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GAUSSIAN PROCESSES AND MIXED VOLUMES

By V. D. MiLMAN AND G. PISIER
Tel Aviv University and Université Paris VI

We prove the following conjecture of Dudley: If the volume exponent of a
compact convex and symmetric subset K of a Hilbert space is less than —1,
then K is a G.C. set.

Let K be a compact subset of a real Hilbert space H. We denote by N(K, ¢)
the smallest number of open balls of radius ¢ which cover K.
The exponent of entropy of K is defined by

loglog N(K, ¢)
K)=1l _—
(&) T logl/e
On the other hand, we denote
V.(K) = sup{vol(P(K))},

where the supremum runs over all the orthogonal projections P: H — H of rank
n, and where vol( ) denotes the n-dimensional volume of a set in P(H) (with the
normalization determined by the metric of H).

Let (X,),c g be any Gaussian process, indexed by H, and such that

(1) ViseH, |X,— Xy =1t sl

The set K is called a G.C. set (resp. G.B. set) if the process (X,),c x has a
version with continuous (resp. bounded) paths on K.

It is known that if this happens for one process satisfying (1), then it also does
for all such processes.

In his 1967 paper, Dudley proved that if

/(log N(K, €)' de < oo,
0

then K is a G.C. set. This happens in particular if r(K) < 2. In the converse
direction, he conjectured that r(K) < 2 is necessary for K to be a G.C., or more
generally a G.B. set. This was later proved by Sudakov (1971). In the same
paper, Dudley introduced the exponent of volume of K,
log V(K)
EV(K) =1l _
(K) nm_}s:p nlogn

He proved that EV(K) < —1 for any G.B. set (see below for a proof) and he
conjectured that EV(K) < —1 implies that K is a G.C. set for K convex and
symmetric. He also conjectured the identity (*) below. We will prove this
conjecture in the following equivalent formulation.
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THEOREM 1. Let K be a convex, symmetric and compact subset of a Hilbert
space H.
Suppose that there are numbers 8§ > 0 and C such that

(2) V(K)"" < Cn %, foralln.

Then K is a G.C. set.
Moreover, under the assumption (2), we have
1

1
EV(K)= ———— — —.
In terms of random processes, it is easy to see that this can be also refor-
mulated as follows. -

COROLLARY 2. Let T be a compact metric space, and let X = (X,),r be any
Gaussian process on some probability space (2, Z,P).

We assume that t — X, is a continuous map from T into Ly(Q, o/, P). Let
V(X) = sup{vol(cos{ PX,|t € T'})} where the supremum runs over. all projec-
tions P: Ly(2) — Ly() of rank n, and where cos denotes the closed convex and
symmetric hull of a set.

" Assume that limsup, _,  n'*°V(X)" < o for some 8§ > 0. Then (X,),cr
has a version with continuous sample paths.

As is well known to specialists, Corollary 2 follows from Theorem 1 by
considering H = L,(2) and taking for K the closed convex and symmetric hull
of the compact set {X,|t € T'}. For the proof, we will yet consider a third
equivalent formulation of Theorem 1, in another language.

Let u: I, » E be a bounded linear operator with values in a Banach space E.
Let (e,) be an orthonormal basis of /,, and let (g,) be an ii.d. sequence of
Gaussian standard random variables (i.e., normal and with mean zero).

We define

.

n

I(u) = supE Y gu(e;)
n 1

It is well known that (by the rotational invariance of Gaussian measures) this

does not depend of the choice of the orthonormal basis (e,). We will be

interested in the particular operators « for which l(z) < co.

This notation will be convenient in the proofs below. We could also phrase our
results in the framework of abstract Wiener spaces in the sense of Gross [see
Badrikian and Chevet (1974)].

Let us denote by By the unit ball of E, and by u* the adjoint operator. Let
K = u*(Bg«) C L,.

Then, by well-known results [for an account of the theory see, e.g., Badrikian
and Chevet (1974) or Fernique (1975)], it can be shown that K is a G.B. set iff
l(u) < o0 and K is a G.C. set iff

(3) for any & > 0, there is a finite rank orthogonal projection P on [,
such that (v — uP) < e.
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In other words K is G.C. iff u lies in the closure of the finite rank operators in
the sense of the /-norm.

Actually the point of view of linear operators can be used for any compact
convex symmetric subset K of I,. Indeed, given such a set K, let px be the
semi-norm defined by

Vxel,,  px(x) = sup[(x, y)|.
yeK

Then p(x) < Djx| for D = supg |yl

Let Ey be the Banach space obtained from /, equipped with py after taking
the quotient by the kernel of py, and completing. We denote by uy: I, = Ey the
operator associated naturally to the identity operator from (Z,, || |]) into ({5, pg)-
By the bipolar theorem, we have u}(Bg;) = K. Therefore K is a G.B. set (resp.
G.C. set) iff l(uy) < oo [resp. uy satisfies (3)]. This will allow us to work in the
sequel with this condition (3) instead of the G.C. condition. Let (e,) be an
orthonormal basis of /,. Let us denote by P, the orthogonal projection onto the
span of {e,,..., e,}, identified with R”. Let K, = P,(K). To relate [(u) with the
numbers V(K ), we first observe that

n
(4) E|Laule) | = c. [Ixlx, do, (x),

1
where o, is the normalized invariant measure on the unit sphere of R™ and
where

n
llx|l x, = sup <inei’ t> = sup |(x, s)|,
teK 1 sekK,

and c, = E(X"g?)/? so that

(5) ¢,/Vn =1, whenn — 0.

The identity (4) follows immediately from an integration in polar coordinates.
We will denote by B, the unit ball of I} (i.e., the Euclidean unit ball in R™).

Let us recall here a classical inequality of Urysohn (1924): For any convex body
C in R” we have

ol(C) \'™*
(6) ({%) < [sup |(x, )| do, (x)
n yE
[cf., e.g., Milman (1985)). Applying this to K, we find
ol(P(K)) )"
) (s < fist, doua)

Moreover, it is well known that vol(B,) = 7#"/%(T'(n/2 + 1)) ! so that we have
(7) an~2 < vol(B,)"" < bn"1/2,

for some numerical positive constants a and b. It follows from (4), (5), (6) and (7)
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that
vol(P,K)"" < b'l(u)n™?,

for some numerical constant b’. Therefore [since the orthonormal basis (e,) is
arbitrary]

(8) V,(K)/" < b'l(u)n 1.

Going back to the terminology of Dudley, this means that sup,nV,(K )" < oo
is necessary for K to be a G.B. set, as was first proved in Dudley (1967).

Conversely, we will show below that if for some constants C and § > 0 we
have

(9) V(K)/" < Cn 1%, foralln,
then I(z) < o and in fact (3) holds so that K is a G.C. set.

REMARk 3. In the proof below, it will suffice to assume that there is a
sequence a, > 0 such that
(10) Y a,n"?logn < o,

n>1

and for which there is a constant C; such that

w (£ o))

an
for all n > 1.

It will be worthwhile to observe here that (2) implies the existence of such a
sequence (a,). Indeed, let us assume (2). We can take a, = n=/27% for 0 < §’ <
8. Then (10) clearly holds. On the other hand, the left-hand side of (11) is
majorized by

1/n
<C,

{ z (’;)(Ci_1/2—8n1/2+8,)i}1/n.

i=1

The latter sum can be split into two terms

I= Y and II= Y,

i<n® i>n*

where a = (3 + 8”)(2 + 8) ™' < 1. An easy calculation shows that
I< {(Cn1/2+s')n" . 9n
and this is uniformly bounded since a < 1. Also
N 1/n
10 < {Z('Z)C} <1+C.

In conclusion, we have checked that (2) implies (11) for a, = n~ /2%, with
0<§é’ <.

/n
}1
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For the proof of Theorem 1, we will use the following classical formula from
the theory of mixed volumes. Consider a convex set C in I (i.e., R™ equipped
with its Euclidean structure). Then

vol(C + ¢B,) oy
TI(LT = % (F)em(o),

i=0
where a,(C) is the average over all possible orthogonal projections @: R™ = R"
with rank i of the quantity [vol(@(C))]/[vol(Q(B,))] (here the volume is
i-dimensional).
More precisely, we have

(12 €)= [ oD gy (),

where we have denoted by du (F) the normalized canonical measure on the
Grassmann manifold of all i-dimensional subspaces F of R”. Note that the
normalization leads to ayB,) =1 for i =0,1,..., n.

The definition (12) of a,(C) clearly implies that «,(C) < V/(C)(vol(B)))~},
hence by (7)

a(C) < (a7 Vi)V(C).
From (12), it is easy to see that
&(C) = [sup [(x, )| do, (x),
yecC

which is a known identity [cf., e.g., Badrikian and Chevet (1974)], showing that
Gaussian integrals coincide [recall (4)] with a certain mixed volume.

We will make heavy use of the following lemma, which originates in the work
of Kasin, for which we refer to Szarek (1978) and Szarek and Tomczak-
Jaegermann (1980). We use it in the form already put forward in Milman
(1986a). In the sequel, we denote by | | the Euclidean norm on R”".

LEMMA 4. Let C be a symmetric convex body in R". Assume that C is the
unit ball of a norm, denoted by | |, on R", and assume that

vol(C + €B,) vn A
_— <

vol(B,) =485
for some constants A and ¢ > 0.

Then, for any A with 0 < X\ < 1, there are a subspace F of R”™ of dimension
[An] such that

VxeF, |x|<eC(A, A)lx|g,
where C(A, A) is a constant depending only on A and A.

REMARK. Let E be a Banach space and let u: [} — E be any operator. It
follows from Lemma 4 that there is a subspace F of [} of dimension [Ar] such
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that

' (u)
||u*|u,,—1(p) " < CA—V_I-’L—’

for some constant C, depending only on A. Indeed, let K = u*(Bg«), let § > 0
and let C = K + 8B, so that C is a convex body in R™.
We have then by (6) and (4)

(vol(C + €B,) )‘/"

iz < S+ e+ 8] do, ()
< —‘/%—l(u) +¢e+ 8,

for some numerical constant .

Taking 6 = ¢ = l(u)/ Vn we obtain the assumptions of Lemma 4 with A =
B + 2 and the preceding claim follows since, if F, = u*"(F), (w1th F as in
Lemma 4) we find, with C, = C(A, 8 + 2),

Vx€eF, |x] < C\—F— ‘(/_) %] cs

hence

VyeF, |u*(y)l <Cxl$—)lu () le

but obviously |u*(y)|¢ < ||y, so that

(u)
il < 6,2

as claimed above.

Note that codim F; < n — [An].

For a more delicate study of the function C,, we refer the reader to Milman
(1986b), and to a forthcoming paper of Pajor and Tomczak. The main idea in the
sequel is to use Lemma 4 under the assumption (2) in the case of an operator u:
1} - E for K = u*(Bg«) and to obtain a subspace F of [} of dimension [n/2]
(say) such that

. Constant 1
e -1y | < .
for some 8’ > 0. From this last fact (applied for every restriction of u) we then
finally prove that [(u) itself can be majorized by a constant.

We now turn to the proof of Theorem 1. We will assume (2) and will show
that (3) follows. We now give the details.

We will denote by £ (resp. £,) the set of all finite rank orthogonal projection
(resp. of rank n) on l,. Let @,, @ be elements of #. The notation @, < @ means
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that the range of @, is included in the range of Q. By a projection on [,, we
always mean an orthogonal one. We will prove below the following.

LEMMA 5. Under the assumption (2), there are a constant C, and a number
8, > 0 such that, for any n, for any Q in P,, there is a Q, in P, such that
Q, < Q and l(uQ,) < C;n"%.

To prove this lemma, we will use two more facts. The first one is well known
and easy to prove.

LEMMA 6. Let v: I, » E be an operator of rank n with values in an
arbitrary Banach space E. We have

I(v) < Vnlloll.
ProOF. Clearly v factors as v = v,0, with v,: I, — I} and v;: I} — E such
that
lloall llogll = [jol]-

Hence I(v) < I(v,)||vy|l, and if (e, ..., e,) is the canonical basis of I}

n 1/2
I(v) < lvgllE < lvgll ||v1||E(Zg?) < Vnlo|. 0
1

z':.givl(ei)

The next lemma is more involved. It has been quite useful in recent work in
the geometry of Banach spaces, but has not been used yet for Gaussian r.v.’s.

LEMMA 7. Let E, be a Banach space of dimension not more than 2n, let
E, C E, be a subspace of E, and let 6: E, - E,/E, be the quotient map. Then,
for any v: l, = E,/E,, there is an operator ¢: l, — E, such that 66 = v (i.e., ©
is a “lifting” of v) and

1(3) < K log(2n + 1)I(v),

where K is an absolute constant.

This lemma is an easy consequence of certain basic facts concerning the notion
of K-convexity, which is studied in Pisier (1982). This notion is usually developed
for the Rademacher functions, but it can be developed identically for an i.i.d.
sequence (g,,) of standard Gaussian r.v.’s. on a probability space (2, &, P). Let

‘us denote by P the orthogonal projection from L%(Q, «/,P) onto the closed
linear span of such a sequence (g,),. A Banach space X is K-convex if the
operator P = P ® Idy defines a bounded linear operator from L,(2,P; X) into
itself. It is easy to see that this definition is equivalent to the usual one of Pisier
(1982a) [see Figiel and Tomczak-Jaegermann (1979) for details] When this
operator P is bounded, it defines a bounded linear projection from L,(Q,P; X)
onto the subspace of all the convergent series of the form Yg,x,, with coeffi-
cients x, in X.
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_ We define the (Gaussian) K-convexity constant K(X) as equal to the norm of
Pon Ly, P; X). We will use below the fact that if X is finite dimensional, then

K(X) < K log(1 + dim X)
for some numerical constant K.
This fact first appeared in Pisier (1980) in the Rademacher case. The Gaussian
case is entirely similar as explained in Pisier (1982a); the only difference is that
Hermite polynomials have to be substituted for Walsh functions. Another proof

appeared in Pisier (1980,/81) [cf. also Milman and Schechtman (1986)] and Pisier
(1982b) contains a related lifting theorem.

Proor oF LEMMA 7. Let x, = v(e,), denoting here by (e,) the canonical

basis of /,. Then, the series ¥{°g,x, converges in Ly(Q,P; E,/E,). Clearly there
is for any ¢ > 0 a random variable ® in L,(2,P; E,) such that

o(®) = fgx

and

192,z < (1 + )| Z&nall, iz, = (1 + €)U(v)

(to obtain @, just compose the r.v. w = Lg,(w)x, with a measurable lifting ¢:
E,/E, > E, such that ||p(x)|| < (1 + &)||x|| for all x).
Now if we apply the operator P to ® we obtain a series of the form

o0
P(®) = Y.g,%,,
1
for some £, in E,, which must necessarily satisfy o(%,) = x,,. Moreover, we have
”13((1))”1.2(&) < K log(dim E, + 1)||(I>”L2(El)
< K log(dim E; + 1)I(v)(1 + ).
Let now &: I, > E, be the operator defined by @e, = £,. We have
l(ﬁ) = ”p(q))"Lz(El)
< K log(2n + 1)I(v)(1 + ¢). O
ProoF oF LEMMA 5. Recall K = u*(Bj.). Let @ be an element of £,,,. Let
H be the range of @. Clearly, the set Q(K) C H still satisfies our assumption (2)
in H.

By Remark 3 and the remark following it, we can find 6’ >0 and C’
(independent of n) such that, if ¢, = (2n) /2%, we have

vol(@(K) + e,B,) \ "
vol(B,,) -

Therefore, we may apply Lemma 4 to the convex body C = Q(K) + i¢,B,,.
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This implies that there is a subspace F C H of dimension n such that
(13) VxeF, |x| < De,x|c,

for some constant D, independent of n. Let S be the subspace of E * defined by
S = (Qu*)"(F). We have

(14) |Qu*(¥)| < Dellyl, VyeS.
Indeed, if y is in Bg., Qu*(y) is in Q(K), hence || Qu*(y)|lc < ||¥]l and (14)
follows from (13).

Observe that the codimension of S in E * satisfies codim(S) < n. Indeed, let
q: H - H/F be the quotient map. Then S = Ker(qQu*), hence

codim S = dim gQu*(E*) < dim H/F = n.
Let us denote by S* the subspace of E which is the annihilator of S, and by

a: E - E/S* the quotient map.
By (14), ||Qu*|g|| < De,. Dualizing, we immediately find

(15) l7u@Q| < De,,

and dimS* = codim S < n. Let E; be the range of the operator u@. Then
dim E, < 2n. Moreover S* C E,. Indeed, E;* = Ker(Qu*) C S hence E, =
E*+ > S*. (Here the annihilators are with respect to the duality between E
and E *.) Let us denote by 6: E;, > E,/S* the restriction of 7 to E,, so that we
may rewrite (15) as |jou@Q)|| < De,.
By Lemma 6, l(ouQ) < Den\/ﬁ and by Lemma 7, there is an operator ¢:
l, > E, such that of = ouQ and (&) < KDe,/2n log(2n + 1). Since
o(8 — uQ) = 0, the operator w = (¥ — uQ)Q takes its values into S+, hence
codimKer w < dim S+ < n.
Note that Ker w D Ker Q.
Let @’ be the orthogonal projection onto (Ker w)* c (Ker@)! = Im Q.
We have @’ < @, rank @’ < n, and w = wQ’. Hence
5Q - uQ@ = 5Q’ - u’,
so that :
(u(@-Q)) = Us(Q-Q))
< (D)
< KDe,/2n log(2n + 1).

Now if 0 <48, <§’, there is a constant C,; independent of n such that
KDe,2n log(n + 1) < C;n"%. Finally, we note that rank(Q — Q') > n. There-
fore we may take for @, any projection of rank n such that @, < @ — @’ and we
find (uQ,) < l(uw(Q — ")) < C,n~%, which concludes the proof of Lemma 5. O

We can now deduce Theorem 1 from Lemma 5.

ProorF oF THEOREM 1. We first prove that I(u) is finite. Let A(m) =
sup{{(uQ)|Q € #,»}. By Lemma 5, for any @ in &,n, thereisa @, < @ in Pym-
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such that (uQ,) < C,(2™ ')~ %. Hence
I(uQ) < l(qu) + l(u(Q - Q)
<C@™ ) "+ A(m-1),
so that
A(m) < €2 )% + A(m - 1),
and clearly this implies
supA(m) < oo,

so that /(u) < co. Moreover, applying Lemma 5 again with @ — @, in the place
of @, we obtain @, < @ — @, of rank 2™~ 2 such that {(uQ,) < C,[2™ 2] %. We
can now apply Lemma 5 with @ — @, — @, in the place of @, and so on. This
yields a sequence of mutually orthogonal projections @, @Q,,... with rank
@) = 2™~ and such that (uQ;) < C,2™ E)

We claim that this implies that for each ¢ > 0 there is an 1nteger r(e) with the
following property: for any projection @ of finite rank there is-a projection
Q < @ such that [(uQ — u@) < ¢ and rank(Q) < r(e) Indeed, if we let, with the
above notation, for 1 <k <m, § = Q — (@, + -+ +Q,,_;) we find rank(Q) =
2% and

HuQ - uQ) < Hu@y) + -+ +1(uQ,_,)
<Cl@Em ) 4 4 (20) 7Y
< Ci27%,
for some constant C;, and this leads immediately to the preceding claim. (Note
that we can always replace @ by a larger projection the rank of which is a power
of 2.)

Finally let us check that u is in the closure in the sense of the /-norm of the
finite rank operators. Note that u is necessarily compact since /(u) < co implies
that u*(Bg.) is a G.B. set and G.B. sets are compact [cf. Dudley (1967)]. Let
e > 0 and £ > 0 be arbitrary. Since u is compact, there is a finite rank projection
P on 1, such that ||ju — uP|| < . Now, let @ be any finite rank projection such

that Q < 1 — P. By the preceding claim, there is a projection Q@ < Q of rank less
than r(e) such that J(uQ — u@) < . By Lemma 6, we have

(uQ) < I(uQ) + I(uQ — u@)
< yr(e) |u@ + ¢
<&fr(e) +e.

This shows that I(u(1 — P)) < £/r(e) + e. We have thus shown that for any
¢’ > 0 there is a projection P of finite rank on [/, such that l(u — uP) < ¢'.
Therefore (3) holds, so that K = u*(Bg«) is a G.C. set.

We now come to the proof of the identity (*). The inequality

1 1

(16) EV(K) < —m— Y
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is proved in Dudley (1967) as follows: Assume that P € &, and that PK is
covered by N Euclidean balls of radius ¢ with N < N(PK; ¢) < N(K; ¢). Then

vol(PK ) < Ne™vol(B,);

hence
1/n 1/n b
(17) V(K)""<N(K;e) "e—.
Vn

Let us now assume that r(K) < r so that N(K; ¢) < exp(1/¢)” for all ¢ > 0
small enough. We have then
1

N(K; —1—/;) < expn, forall n large enough.
n

From (17) we deduce
‘,n(K)l/n < ebn—l/r—1/2’

for all n large enough, so that
1

1
EV(K) < - Ty

which establishes (16).

To go conversely, we proceed as follows. We assume that EV(K) <y < —1so
that (2) holds. We will then prove that —(1/r(K)) — 3 < v. A close look at the
preceding proof shows that we have proved that for any k and any @ in & there
is a projection @ of rank at most % such that @ < @ and

(18) HuQ — uQ) < Cok"*1,

for some constant C,.
Let us introduce a convenient notation,

e (u*) = inf{e > O|N(u*(Bg.), €) < 2"}.

With this notation, Sudakov’s minorization [cf. Sudakov (1971) or Fernique
(1975)] can be stated as

(19) supyne,(u*) < Cyl(u),
for some absolute constant C,. Moreover, it is immediately checked that
1 ) loge,(u*)
= limsup ————.

" HK) .. logn

We recall that if S is a subset of the unit ball of a k-dimensional Euclidean space
then

(20) N(S,¢) < (1 + %)k

[cf., e.g., the proof of Lemma 2.4 in Figiel, Lindenstrauss and Milman (1977)]. Let
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us assume ||u|| < 1. Then if  is in &, we deduce from (20) that

9 k
(1 + —en(Qu*)) > 2”:

so that
~ 2
en(Qu*) < .z—n/k—__]:

We will choose n = [k'**#] for some ¢ > 0.
Then e, (Qu*) tends to zero faster than any negative power of n. We can
write by an elementary reasoning

e3n(u*) < en(u* - Qu*) + en(Qu* - Q~u*) + en(Q~u*)’

Since u is compact, we can always choose @ so that e, (u* — Qu*) < 27" (say).
Then by (19) and (18) we have :

e,(Qu* — Qu*) < C,Cyn~ 12k 7*1
< GO V/arD-1/2,

Hence we find

log e, (u* 1 1
limsupgl;Tn(n) <(y+ 1)1—+$ — 5
and since £ > 0 is arbitrary this yields
1 1
"~ r(K) =Y+y
which is the announced result,
1 1
—r(K)sEV(K)+§. ]

We refer the reader interested in mixed volumes to Burago and Zalgaler (1980)
and to Santalo (1976).

NOTE ADDED IN PROOF. After this paper was accepted, we observed that a
simpler proof can be obtained by using the main result of Milman (1986a)
instead of the above Lemma 4. One can then prove more directly the following
refined version of Lemma 5: For any n > 1 and any @ in &,,, there is a @, in
2,, such that @, < @ and

I(uQ,) < CV,(K)""nlogn,

for some numerical constant C. In particular, the condition V(K )/ "log n < o
is sufficient for K to be a G.C. set.
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