppose g(t) is increasing and concave for ¢t > S,. If X, > 4S,
and X, ., > 0, then

8(X,)
X

n

G n+1 GZ §n+1 = _2( ) (G‘X + 1)§n+1

Proor. Define H: (—0,1] = R by
H(t) = GZ,- G(S,+ 1 - t)(Z, - Sy)) — UZ, — S)/&(Z,).

Then H(0) = 0,
Z,— S Z,— 5

H'(t) = g8+ 1-0(Z,-5) &z)’

H'(0) =0,
and
28'(80 +(1-1)(Z,-S)))

g2(So +@1-)2Z,- So))

is positive and monotonically increasing such that H'(¢) is convex, and

H'(t) = (Z, - &)
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therefore 2¢~'H(t) = 2t Y¢H'(u) du < H'(¢). If we set I(¢) = t~2H(t), this im-
plies I'(¢) > 0.
If X,., =S, and therefore
g(Xn) Zn - Xn+1
tn= T e Sn+t1= 5, o =1,
Zn - SO Zn - SO

one has

Zn - Xn+1
t21(t,)=H(¢t,) =GZ,—- GX,,1 — — 5+

= GZn - GXn+1 + §n+1‘

On the other hand, if X, > 4S,,

(24)

g(X,)\* x, \*
a1 - g < (2820 .| 25 ) s

n

(25)

n

8(X,)\* )
< 2(T) (GX, + )& 1.

From I'(t) > 0 and ¢, < 1 we have I(¢,) < I(1). Together with (24) and (25) this
proves the lemma if X, , > S,. If X,,,, < S; and X,, > 4S, we finally have

X )\2 X .. —Z\2 9
9 g(X,) GX,+1)&,, =2 Zntl Tn GX,+1)>-GZ,>GZ,
X n n+1 X 8

n n

and since in this case £, ,; < 0, the lemma is true again. O

Before we formulate the next lemma, which constitutes the main step towards
the proof of Theorem 1, we give an expansion of GX,,, in terms of GX, and
GZ, If X,,, >0, then

g(Xx,)
&(z,)
=GX,+1+¢,,,+r(X,) +R,.

[The function r has been defined in (10), while (26) should be considered to be
the defining relation for R,.] If g(0) > 0 the same expansion works for X, = 0.
A Taylor-expansion yields

GX

(26) n+l = GZn +

£n+1 + Rn

1 gl(Zn) 2 2
(27) R,=-35 AL (X,)é2. 1,
with Z, between Z, (> X,,) and X, ,.
g(X,)

(28) r(X,) = -

| =

&*(X,)
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with X, between X, and Z,. If X,,, <0 or if X,,, =0 and g(0) = 0 (i.e.,
X, = O is absorblng), weset R,,, =0.

LEMMA 3. Assume (A1), (A.2), (A.3), and (A.5) and let ¢, d > 0. Then

Py = P,(sup(n )Y (IR, dl +[H( X ) VI{GX, = ek + M)} = d)

n>1 k=0
-0
as M — oo, uniformly for all stopping rules .

Proor. We consider first the case of ultimately decreasing g. Let
B(M, ) = {up f (16X, .o ) n l{GX, 1 2 cln + M) <o),
with
f(¢) = max{g(¢)/t,1/Gt,|g'(¢)|}
and ¢ < §. For all n with GX_, , > ¢(n + M), on B(M, ¢)

T+n =

X1-+n+1_Z1-+n < g( 1+n)
X - X

T+n T+n

|'S‘r+n+1| <e< _,

2

so that X, .., > 31X ., > 1G '(c(n + M)), and the ultimate convexity of Gt
implies that for sufficiently large M

GX1+n+1 = GX1-+n |§'r+n+1| = GX1+n(1 - |§1+n+1|/GX'r+n)

= %GX1'+n
Hence
g(X1-+n+1) | ( )
—_— -1 GX,, .||l +&.,,
' g( 7+n) + I + +1|
—~/C
<’g’(§(n + M))’ + &
< 2¢, forlarge M,
and similarly
g( +n)
— 1| <e, forlarge M [cf.(22)].
g(X1+n) ( )

As Z, lies between Z, and X, ,, we thus get that for large M and those n with
GX,+n > c(n + M) on B(M, ¢)

8(X..,) _
g( 1'+n) =(- 28)

Set I(k, M) = I{GX,,, > c(k + M)}. Fix ¢ > 0 such that (1 — 2¢) 2 < 2. Then
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we have for large M, say M > M,

(sup(n+M)_ Z|R1+k|I(k M) > C—l)

n>1 k=0

(29) =< (1-P(B(M,s))

n—1 (1 d
+Pf sup(n + M)_l Z gl(_GXf+k) £g+k+11(k’ MO) 2 =
n>1 k=0 2 2

By Lemma 1 the first term fends to zero as M — oo uniformly in 7. The second
one can be estimated by [use (15)]

n—1
Pu=Plsup(n+M)" Y |g ( GX,+k) ( GX1+k)
nx>1 k=0
. d
y §+k+1 — 1|1k, M) s &
( +k) 8
provided M|, has been chosen so large that |§7(§CM0)62(%CM0)| < gd [cf. (A3)].
As
- 1 ,\2 1 1'+k+1
P [@| 56%,04) 67 56X, [Tk, M) 52 5207,
2 2 ( 1+k)
—( € ¢ £ he1
(S m, ‘2(—M)—~———z P

<F(z) ae,

if |§’(§CMO)|6 %(1eM,) < 1, Theorem A.2(b) of the Appendix shows that p,, — 0
as M — oo uniformly in 7. Hence the expression in (29) tends to 0 as M —
uniformly in 7. The proof of a corresponding assertion for the r(X,, ,)-terms is
similar but simpler, and we leave it to the reader.

We now turn to the case of ultimately increasing g and start by proving that

nx>1 k=0

(30) Pl sup(n + 1)1 T (R, (R M) > gl) o,

as M — oo uniformly in 7, if M, is big enough. Assume that (A.5a) holds, i.e.,
£rinit/0(X, )= —Cae Fix k>0.If £ ,,,,<0,ie, X, 1.1=<2Z,,, We
have for large M,:

8(X..) |\
|R-r+k|I(k’ MO) g (X1+k+1)£‘r+k+l( (X =t ) )
T+k+1

As g(t)o(t)/t = 0 (t = ) by (A.1) for bounded o(¢t) or by (18) for unbounded
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o(t), we also have if X, is large enough
g( ‘X1'+k)
X1'+k

By the concavity of g one deduces that for large M,
|R1'+k|I(k’ MO)I{§1'+k+1 < 0} < 2g'(l ‘r+k)0202(‘X1+k)

If §,,,,.20,ie, X, ,,,,>2Z,,>X,,,, the ultimate monotonicity of g

implies that for large M,

IR, xRy Mo)I{£, i1 2 0} < 38°(X, 1 4)82 4sr
Putting both estimates bogether we obtain

Xovre1 = Xop|1 =

T

1
Co(Xf+k) 2 §X1'+k'

R, wlI(k, M) < 8(M,) + g(XT+k)° (X1+k)( (Hk:) )I(k’Mo),

where
t d -
8(M,)= sup {(202 + é)g’(—)oz(t)} < —,
t>G Y(cM,) 2 4
for M, large enough. [If ¢? is bounded this follows from (A.1); if o2

unbounded it is a consequence of (A.3) and (15).] Now (30) follows if one can
show that

n—11 2
Plaup(n+ 30T LK, )0 X, )| s~ 11k, ) =
n>1 k= 0 ( X T+ k) 4
tends to zero as M — oo uniformly in 7. But just as in the case of decreasing g
this follows from Theorem A.2(b) of the Appendix provided M, is large enough.
If instead of (A.5a) we assume (A.5b), we can deduce from Lemma 2 that for
large M,

g(‘X‘r k)
) (GX, g + 1)E2, I(R, M),
X1'+k

Observing that (A.5b), (A.1), and (18) imply

IR, Ik, M,) < 2(

(g( )) (Gt +1)o%(t) >0, ¢t oo,

the proof of (30) is finished as above by an application of Theorem A.2(b).

The assertion for the r( X, ,)-terms which corresponds to (30) is proved again
in a similar but simpler way using the fact that g’(¢) - 0, ¢ - 0, and from
these two estimates the lemma follows at once. O

COROLLARY. Under the assumptions of Lemma 3
n—1

1
lim — Y (IRx +|r(X,) ) I{GX, > ck) =0 a.e.
n=oo Bp=o
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Proor. Apply the lemma with r = M. O

LEMMA 4. Assume (A1), (A.2), (A.3), and (A.5) and let ¢ > 0. Then
P(GX,,, = (1 + ¢)n, for all but finitely many n) =0,
for all stopping rules .

ProorF. Let A = {GX,,, > (1 + ¢)n for all but finitely many n} N {7 < oo}.
By the corollary to the last lemma

n—1

1
lim — Z (|R1+k| +|T(X,r+k)|) =0 a.e.on A,

n—oo N 4_g

and it follows from (26) that

n—1

GX.,,=n+ Y §.,,+o(n) ae.onA,in particular,
E=0 «

(31) N
GX,<2n+ Y. ¢, forsufficiently bign a.e.on A.
k=1

So it remains to show that X225, ., = o(n) a.e. on A or, equlvalently, il =
o(n) a.e. on A. By the martmgale convergence theorem [2.18 in Hall and Heyde
(1980)] it suffices to prove that

8(Xy)
kg k™ Var(§k+1|'?k kzlk ( (Z )

This is trivial if 62 is bounded. [Observe that g(X,)/g(Z,) is bounded by (22).]
Otherwise 62 is concave, such that

) 0%(X,) < o a.e.on A.

00 k 00
Y k2E 62(2k+ ng) < Y & 2%22k) < o by (A2),
k=1 Jj=1 k=1

and hence

i k= 2var($, 11 %) = (1 + E k- ‘2(2k + Y {k)) <o a.e.

k=1 k=1 Jj=1

on A by (31).O

LEMMA 5. Assume (A.1) and (A.2) and let ¢, d > 0. Then

n—1
Z §1+k+lI{G‘X'r+k < C(k + M)}

o= P,(sup(n + M)_1
k=0

nx1

Zd)éo,

as M — oo uniformly for all stopping rules .
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PrROOF. As X7 o8 . 1+11{GX, , < c(k + M)} is a square-integrable
martingale, it follows from the Hajek—Rényi inequality that
0

ay<d? Y (n+1+M)E[$2, . {GX,,, < c(n+ M)}]

n=0

<d?Y (n+1+M)E,

n=0

g(Z1-+n)

(g(XHn) ) §2(GX...)

xI{GX,,,<c(n+ M)}}

<d2const ¥, (n+ M) ?6%(c(n + M))
n=0
w 6%(

t
sd‘chCM t2)dt

— 0, as M — oo uniformly for all 7 by (A.2).
For the third inequality we have made use of (22). O

Next we investigate some properties of the particular stopping rules
e {min{k: X, >S}, ifsucha k exists,
s 0, otherwise.
By 7% = 7 we denote the stopping rule inf{7g, k). The fact that  is a stopping
rule [i.e, that P(1 < c0) > 0] is proved in

LEmMMA 6. Assume (A.l). Then P(1g < o) >0 for all S >0 and
lim,_, X, < 0 exists on {13 = o0}.

ProoF. Fix S>0 and set Y, =X,.. Then Y,=X, and Y,,;, =Y, +
8s(Y, )1 + £,.,), where go(¢) = g(O)I(t < S}. Set A, =Y, + Libgs(Y,) and
M, =Y, —A,=Y208s(Y)¢,.1- (M,) is a square-integrable martingale and
Y, = A, + M, is the Doob-decomposition of Y,. As g¢(¢) = 0 for ¢ > S we have

Y AE[(M,., - M)|#7] = T A %s(Y,)0%(X,)
n=0 n=0

0
< const Z A;2(An+1 - An)

n=0

[e¢]
<const| t2dt<oco a.e.,
Xo

and from two versions of the martingale convergence theorem [e.g., 2.17 and 2.18
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in Hall and Heyde (1980)] one can conclude that
M,/A, >0 ae.on{A,— o} and
M, converges a.e. on {supA, < oo}.
"AsY, = A, + M, is pathwise bounded, this implies that A, and Y, converge a.e.
In particular, g4(Y,) - 0 a.e,, and on {r = o0} lim, , X, =1lim, Y <O0ae.

—>co'n =

Now suppose for a contradiction that P{7 < o0} = 0,i.e., lim,_, Y, < O a.e. The
contradiction follows from Fatou’s lemma applied to —Y, > —S:

0< E[ lim (-Y,)| < liminfE[-Y,] = liminfE[-A,]
n—oo n—oo n—oo
<E[-Y,]= —-EX, <0. O

ProOOF OF THEOREM 1. Let S> 0, 7 =15 &> 0, define a process V, on
{r < 0o} by
Vo = GX,,
Voir=Vo+1+§,,.{GX,,, < (1+3¢e)(n+ GS)}
+(Ryon + (X, ))H{GX, 1, 2 (1 - 3)(n + GS)),
and let
By = {sup(n +GS) WV, -V, - n| > s}.

n>0

Next let

{min{k >0:(1-¢€)(k+GS)<GX,,, < (1+¢)(k+GS)},
V=g = if such a k& exists,

o0, otherwise.

By induction on n we show that on {r < o0} \ Bg

(32) GX. yin=Vn tGX., =V,
and

(33) (1-3)(r+n+GS)<GX,,,,,<(1+3e)(r +n+GS),

for all n > 0.
For n = 0 assertion (32) is trivial, while (33) is true by definition of ». Thus
suppose that (32) and (33) hold for n = 0,..., N. Then

GX1+V+N+1 = G‘X1'+v+N +1+ §T+II+N+1 + R‘r+v+N + r(‘X1'+v+N)
= Vu+N +1+ §T+v+N+lI{G‘XT+u+N = (1 + 38)(” +N+ GS)}
+(R‘r+v+N + r(X1+v+N))I{GX‘r+v+N 2 (1 - 38)(” + N+ GS)}
+G T4y Vu
=Vina+tGX, -V,
i.e., (32) for n = N + 1. For the second equality (32) and (33) for n = N have
been used.
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Now

GX, . \yins1= (V;+N+1 -V, - (N+ 1)) +N+1+GX,,,
= (Vyinsr— Vo= (#+ N+1) = (V,— Vy—») + N+ 1+ GX,,,
<e(r+N+1+GS)+e(r+GS)+ N+1+ (1+¢)(r+ GS)
<(1+3e)(v+ N+1+GS),

by definition of Bg and ». Similarly

GX, . ,in:12 —e(r+ N+1+GS)—e(r+GS)+ N+1+ (1—¢)(»+ GS),
>(1-38¢e)(v+ N+ 1+ GS),

which proves (33) for n = N + 1.
From (32) and the definition of Bg we conclude that on {3 < 0} \ Bg

(34) (1 —¢) < liminfGX,/n < limsupGX,/n <1 + .

n—oo

In particular,

{rs< 0} \BsC [ {7y < }.
M=>0

Now suppose for the moment that
(35) P ({rs<o0}\Bg) > 1 asS— co.
Then PNy, . o{my < 00}) > 0, and we have:

(34) holds a.e.on [ {7, < o},
M>0

lim X, <0 a.e.on[ N (< oo}] = U {m= o}, byLemmasé.
n=e M>0 M>0

As ¢ > 0 was arbitrary, this will prove the theorem after (35) is established.
Applying Lemma 3 with ¢ = 1 — 2¢, d = ¢/2, and Lemma 5 with ¢ = 1 + 3,
d = ¢/2 we get

P (Bs) <ps+qs—0 asS— o,
and we only have to show that P, (vg= 00) > 0 as S — co. To this end let

o {min{k >1:GX,,, < (1 +¢)(k+GS)}, ifsucha k exists,
b=pg= ;
0, otherwise.
By Lemma 4, P, (pg = o) = 0 for all S, and it suffices to show that
Pfs({”s= w0} N{pg<oo}) >0 asS - .
But on {73 < 0} N {pg < 00} N {pg = o0}
GX‘r+p,—1 > (1 + 8)(I“‘ -1+ GS)’

(36) GX,,, < (1-¢)(1+ GS),



320 G. KELLER, G. KERSTING AND U. ROSLER

i.e.,
GX‘r +p—

if S is so large that (1 + ¢)(GS — 1) = GS. Hence
EGXT+;:,—1 < _(GX1'+;L - GXT+[.L—1)

1 > (1 - 8)_1GX1'+,.:,’

= _(1 + §1+u + R-r+p,—1 + r(X1+p,—1))‘

Therefore

P, ({rg= 00} N {pg< c0})

< B{{+ £0l/GX o > 50 (< )

+PT({(|RT+F,—1| +|r(XT+[.L—1)|)/GXT+M.—1 > ;} N {p < 00})

-0 asS - .

[The first term in the sum tends to 0 because of (36), (22), and Lemma 1. The
convergence of the second term follows (36) and Lemma 3.] O

4. An asymptotic expansion for the process GX,. The main result of
this section is

THEOREM 2. Suppose (A.1)-(A.5) hold.

(a) If \lz(oo) < oo, then GX,, — Ga,, converges a.s. on {X, = oo}.
(b) If ¥(o0) = oo, then

GX, = Ga, + kZi‘, ¢+ 6(n)(1 +0(1)) + o($%(n)) a.s.on (X, o}.

The asymptotic behaviour of the martingale Y%_,£, occurring in part (b) of
the theorem is controlled by

ProposITION 1. Suppose (A.1)-(A.5). If Y(0) = o0, then the conditional
distribution of Y(n)~/2X}_.&, on {X, - oo} converges weakly to a standard
normal distribution 4°(0,1).

PROPOSITION 2. Assume (A.1)-(A.5) and additionally that E[|§,.,|*>"°%,] <
Co?*%(X,) for some 0 < & <2, C > 0. If {(c0) = o0, then one can redefine the
process £, on a richer probability space together with a standard Brownian
motion B(t) in such a way that

n

L& B(¥(n) + o(§(n))) a.e.on (X, oo}.
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Set S, = L}Z¢R,, and denote by D the event {X, — c0}. We start the proof
of the above result with a lemma:

LEMMA 7. Suppose (A.1), (A.2), (A.3), and (A.5) hold.

(a) If |¢(oo)| < o0, then S, converges a.s. on D

(®) If |$(c0)| = oo, then S = ¢(n)1 + o(1)) a.s. on D.

Proor. In (26) R, has been defined as R, = GX,,, — GZ, —
(8(X,)/8(Z}))é+ 1 A Taylor-expansion of GX,,,, at Z, yields [cf. (27)]

1 g'(zk)

2 g%(Z)

with Z, between Z, and X,,, = Z, + g(X,){,. 1.
Fix ¢ < 1. By Theorem 1 for k large enough

o Y

holds a.s. on D.
For L >0 set. I, ;, = I{{;,, > Lo*(X,)}. From (15) and Theorem 1 one
deduces that a.s. on D

Rk=—

&%(Z,)&5 11,

§ha < |g'(zk)|§l2e+1 Sl?(Ck)|£l2z+l

Feh) A, + 0).

n—1 n—1
(38) X [g'(ck)[gR il <™ X Jg'(ck)

k=0 k=0
If |tf>(oo)| = |3 fo g (s)oz(s)ds| < 00, then the regularity assumptions on g and
o? imply X¢ 0|g’(ck)|62(cle) < o0. Thus the right-hand side of (38) converges
a.e.on D, and together with (37) one concludes (L = 0)
(39) Y |8 (Z,))¢2,, < o a.e.on D.

k=0

If |q§(oo)| = 00, the regularity assumptions on g and o2 imply that

6%(ck) ~ 2¢7 Y (cen)| > o0 asn — oo,

n—1
Y lg'(ck)
k=0

and from (38), (3), and Theorem A.2(a) of the Appendix one deduces that a.s.
on D

n—1
Y lg'(ck)|etiadh .
k=0

(40)

£ia

<2¢7%(cn) (X, )Ik L

sup E
k

ﬁk] + 0(1))
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Taking L = 0 this and (37) imply that a.s. on D

Y 1g/(Z)le2es < 20 (en)(1 + (1)) < 2¢-(n)(1 + 0(1)),

k=0

and as ¢ < 1 was arbitrary,

(41) :go|g'(zk> 62,1 < 216(n)|(1 + 0(1) as.on D.

Similarly one shows that

(42) :iolg'(zk)lsz“ > 2/8(n)|(1 + 0(1)) as.0n D,

We still have to show that one may introduce the factors (g(Z,) /8(Z,))? into
the sums (39), (41), and (42) without changmg their asymptotic behaviour. It
follows from Theorem 1 and the fact that Z, is between Z, and Z,, + g( X.)ér 1
that for large &

g(X,)
&(Z,)

< const|g’(ck)| €41l

a.s. on D (observe again that g(X,)/&(Z,) is bounded).

If |¢(oo)| < o0, then |g’(cle)|§k+1 -0, k> o0, a.e. on D by (39), and as
|g’(¢)|is bounded, it follows that the expression in (43) tends to 0 a.e. on D.
Hence we are done.

We turn to the case |$(o0)| = co. If g ultimately decreases or if g ultimately
increases and (A.5b) holds, whence |g'(¢)| < ¢~'g(¢) = o(o~*(£)G(¢)'/?), the
expression in (43) tends to 0 a.e. on D by Lemma 1. Otherwise g ultimately
increases and (A.5a) holds, i.e, §;,,/0(X,) > —C a.e. We combine (41) and (42)
and reformulate it:

S, = $(n)(1 + o(1)) - %Zg(f)é(i_% i 1)1“

<lg’(ck)| lgpirl =~

‘g(zk)
g(z,)

(43)

(44)
1nol g(Z,)
S (Z)e, | ==~ - 1|1 -1, .).
2.k§og( k) k+1(g2(Zk) ( k,L)
From (43), (15), and Theorem 1 we conclude that a.s. on D for large %
&(Z,)
&(Z,)
and this tends to 0, because g'(¢)o(¢) = 0, t = oo, by (A.1) and (A.3). Hence the

second sum in (44) is a o(qh(n)) by (41). To the first sum in (44) only those %
contribute for which £2,, > Lo?(X,,). If L > y/C, this is possible only if £, ; > 0,

-111-1, ) < const|rg\’(ck)|L1/20_26‘(ck),
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ie, X, <Z, <Z, < X,,, Therefore, if a k of this type is big enough we have
g’ (Zk)| < |g'(X,)| and g(Z,) < g(Z,), and the first sum in (44) is bounded in
absolute value a.s. on D by

n—1

1
) ) |g'(Xk)|§13+1Ik,L +0(1)
k=0

§k+1

AL +0(1) [by (40)]

< c %(n)|supE
k

] + o(1)

< c'3¢;(n)(wa(z) dz + o(l)) [by (3)].
L
Since this is true for all L > yC, one can conclude from (44) that

S, = é(n)(1 + 0(1)). o

Proor oF THEOREM 2. We have defined r(t) = G(t + g(¢)) — Gt — 1 [see
(10)]. Hence

o 1+g(2) 1
"= i e) 20
1+g'(¢) 1

g(2) +g(t)g'(¢ + 0g(t))  &(t)’
for some 0 < 0 < 1, and because of (A.1) for large ¢
|7(2)] = 1 |g'(t) —g'(t+0g(¢))

g(t)| 1+g'(t+0g())

<2[g"(?)],

ie.,
#(O)] =|r(G1)a(t)]
< 2[g”(1)8(1)] = 2|A(8)6%(0)|.
In view of (26) there is U, between X, and a, such that
GX,,,—Ga,,,=GX,— Ga,+r(X,)-r(a,) +¢$,., + R,
= (GX, — Ga,)(1 + #(GU,)) + (§as1 + R,)
By induction this leads to

(45)

n—1 n—1
GX, — Ga, = (GX, — Ga,) 1_!) (1+#GU)) + X ($per + Ry)
i= k=0

"E(’i Goor + Rk)“(am T @+ #(cuy).

Jj=1\k=0 i=j+1

Using the notation M, = X324, and [T} =TI2.'Q + #(GU))), this can be
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rewritten as
(GQQz_‘?an)__(A41+‘$J

= (GX, - GaO)I:I + nf(Mj + S,)#(GU;) ﬁ .

Jj=1 J+1

(46)

Next we show that a.e. on D
R+l

(47) Il -1 ask — oo uniformlyin I.
)

As T4+ = exp(Tit}og(1l + #(GL)))), it suffices to show that X2 4|/ (GU))| —
0 as £ — oo a.e.on D.

Now U, is between a; and X;, so Theorem 1 implies GU,/i = 1 a.e. on D
[note that (a,) is a special case of a process X,, tending everywhere to infinity].

Hence by (45), (A.4) and (15)
(35 (5ol
3[4\ 2) ~ 8"\ 3)8\ 2
a.e. on D for i big enough and
o0 00 i 7
X 1#(6u)| <8 X g6 5 e[ —)l
i=k i=k 2 2
o i
=8Y (g'°G_1)'(§)
i=k

s‘lsfw (g-G71)(t) dt‘
(k=1)/2

k-1
=|18g'| G ——
el 5

-0, k— oo a.e.on D.
A first consequence of (47) is that

(48) |#(GU;)| < 2

(49)

n
(50) (GX, - Gao)l_;[ converges a.e. on D.

Assume now that §(c0) < co. Define the martingale
j-1

M, = kz G I{k/2 < GX,, < 2k).
=0

Then
E[M?| =E JE ‘z(GXk)(g((Zk))) I{k/2 < GX, < 2k)
k=0

< const ¥(j) as g(X,)/g(Z,) is bounded

< const (o0) < 00,
such that M, [, converges a.e. by the martingale convergence theorem. Now
Theorem 1 implies that M; converges a.e. on D. If |¢(oo)| < o0, which is always
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the case if Y(o0) < oo, then S, converges a.e. on D by Lemma 7, and it follows
from (46), (47), (49) and (50) that GX,, — Ga,, converges a.e. on D.

Suppose now that (o) = co. From (46), (47), (48) and (50) we see that a.e.
on D

(51) |GX, — Ga,— M, — S,| = (n21|M +S|)\( ) (é))
We show that ’
(52) jzl |M|X( ) (é) =o($(n)""?) ae.onD.

As GXn/n — 1 a.e. on D, it suffices to prove the same for the martingale
M Zk =0 k+1I{k/2 < GXk < 2k}, and as

ol 8/ [ 8%(t)
=0 (/275 ()
<4 "(9(2)) dt = 4§(n)"”,
0

it is enough to show that for each d > 0

7\2
{|M|5\( ) (2) 2dforsomej2N}—>0 as N — oo.
As Aoy ! =|(g’o¢ Y| is ultimately decreasing and integrable by (A.4) and

(A.1), it follows that ¢A(y~'#) and hence Y(£)A(t) = 0 as t — oo.
Therefore it suffices to show

V172
(53) P{|Jl4j|5\(é) zdforsomeij} -0 as N - oo.

Observing (15), (22) and (A.4) the Hajek-Rényi inequality yields the following
estimate for the probability in (53):

<d 25\( [gfﬂ 7 <GX; < 2,‘}]

J=
+d2 Z é [;+1 —<Gst2j}]
N
2

< const (

) N262(¢) dt + fw A(8)62(t) dt)
0 N/2

= const (

) 0N/2¢i2(t) dt + /;:02(A01P_1°$(t))‘i;1(t) dt)
Ji(5 )+ [ v oLl

-0 asN - oo,
by the above considerations on A o y~!. This proves (53) and hence (52).

0| Z l\°|2

= const )A\(
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Next we estimate L7~ 11S; IN(j/2)6%(j/2). Because of Lemma 7, a.e. on D

T i9ia(3)(3) - of T s 3o 4]

- o( 18Ry at) [by a7)]

- o[ [16(0)lI(e'> Gy (0) k)
- o(l6(w) | ()] + ["18(0)][g'(0)] e .

If |$(o0)| < oo this means that the above sum converges a.e. on D such that it is
o($'/2(n)), whereas in the case of |¢(oo)| = oo it implies that the sum is o($(n))
a.e. on D because |g'(t)] = 0, ¢ = co.

Together with (51), (52) and Lemma 7 this proves

GX, - Ga,=M,+ é(n)(1 + o(1)) + o(xl:(n)l/z) a.e.on D,

and we can finish the proof of (b) of Theorem 2 by showing that

=o(j¢(n)|) + O(1) a.e.on D.

n—1
Mn - Z £j+1
j=0

From (22) we know that for large X; |8(Z))/8(X}) — 1| < |8'(X))I, such that a.e.

on D
i) {550 1) )

&(Z))

B oog(t) 02(t) _ o0~ -1
ol o * ‘O(/l gm(é(t) ) dt)

o0 1 ! 1 1
f( )dt‘)=O(A - - )<oo,
1\ ol(¢) o(1)  é(o0)

and we can conclude from the martingale convergence theorem [and the
Kronecker lemma, if ¢(c0) = co] that

! g(Xj)

=o(¢(n)) + O(1) a..on D. ]
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PROOF OF PROPOSITION 1. AsGX,/n — 1 as. on D, it suffices to prove that
for M, = ¥723¢,. . I{k/2 < GX,, < 2k}

(54) $(n)"?M, > 0 a.e.on D,
(55) $(n) M, = 514(0,0),

where 7 is independent of 47(0,1), P{(n = 1} = P(D) and P(n = 0) = 1 — P(D).
While (54) follows immediately from Theorem 1, (55) is nothing but Corollary 3.1
in Hall and Heyde (1980) together with the remark thereafter. We check the
assumptions of this corollary.

First we need a conditional Lindeberg condition. For any ¢ > 0

- 2
Z lgk“ {5<ka_2k,§ >e}fk}

ko |¥(n) ¥(n)

=L k

=y(n) k{_‘,Oo (GXk)I{§ <GX, < Zk}
£l2e+1 £13+1 (n)

xE o?(xkf{a?(xk) e (X»}”‘}

< 45(n)" T 8°(hy 2) [~ F(x) dx
k=1 (e/9¥(n)/62(k/2)
[by (8) and (15)]
R -1 n—1 o ﬁ

= o(xp(n) kz=:16 (2))
=o0(1),

since z,b(n)/c?z(k/Z) > const §(n) - oo for decreasing o2 and ¢(n)/62(k/2) >
1[/(n)/ 6%(n) = n/2 > o by (12) for increasing o2. The second hypothesis con-
cerns the conditional variances:

n—1

Y E

k=0

2
§ie1

¥(n)

=J(n)”" k¥062(GXk)I{g <GX, < Zk}

k
1{5 <GX, < 2k} Z,

- 1,,  n— o a.e.by(8)and Theorem 1. O

PROOF OF PROPOSITION 2. Let Y, = X7_ £,. As (Y, %,) is a square-integra-
ble, zero-mean martingale, there is a Skorokhod representation for Y, [see, e.g.,
Theorem A.1 in Hall and Heyde (1980)], i.e., by extending our probability space
if necessary, we may suppose that there is a standard Brownian motion B(¢) and
random variables 0 = Ty < T, < T, < --- such that Y, = B(T,,). Furthermore,
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if 7,=T,—T,_,, n>1, and 9, is the o-algebra generated by £,,..., £, and
(B(t): 0 <t <T,),then

E[7,.119,] = E[£2,119,] = E[£2, %] = 0%(X,),
E[n129,] < CE[£2:319,] = CE[£21%,] < CC'e**(X,),

by the assumption on the (2 + §)-moments of (£,).
So all we have to show is that T,,/¢(n) — lae.on D. Let V, = X2_06%(X,).
By (15) and Theorem 1 we have

n
V,~ Y 6%k) ~¢(n) ae.onD,
k=0
and we can finish the proof by showing that

n

T,-V,= kgl(”'k — E[7]%9,_.]) = 0(‘1:(”')) a.e.on D.

But this follows from the martingale convergence theorem [2.18 in Hall and
Heyde (1980)], since a.s. on D

=)
X $(n)" T E[R 9, ]

n=1
< const ¥ §(n) " "*?62*%(n) [by (15) and Theorem 1]

n=1

< constfm&z“s(t)t‘l;(t)_1_8/2 dt
1
<o [by(12)]. O

5. Asymptotic results for the process X,. If, given the growth rate g, o?
does not grow too fast, the asymptotic behaviour of X, is described by

THEOREM 3. Assume (A.1), (A.2), (A4), and that g'(t)y(t)/2 > 0 as t — co.

(@) If ¥(o0) < o0, then X,/a,— lae. on{X, > «©}, and (X, — a,)/8(a,)
converges a.e. on {X,, > oo0}.
(0) If Y(o0) = o0, then X,/a, = 1 in probability on {X, = oo} and (X, —
a,)/8(a,)=Xi & + o($(n)/?) in probability on {X,— oo} [in this case
2(Y(n) 1288 _1&{ X, = 0}) = A(0,1), cf. Proposition 1].

The next theorems show that if (A.1)~(A.5) are assumed, then the behaviour
described in Theorem 3 is equivalent to g'(¢)y ()% — 0.
THEOREM 4. Assume (A.1)-(A.5). The following are equivalent:

(@) g'()Y*(t) > 0, t - oo,
(i) X,/a, — 1in probability on {X, - «}.



STOCHASTIC GROWTH PROCESSES 329

THEOREM 5. Assume (A.1)-(A.5). The following are equivalent:

(i) g@Y%(t) > ¢, t > 0,0 <c< 0.

(ii) There is an increasing sequence of constants b, such that the conditional
distribution of (X, — a,)/b, on {X, = oo} converges weakly to a nondegener-
ate distribution.

If (1) and (ii) are true, then

(a) for ¢ = 0 Theorem 3 applies,
(b) for 0 <c < oo, log(X,/a,) = cy(n)"/2x2_.£, — ¢ + o(1) in probabil-
ity on {X,, - o}.

[Observe that ¢ > 0 implies y(o0) = o0, hence Proposition 1 applies such that
D(c Nog(X,/a,){X, > ©}) = A(—c,1).]

If 0 < ¢ < oo in Theorem 5, the limiting distribution is no longer centered at
the origin, namely P(X, < a,|D) —» H(c), where H(z) denotes the standard
normal distribution function. This tendency of X, to be smaller than a
becomes even stronger, if ¢ = co:

n

THEOREM 6. Assume (A.1)-(A.5). If g'()Y(t)"?2 > o as t—> oo, then
X,/a, — 0 in probability.

For a further discussion of these results (in the setting of stochastic differen-
tial equations) see Keller et al. (1984). The following identity is basic for the
proofs of the theorems:

(56) Xn -a,= (GXn - Gan)g(Un),

for some U, between X, and a,, such that a.e. on D for big n, n/2 < GU, < 2n.

ProoF oF THEOREM 3. [The proof is analogous to the corresponding one in
Keller et al. (1984).] As Gto?(¢) = O(y(t)) follows from (A.2) alone [cf. (12)], the
assumptions of the theorem and Lemma A.1 of the Appendix imply that
t~'g(¢)o(t)VGt = 0(1), i.e., (A.5b) and hence (A.3) (cf. Section 2). Furthermore,

lg(a,) —&(U,)| -
max{g(a,), &(U,)}

IA

"\Ga. - U
(E)l a, — nl

(57) <73 )iox, - 6ay

= O(\i;(n)_l/2|GXn - Ganl) [observe (16)].

Hence g(U,)/g(a,) > 1 on D in the almost sure sense if (c0) < oo (see
Theorem 2a) and in probability if (o) = oo (see Theorem 2b, Proposition 1,
and Lemma A.1 of the Appendix). Now part (a) of the theorem follows from (56),
Theorem 2, and (A.1), and if one observes additionally Proposition 1 and Lemma
A.1, then part (b) also follows. O
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PROOF OF THEOREM 4. In view of Theorem 3 we only must show (ii) = (1),
and (i) is trivial for Y(o0) < 0. Because of (21) we may assume that g is
ultimately increasing such that gb(t) < y for some constant y. Let 0 <c¢ < 1.
Theorem 2 implies

P|Ga, + i ¢, + o(§2(n)) + v < G(ca,)
k=1

< P(X, < ca,)
— 0 asn — oo by assumption,
so by Proposition 1 for all d > 0,
(58) G(a,) — G(ca,) > dy"/*(n) ultimately.
Since for ultimately increasing concave g(¢)
¢\ 8) - w()
(g(t) ) (s

> 0, forlarge ¢,

we have
G(a,) — G(ca,) = (1 — c)a,/g(8a,), forsomec<d<1
l1-c¢ da,
(59) "5 g(da,)
l—-c¢c a

n
c gla,)’
and together with (58) this implies in view of (16) and Theorem 1,

g(t)

—y12(t) » t— o0.

Assertion (i) follows now from Lemma A.1 of the Appendix. O

PROOF OF THEOREM 5. Suppose first that (i) is true.

If ¢ = 0 the (ii) and (a) follow from Theorem 3.

If ¢ > 0 and hence necessarily y(o0) = oo, we apply the mean-value theorem
to log G~ 't, and we see that there is V,, between X, and a, such that

g()
v

n

log X, — log a, = (GX,, — Ga,)

Now g(V,)/V, ~ c¥(V,) V2 = ¢f(GV,) V2 ~ cf~/%(n) as. on D by (16) and
Theorem 1, and ¢(¢)y(¢) 2 > —c by Lemma A.1 of the Appendix. Hence
Theorem 2 and Proposition 1 imply

log(X,/a,) = cf(n)"? ¥ & — ¢® + o(1) in probability on D.
k=1

This is assertion (b) of the theorem and (ii) follows with b, = a
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Suppose now that (ii) holds. We show (i). Without loss we may assume that
¥(o0) = oo and that g is ultimately increasing [see (21)]. As a,.,/a, =1+
&(a,)/a, = 1 by (A.l), it follows from Lemma A.1, (16), Theorem 1, and from
the concavity of g that (i) is equivalent to

(60) g(a,)¥(n)?/a, > ¢, n-0,0<c<o0.
Denote the limiting distribution of (X,, — a,)/b, on D by H. If H is continuous
at z, then by Theorem 2
H(z) = lim P(X,<a,+ b,2|D)
n— oo

6y = Mm P kglgk <f(n)™*

X(G(a, + b,2) — Ga, — 6(n)(1 + 0(1))) + 0(1)‘D).

We show that |¢(n)| = O((n)"2):

Assume for a contradiction that there is a subsequence n’ such that
—4>(n’)/x]/(n’)l/2 - 0. Let z, = inf{z|H(z) > 0}, 2, = sup{z|H(z) <1}. As H
is nondegenerate, 2, < z;, and if H is continuous at z, z, < z < 2,, then because
of (61)

fn’(z) = (G(an’ + bn’z) - G(an’))/(i;(an’) - 1’ n’ - co.
Observe that a, + b,z > 0if z > 2, and n is big enough. Hence
f(2) = limsup f,/(2) [possibly f(z) = +co]
n’'— oo
is well defined for z > 0 and for z > 2,, f is decreasing and f is convex on
{If] < oo} since the f, are (qb(a ) <0, f(0)=0,and f(z)=1forz, <z <z,
This is a contradiction.
Now (61) implies that if H is continuous at z

H(z) = lim P ¥(n) 2 2 £,
k=1

<§(n)""*(G(a, + b,2) — G(a,) — é(n))|D

and Theorem 2 and Proposition 1 imply together with Proposition 1 in Keller
et al. (1984) that g(r,)s,/r, = ¢ for some 0 < ¢ < oo, where r,, = G~ ¥Ga,, +
é(n)), s, =9¥(n)/2% If ¢ =0 this proves (60) because r,<a, “for large n. If
c>0, the proof of Proposition 1 in Keller et al. (1984) also tells us that
8(b,)s,/b, = c, that g(t)/t is a slowly varying function and that we may
assume without loss @, = const b,. Combining these three facts we obtain (60)
again. O

PROOF OF THEOREM 6. If g'(£)¥(¢)"/* > oo then g is ultimately increasing
by (21), so by (59) and Lemma A.1 for each 0 < e < 1

Ga, - G(ea,) = o(¢(a,)) = o((n)).
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Since Ga,,, — Ga, =1+ r(a,) and r(t) < 0 for large ¢,
a, < G™Y(n + const.)
and
|¢(n + const) — ¢(n)| < const 6%(n + const')g’(n + const’) < const”.
Now Theorem 2 implies

P(X, < ea,|D)

P(GX, < G(ea,)|D)

n

- P(tﬁ(n)_w Y &< §(n)

k=1

x(G(ea,) — Ga, — $(n)(1 + o(1))) + 0(1)|D

= P(tﬁ(n)'l/2 kZ;&k < —¢(n)$(n) X1 + 0(1)) + 0(1)|D),

which converges to 1 as n - oo by Lemma A.l of the Appendix and by
Proposition 1. As X, converges a.e. on D°® by Theorem 1, this proves Theorem 6.
[m] _

6. Almost sure approximations for the process X,. The law of large
numbers and the normal approximation for X,, which are stated in Theorem (3b)
are only approximations in probability. They have been characterized to be
equivalent to g’(¢)¢(¢)"/2 > 0, t > oo, in Theorems 4 and 5. For the correspond-
ing almost sure approximations we find similar characterizations, if we assume
that

(A.6) there are C > 0,0 < 8 < 2, such that

E[)t,*")%] < Co®(X,) a.e.

THEOREM 7. Assume (A.1)-(A.6) and Y(o0) = 0. Then

(@ t-g()¥(2)*(loglog ¥(¢))* > 0, ¢ oo,
implies
(ii) X,/a,—1 a.e.on{X,> w}.

If the left-hand side of (i) is ultimately monotone, then (ii) implies (i).
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THEOREM 8. Assume (A.1)-(A.6) and {(c0) = co. Then

(iii) g(t)y(t)"loglog y(t) >0, t-
implies

() (X, — a,)/(a,) = Z::£k+0(113(n)1/2) a.e.on (X, - oo}.

If the left-hand side of (iii) is ultimately monotone, then (iv) implies (iii).
[Observe that L} _.&;, = B(§(n) + o(¥(n)) a.e. on (X, > 00}.]

REMARK. Any of the conditions (i)—(iv) implies g'(¢)¥(¢)'/2 - 0, t - .
For condition (i) this follows from Lemma A.1, for (ii) from Theorem 4, and for
(iv) from Theorem 5. Hence we may assume for the proof of both theorems that
&(t) = o(¥(t)/?) (see Lemma A.1).

PRrROOF OF THEOREM 7. In view of the preceding remark it follows from (56),
Theorem 2 and (16) that X,,/a, — 1 a.e. on D if and only if

i n; Z£k/(¢(n)loglog¢(n))l/ * + o((loglog ¥ (n)) ""?)

(62)
y g(a,)

n

Hence (i) = (ii) follows from Proposition 2 and the law of the iterated logarithm
(LIL), if we can show that g(U,)/&(a,) - 1 a.e. on D, or, because of (57), that
g'(n/2)|GX, — Ga,| — 0 a.e. on D. This is a consequence of Theorem 2, Propo-
sition 2, and the LIL provided that g'(¢)(¥(¢)loglog ¢(¢))'> - 0. But for ulti-
mately increasing (and concave!) g this follows from (i).

For decreasing g this follows from (20) and from

A t 2
t)=0 .
0= o g
This statement is immediate in view of (8), if 6(¢)? is ultimately decreasing. Let

6(t) be increasing and concave. Then 6%(s) > (s/t)6%(¢),if 1 <s <t and t is
large enough. From (A.2)

(¢(a,)loglog ¥(a,))”* > 0 a.e.on D.

and from (8) our claim follows again.
For the reverse implication note that Theorem 2, Proposition 2 and the LIL
imply that a.e. on D for infinitely many n

kZ £ = (¥(n)loglog §(n))"*
=1
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and
GX, > GU, > Ga, (g increasing)
or

GX, < GU, < Ga, (g decreasing).
Now (62) implies (i) if ¢~ g(¢)(¢(¢)loglog ¥(¢))'/? is ultimately monotone. O

ProOF OF THEOREM 8. A Taylor expansion of G~ 't at Ga,, gives
Xn =a,+t (GXn - Gan)g(an) + é(GXn - Gan)zg,(Wn)g(WIn)’

with W, between a, and X,,. Hence, in view of Theorem 2 and the remark after
Theorem 8, (iv) is equivalent to

12 8W,)
g(a,)

and the proof is finished along the same lines as that of Theorem 7. O

(GX, — Ga,)’g'(W,)¥(n) >0 aeonD,

REMARK. One of the referees suggested a nice approach to the a.s. conver-
gence of X,/a,, which we would like to repeat here, although it needs a slightly
stronger assumption than condition (i) of Theorem 7, namely

o0 (u)g(u) g( )
(*) [ =
Let R(x) = (x + g(x))/x' Then Xn+1 = R(Xn)Xn + g(Xn)£n+1; thus
_ n n-1 g( k)
M= ey L (1  XR(X) |

Now lim, , M, > 0, if 22_(8(X,)/X,R(X,))é., converges, which is implied
by

i g(Xk)2°(Xk)2

ko XPR(X,)'

This latter statement follows from (*) and (A.1l), (A.2) if only GX,/n — 1. In
view of Theorem 1 a.s. lim, , M, > 0 on {X, > «}. Now

X, X, " lR(X,)
a, Qo nk=0 R(ak).

R(x) is ultimately nonincreasing, therefore X, /a, > 1implies R(X,)/R(a;) < 1,
while X,/a, < 1 implies R(X,)/R(a;) > 1.
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From this observation it is not difficult to deduce the a.s. convergence of
X,/a, to a positive limit on { X, & oo }. Now if ¢, < ¢ and ¢, is sufficiently large,

B (v~ (e < [#)

Therefore (*) entails (g(¢)/t)¢(¢)"/2 - 0. From Lemma A.lc (Appendix) it is
seen that (*) implies (i) of Theorem 4. If we assume g(t)/t ~
() (log Y(¢))~*/2, as t > o0, (*) is satisfied, if and only if a > 1. From this
example it is seen that essentially (*) is a stronger requirement than condition (i)
of Theorem 7.

&(s)”
5 ds.

7. Examples.

A. Controlled Galton—-Watson processes. As pointed out in the introduction,
growth models like (1) are well suited to describe controlled Galton-Watson
processes. These are integer-valued Markovian branching processes satisfying the
recursive relation

Xn
Xn+1 = Z ni,n(Xn)’ XO > 0,
i=1

where {(n; ,(k): i, n, k € Ny} is a family of nonnegative, integer-valued, indepen-
dent random variables which are identically distributed for each fixed k. In
Kister (1985) such processes (and more general ones) have been investigated
using a general growth model like (1), and details as well as further references
can be found there.

Using our notation one main result of Kiister (1985) can be roughly stated as
follows: Assuming some rather weak regularity properties for g (none for ¢2),
&(t) = O(¢t) and a rather involved joint growth condition on g and ¢2, which
comes close to o2(t)g(t)/t = O(t~%) for some 8 > 0 and hence is stronger than
that of Theorem 7, a strong law of large numbers for X, /a, holds on {X, — o0},
where the limit is not necessarily 1 but may be some positive random variable.
Nothing is said about P(X, —» o) > or = 0. [For controlled Galton-Watson
processes with particular choices of g and 62 this problem has been treated in
Fujimagari (1976) and Lévy (1979).]

B. Special choices of g and 6% and counterexamples. For two special,
“natural” families of functions g and 62 we shall give simple criteria for
assumptions (A.2), (A.3), (A.5b), and g’(¢)y(¢)/? = 0. This will show that these
conditions—although very closely related—are really different. Afterwards we
give some examples showing that, as soon as these conditions fail to be true, a
completely different asymptotic behaviour may be observed.

Let

8(t) = At*(log t)*(loglog ), A >0,
o%(¢) = Bt*(log )’ (loglog t)”, B> 0.
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Using the notation (7, s,t) < (y,v,w)if r<uorr=u,s<vorr=u,s=vo,
t < w, some elementary calculations lead to the following criteria:

(A1) e (a,b,¢) <(1,0,0),

(1,-1,-1), ifa<l,

) +
(A2) ® (a+a,b+B,c Y)<{(1’1,_1), ifa=1,

(1,0,0), ifa+0,

(1,1,0), ifa=0,b+0,
A3 +a,b+B,c+vy)< .
(A3) @ (atab+pety) (1,1,1), ifa=b=0,c#0,

(00,00,00), ifa=b=c=0,
(1,0,0), ifa<l1,
1,-1,0), ifa=1.

We see that (A.2), (A.3) and (A.5b), although they coincideif b=c=8=v =0,
are nonequivalent. Furthermore,

(A.5b)©(a+a,b+,3,c+y)<{

a,-1,-1), ifa<l,
(1,0,0), ifa=1,

and (A.2) A (A.3) A (A.5b) is really stronger than (A.2) A (A.3), namely,

(A.2)/\(A.3)=>(a+a,b+,8,c+y)<{

(1,-1,-1), ifa<l,

(A2) A (A3) A (ASBb) @ (a+a,b+B,c+7) < {(1’ -1,0), ifa=1.

In Theorems 3-6 the different types of asymptotic behaviour of X, were
characterized by {(c0) < or = oo and g'(t)¥(¢)"/2 > c for 0 < c < 0. It is
easily checked that

IZ;(OO) <o e (a:B:Y) < (a_ l,b_ ]-:c_ 1)’
and that, if (A.1)-(A.3) and (A.5b) are assumed, then g’(¢)y(¢)'/> — 0 imposes
the additional requirement:
Ifa=1,a=0,b=0,8= —1,theny + c < —1.

In particular, we see that if (A.1)-(A.3) are assumed, g'(¢)¥(¢)"/? — 0 is strictly
stronger than (A.5b) (cf. the proof of Theorem 3).

Asymptotic log-normality of X, /a, as described in Theorem 5 occurs in the
following cases

, b<0, b+B=-1, c+y=0,
, b=0, B=-1, c+y=-1

If we neglect the logarithmic terms, Figure 1 represents some of these results.

We now give some examples where (A.1)—(A.5) just fail to be true showing
a completely different asymptotic behaviour: (We always assume b =c = =
vy = 0). (Their location is indicated in Figure 1.)
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Ao

/ (A1) - (AS5)

_~1

| g\
b () <o
/ ii) r \\

@]
-1 Qi) some pérticular
boundary cases

Fic. 1.

(i) a=1, a = —1. An example for this case is the classical supercritical
Galton—-Watson process, for which it is well known that X, /(1 + A)" converges
as. on {X, > oo} to a nondegenerate random variable [see, e.g., Harris (1963)].
Here the constant A comes from g(t) =

(ii) a=1 a=0. Let £, > —2+ ¢ &> 0, be ii.d. random variables with
E¢; = 0 and var({)) = 62 and define X, by X, =1, X, ., = X,@2 + £,,,). Then
log X, = X7 ,log(2 + £,) is a sum of square-integrable i.i.d. random variables and

n—1/2(10g X, — nE [log(2 + 51)])

is asymptotically normal. It should be observed that a = 1, a = 0 is the case
where for suitable choices of b, ¢, 8, y asymptotic log-normality of X,/a,, (Theo-
rem 5) or X, /a, — 0in probability (Theorem 6) may happen. As in the present
example a,,, = 2a,, a,=1, ie, Elog2 + £)" = 0(2") = o(a,), we have in
particular that X,/a, - 0 in probablhty thus extending Theorem 6. Although
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we did not give results on the log-normality of processes covered by Theorem 6,
this example suggests that under suitable regularity assumptions on g and o?
and moment assumptions on £, there are norming constants p,, », such that
p,log X, /v, is asymptotically normal. For the corresponding stochastic differen-
tial equation this has been shown in Keller et al. (1984), Theorem 5.

(iii) @ = 0, a = 1. We give two examples for this situation.

(1) Let Z, be a symmetric random-walk on Z? and X,, = ||Z,||?, where || - || is
the Euclidean norm. Simple computations show that

g(Xn) = E[Xn+1|Xn] - Xn =1

and
4
oz(Xn) = Val'[Xn+1 - XnIXn] = _C_i-Xn'

It is a classical result of Polya (1921) that Z, (and hence X,,) is recurrent if
d < 2, whereas for d > 3 it is transient. In any case Z,/ Vn is asymptotically
normal with mean 0 and covariance-matrix d~'Id, such that X, /n is asymptoti-
cally gamma-distributed with parameters d/2, d/2.

(2) A controlled Galton-Watson process with

Eln (k)] =1+A/k and var[n; (k)] = B>0

(for the notation see part A of this section) is another example for the case
a = 0, a = 1. Such processes have been studied in Hopfner (1983), where (among
others) the following result can be found: Suppose E[|n; A(R)|2+%] < const for
some & > 0. Then P(X, — o) > 0if and only if B < 24, and in this case X,,/n
is asymptotically gamma-distributed with parameters 2/B and 2A /B. [Compare
also Klebaner (1984).]

(iv) @ = —1, a = 2. Here is an example for this situation, which can be found
in Guivarc’h et al. (1977): X, is a random walk on {0,1,2,...} with transition
probabilities

p(0,1) =1, p(i,i+ 1) =p;, p(i,i—1)=1-p,, i>1,

where p, = 1(1 + (A/(i + A)) for some A > — 3.
Simple computations show that

g(Xn) = E[Xn+1|Xn] - Xn = A/(Xn + A)7
0%(X,) = g(X,) var[ X,., — X,IX,] = X,(X, + 2)) /N,

and £,,, = (X,,, — X,)/8(X,) — 1 is a martingale difference sequence. It is
known that X,/Vn converges weakly to a distribution on R* with density
(2M12T(A + 1)) " xPexp(—x2/2) [Chapter VI, Theorem 42 in Guivarc’h et al.
(1977)] and that X, is transient if and only if A > ; [Chapter VI, Corollary 39 in
Guivarc’h et al. (1977)].
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In all of the above examples it is easy to obtain results on GX,, from those on
X .

(i) GX,,/n converges a.e. on {X, — o} to a nondegenerate random variable.

(ii) GX,,/n converges a.e. on {X, — oo} to a constant.
(iii) and (iv) GX,/n is asymptotically gamma-distributed.

C. A class of examples showing that (A.5b) is sharp. As announced in
Section 2 we now show that if g(¢), o(¢) are functions satisfying the regularity
assumptions (A.1), (A.2), and ¢t g(t)o(t)VGt — o as t — oo, then there is a
sequence 7,, of ii.d. random variables with E[n,] = 0, E[%2] = 1 such that the
process X, defined by X, =1, X, ., = X, + g(X,)Q + o(X,)n,.,) violates the
conclusion of Theorem 1.

To this end let A() = t~'g(¢)o(t)VGt - 0, t = oo. If Theorem 1 holds, then
GX,/n — 1l ae.on {X, - oo} and P(X, = o0) > 0, and in view of the regular-
ity assumptions on g and ¢ we get

ISV o(x,,>n,,+1))

h(n)
W";ﬁl
As h(t) > oo, t > o, one can find a symmetric distribution for the 7, such that
E[n,]1=0, E[72] =1, and Z‘,’,°=1P(§ﬁ(n)2nf,+1 > n) = oo. Hence for infinitely
many n almost surely A(n)n~'/%y,,, < —2 and therefore X, ,, < 0 for some n

almost surely, which contradicts P(X, — ) > 0, as the negative states are
assumed to be absorbing.

X, = Xn(l +

= Xn(l + )(1 +0(1)) ae.on{X,— oo}.

APPENDIX
We start with a purely analytical lemma.

LEMMA Al. Assume (A1), (A.2) and (A.3), and fix some 0 < ¢ < c0. Con-
sider the following five statements:

@) g (t)”” - ¢
(i) tg()v(8)" > ¢
(iii) g'(t)e(t) » —c?
(iv) t7'g(t)e(t) » —c%
(v) $()Y(2) " > —e.

If Y(0) = oo then
(a) (i) implies all the other statements, and (iii) implies (iv) and (v).
(b) If ¢ < o, then (i) « (ii) and (iii) & (iv).
(c) If c = 0, then all statements are equivalent.
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Proor. We first show (a).
D) =) #(t)= 1 [E(s)W(s)ds ~ —e[¥(s) " ¥/(s) ds
1 1

= —ey (1)
M) = i) g()8(2) = £()9(0) o ()9(8) 7 ~ —c.
()= @) &OUD = [2()0(s) ds + 3 [0(s)(s)"

~ct+o(t) by (14).
(i) = () g(1e(t) = [&()o(s) ds — } [0*(s)g'(5) ds
~ —c’+o(t) by(A3).
(i) = (v) 9(6)" = ~ [&(s)()9(s) ds ~ & [¥/(s) ds = 4 (2).

This proves (v) up to a factor +1. If g is eventually increasing, the limit in (v)
must be < 0, i.e,, —c, whereas for decreasing g assertion (i), and hence (iii), is
always true with ¢ = 0 [cf. (21)].

(b) Implication (ii) = (i) was shown in Lemma 3 of Keller et al. (1984) If one
replaces each ¥(¢)"/2 occurring in that proof by &(t), one gets a proof of
(iv) = (iii).

(c) We show that (v) = (()if c=0

12 g

1/2 4’ -1/2
0] = 025 | otowo ™
= 0(|s()w(8) ™))

-0
by the monotonicity of g'(¢) for large ¢. O

Next we prove two inequalities of the Hajek—-Rényi type, which imply as
corollaries strong laws of large numbers. Similar results can be found in the
literature, cf., e.g., Theorem 2.19 in Hall and Heyde (1980).

THEOREM A.2. Let %,, n > 0, be an increasing sequence of o-algebras and
let Y, be %-measurable random variables satisfying P(|Y, .| > x|%,) < F(x)
a.e. for all x >0, where F(x) is a decreasing function with [°F(x)dx =
— [$x dF(x) < 0. Suppose further that h: R* » R™ is a bounded, ultimately
decreasing function with H(t) = [{h(s)ds = oo as t = . Let 7 be a stopping
rule adapted to (#,) and set

S, = ; h’(i)(Y-r+i - E[Y‘r+i|'%r+i—l])'
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(a) For each ¢ > 0
P(maxH(n)"IIS,J > el'r < oo) -0
n>N

as N — oo uniformly in 7.
(b) If h(t) = 1, then for each ¢ > 0

P(mai((n +2C)7Y8, > ¢

T < oo) -0
as C — oo uniformly in r.
ProoF. Let U, =Y, I{|Y,|<n—-7+C},§,=0,
§.= X AU~ ELU 4%, ,)), forns1.
i-1

(8. %.,) is a martingale with respect to the probability P, = P(-|r < ), and
P(|Usnl 2 2% 1) < F(x){x <n+ C} ae.

We start by proving the theorem for S, (in place of S,) and have to show that for
each ¢ > 0,

b= R( sup (H(n) + 2Ch(n))7'|S,| > 2)
n=N

tends to 0 uniformly in 7 in each of the following two cases:

@)N=1ht)=1,C-> .
(b) C=0, t, < N - oo, where #, has been chosen such that h(t) is de-
creasing for ¢ > ¢,.

Observe that in both cases H(t) + Ch(¢) is monotonically increasing for ¢ > 0,
and we can apply the Hajek-Rényi inequality in order to estimate D,
2
€ _ —.
7P < (H(N) + 2CH(n)) "E,[S}]

+ Z (n —tt ZC)_2ET[UI'2+7L]
n=N+1
= ‘Yl + 727
and
2,2 Y (n—t,+20)" fn+CxF(x) dx
0

n=N+1

<2 Y % (n=to+20) i [" F(x)

n=N+11<i<n+C+1

- 2§1( Y (n—t,+ 20)‘2)ijii_1F(x) dx

n>i—C-1,n>N
i i

< const. 2, max{i, N} + C — 2, fi_l

i=1
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Observe now that

f/ Flx) ds = [“F(x) ds < o0

i=1"i"1
Incase (@) (N =1),y,— 0,C = o0,and y; = 0, C = . In case (b") (C = 0),
¥g = 0, N — oo and

v, =H(N)™? Zh(n) E[U%,

<2H(N)™? Z h(n)? z z/j_ F(x)dx (asabove)

= 2H(N)™* zl( Y h(n)) j F(x) dx
< 2H(N)~ ( > th(z)f F(x)dx + const)

i=1
N H(i) + const

—————— | F(x)dx + N
L TH) j;_ (x) const/H(N)

-0, N — o0 uniformly in 7.

Here we have used that h(n) < k(i) for n > i > t,, LN_,h(i) < H(N) for i > t,
and ih(i) < H(i) + const.

Hence in both cases p - 0 as C —» o or N — 00, respectively, uniformly in 7.

In order to pass from S, to S, we must compare the Y,,; to the U,,; and the
E[U, 4% ;] to the E[Y, +,L9€+i_1]=

ZP{| il > 1+ C)
i=N

<2

P‘r{ai = N: Y‘r+i * U‘r+i}

IA

(63)

IA

ZF(;+C)</°° F(x)dx >0
i=N C+N-1

as C » oo or N — oo uniformly in 7.
Finally, for each n one has

n
H(n)_l l E-r[Y-r+i - (]'r+i|‘%+i—1]

< H(n)™" ¥ h(i VE[|Y, JI{|Y, .| > i+ C}|F ;4]

i=1

~Hm)"' Y BG) [ P(1Y0d 2 21,010) de

i=1

<H(n)™" ¥ (i )/ F(x) dx

i=1

2 )
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for all » > 1 and r if C is big enough (case a’) and for C=0and all rif n > N
is big enough (case b"). As p = 0 (C - o0 or N = ), the theorem follows from
(63) and the last estimate. O
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