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MAXIMAL SPACINGS IN SEVERAL DIMENSIONS!

BY SVANTE JANSON

Uppsala University

Take n points at random in a fixed set in R% Define the maximal spacing,
e.g., as the volume of the largest ball that is contained in the fixed set and
avoids all n chosen points. The asymptotic distribution of the maximal
spacing and strong bounds are given.

1. Introduction. Let n points be independently and uniformly distributed
on a circle of unit length [or on (0,1)]. The spacings, i.e., the successive distances
between these points, have been widely studied; see e.g., the review papers by
Pyke [10], [11]. We denote the largest spacing by A,. The exact distribution of
A, was first obtained by Stevens [12]. The asymptotlc distribution as n — o0
was given by Lévy [9]; see also Holst [7] for a stronger theorem and further
references. The result can be stated as follows:

(1.1) nA,—logn - ,U asn— o,
where U has the extreme value distribution
(1.2) PU<u)=e*".

By adding the points one by one, we obtain a nonincreasing sequence {A ,}7 of
random variables. Devroye [5] proved the following strong bounds.

(1.3) liminf(nA, — logn)/loglogn =0 as.,
n— oo
(1.4) limsup (nA, — logn)/loglogn =2 as.

More refined results are given by Devroye [6] and Deheuvels [1], and extensions
by Deheuvels [2] and Deheuvels and Devroye [4]. Note the asymmetry here and
in the theorem below: nA, have larger positive deviations from logn than
negative ones. Similarly, the tails of the distribution of U are of different sizes.

The purpose of the present paper is to prove generalizations of the above
results for higher dimensions. Deheuvels [3] defined (for points uniformly distrib-
uted in the unit cube in R?) the maximal spacing as the size of the largest
cubical gap (parallel to the unit cube). See below for a precise formulation. (He
also treated kth largest spacings, but we will only be concerned with the
maximal one.) Deheuvels’ results include generalizations of (1.3) and (1.4) to this
situation, but without exact values of lim inf and lim sup. The present paper will
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give these values (conjectured in [3]), and extend the result to, e.g., spherical
gaps.

The proof is based on estimates derived in [8] and the equivalence between
spacings and covering problems.

2. Definitions and results. Let K be a bounded set in RY, d > 1, such
that |K| = 1 and |0K| = 0 (where | - | denotes d-dimensional Lebesgue measure)
and let X, X,,... be a sequence of independent and uniformly distributed
points in K. Let A be a fixed bounded convex set in R? (with nonempty interior)
and define the maximal spacings by

(2.1) A, = sup{r: Jx withx +rA c K \ {Xl}f}

The two main cases are A a cube (as in [3]), or a sphere.
We will formulate the results in terms of V, defined by

(2.2) V.= 14,4],

i.e., the volume of the maximal gap of the shape (and orientation) of A. We may
without loss of generality assume that |JA| = 1 and thus

(2.3) V, = Al

REMARK. The definition involves gaps of a fixed (although rather arbitrary)
shape and orientation. Other conceivable definitions such as the volume of the
largest cube of any orientation in K \ {X;}} (or the largest rectangular box with
sides parallel to the coordinated axes, the largest convex set, etc.) are not covered
by this paper.

The results do not depend on the shape of K, but the shape of A enters
through the constant « defined in the following enigmatic way (see [8], Sections
5 and 9 for further details). Let w denote the surface measure on 9A (i.e., w is
the d — 1-dimensional Hausdorff measure), and let, for y € dA, n(y) denote the
exterior unit normal to A at y. The assumption that A is convex implies,
without any further regularity assumptions, that 0 < w(dA) < oo and that n(y)
is uniquely defined a.e. (w). Define for v € R? (assuming |A| = 1),

@4) o) = o [ [|Det(n(3)s|da(x,) - da(x,),

where we integrate over all y,,..., 3, € dA such that v is a linear combination
of n(y,),..., n(y;) with positive coefficients, and Det(n( y,)) is the determinant
of the vectors n(y;) in an orthonormal basis. Then a(v) is a constant a.e. in v,
and we denote this constant by « (see [8], Corollary 7.4).

THEOREM. With notation as above

(2.5) nV, —logn — (d — 1)loglogn — loga — U,
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where U has the distribution given by (1.2),

.. nV,—logn

(2.6) liminf ————=d -1 a.s,
n-w loglogn
. nV,—logn

(2.7) limsuyp ——=d+1 a.s.

noo loglogn

REMARK. More information on «a is given in [8], Section 9. In particular, it is
shown there that:

(2.8) If Aisacube, a =1.
d d-1
1 \/;I‘(E + 1)
(2.9) If A is a sphere, a = a —;(-o-l—-l-—l_)_
2

If d > 3, a(sphere) < a(cube) (and thus the spherical spacings tend to be
somewhat smaller than the cubical ones), but for d =2 there is equality.
In fact, if d =2, a =1 for every centrosymmetric set [i.e., such that A — x =
—(A — x) for some x].

REMARK. The theorem remains of course true if K is the torus 7'¢. Using the
argument of [8], Section 8, we obtain the same result for spherical spacings on a
sphere, and more generally for geodesic balls on any compact C? Riemannian
manifold [with «a given by (2.9)].

3. Proofs. It will be technically convenient to replace the fixed number rn of
points by a stochastic number. Hence, let {N,},., be a Poisson process with
intensity one (independent of X;, X,,...) and put

A(t) = Ay, and V(t) = Vy, = A(2)“.

A routine verification, using the facts that V, is nonincreasing, N, ~ Po(%),
N,/t - 1, as., and (N,/t — 1)log ¢ — 0 a.s., shows that the theorem is equivalent
to

(3.1) tV(t) —logt — (d — 1)loglogt — loga —» U,
o tV(t) —logt

(3.2) liminf ———— =d—-1 as.,
n—oo loglog t
) tV(t) — logt

(3.3) limsup—————=d+1 as.

e oo loglog ¢
We may without loss of generality assume that A is an open convex set. Then
A,>re3xwithx+rd c K\ {X;}]

3.4 n
(34) o dx withx + rA c K and x ¢ (X, — rA).
1
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Thus, putting K, = {x: x + rA C K}, A, > r iff K, not is covered by the sets
X;—rA, i=1,...,n. Consequently, A(¢) <r iff K, is covered by the sets
X,—rA,i=1,...,N,

Now, the random set {X,}Y may be regarded as a Poisson process with
intensity ¢ in K. Since x — rA does not meet K, unless x € K, it makes no
difference if we extend this Poisson process to a Poisson process with the same
intensity in a larger set, or in the entire space R

We may now apply the results of [8]. First, we need to introduce some further
notation. Let % denote the mesh of cubes {IT¢[n;s,(n; + 1)s]: (n,,..., n,) €
Z%, and let n,= #{Q € %: QCK,) and m,= #{Q € F: QN K, + 7},
and let

(3.5) y=v(r,t) = tYrA|? e~ 14l = tdrd(d—Dg—tr,

LEMMA 1. Let D = 3sup{|x|: x € A}. Then, there exist a, = a_(tr?) and
a_ = a_(tr?) such that a, - a and a_ > a as tr’ —» oo and such that, for all
s>d8=rD, :

(3.6) e vusls+d(ntm) < P(A(t) < r) = P(K, is covered) < e~ 1-(s="ns,

Proor. (3.6) follows by [8], Lemma 7.2, by replacing A and K by —rA and
K,, respectively. Here (see [8], Sections 5 and 7) a_=a_(—rA,v,t, rD) =
a_(A,—v,tr%, D)and a, = a,(—7A, v, t,rD) = a, (A, —v, tr? D), where v is
some conveniently chosen fixed vector. This proves that a, and «_ depend only
on ¢r?. The fact that a, » « and a_ — a follows from the proof of [8], Lemma
7.3.0

LEMMA 2. Choose s = Vr. Then, as r > 0, we have ms? - 0, ns? - 1,
and 8/s = 0.

ProoF. Let d,K denote the set of points whose distance to dK is at most a.
It is easily seen that dK, C 9, K. Hence, if @ €%, and @ N K, # &, then
Q € dp,, 4, K. Tt follows that m s? < |3, 4 K|. Likewise |K| — |9p, . 4.K]| <
|K — 3p,,q:K| <n;s?<|K|. Let us now choose s =r'/2. We obtain that
|0p,+a:K| = |0K| = 0, as r - 0. Hence m s? » 0 and n,s? > |K| = 1. Finally,
0s=Dr/s - 0.0

LEMMA 3. There exist a_= a_(r,t) and a, = a (r,t) such that a_ - «
anda, > aasr — 0 and tr® > o, and such that

(3.7) e " < P(A(t) <r) <e 7.
PrOOF. A direct consequence of Lemmas 1 and 2. O

We substitute w = ¢r? in Lemma 3 and obtain, because A(t) < r < tV(¢) < w,
the following reformulation.
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LEMMA 4. There exista_=a_(w, t) and a, = a (w,t) such that a_ — «
anda, > a as w —> o and w/t — 0, and such that, with y = twé e ¥,

(3.8) e 7 < P(tV(t) < w) < e 7.

Taking w = logt + (d — 1)loglog ¢ + log a + u we obtain by Lemma 4, as
t - oo with u fixed, y » a~le™“ and P(tV(t) < w) — exp(—e~*), which proves
(3.1) and thus (2.5).

We turn to the strong bounds. (3.1) yields

(tV(t) — logt)/loglogt > pd — 1 ast— oo,
whence liminf < d — 1 < limsup a.s.
We will complete the proof of (3.2) and (3.3) by proving the following three
inequalities, cf. [3].
LEMMA 5. liminf, , (tV(¢) — logt)/loglogt > d — 1 a.s.
LEMMA 6. limsup,_, (¢V(t) — logt)/loglogt <d + 1 a.s.

LEmMMA 7. limsup,,  (tV(t) — log t)/loglog t > lim inf, (tV(¢) —
log t)/loglogt + 2 a.s.

ProoF oF LEMMA 5. Choose any ¢ < d — 1 and define

(3.9) t, = exp(Vk),
(3.10) w, = logt, + cloglog t,,
(3.11) Vi =t~ e ~ (logt,)? ' ¢ = k@172,

Lemma 4 shows that for some a > 0 and % large enough
(3.12) P(th(tk) < wk) < exp(_ak(d—l—c)/2)‘

The sum over k of the right-hand sides converges and by the Borel-Cantelli
lemma

(3.13) P(t,V(t,) < w,i.0.) = 0.
Now, suppose that ¢,V(¢;,) > w,, and ¢,_, < t < t,. Then, since
ty_/tr=exp(Vk—1-VE)>1—-(VkE —VE—1)>1-1/2/k -1,
tV(t) —logt > t,_V(t,) — logt, > (t,_,/t,)w, — log t,
> cloglogt, — log tk/\ﬁe— > cloglogt—1,

if & is large enough. Hence a.s. (tV(¢) — logt)/loglogt > ¢ — 1 /ldg log t, for all
sufficiently large ¢, which proves Lemma 5. O
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PrOOF OF LEMMA 6. This is similar. Choose any ¢ > d + 1 and let ¢,, w,, v,
be defined by (3.9), (3.10), (3.11). By (3.8) and (3.11), for some C > o,
(8.14) P(t,V(t,) 2 wy) <1 —exp(—y,a,) < va, < CRI7179/2,
Since ¢ > d + 1, the right-hand side is summable and it follows as above that
lim sup(¢V(t) — log t)/loglogt < c a.s. O

PrOOF OF LEMMA 7. Let ¢ < liminf(¢V(t) — logt)/loglogt and let 1 < b <
2. We change the definition of ¢, to

(38.15) t, = exp( k%)
and let w, be defined by (3.10) as before. We define r, by w, = t,rg and
(3.16) t,=t,(1 + bloglogt,/logt,) = t,(1 + k~’log k).

We note that
(3.17) ty,1/ty=exp((k+1)"° = kV%) > 1+ b (k+ 1) > /¢,

if & is large enough, whence t,,, > &} > t,.

Let =, denote the random set { X,}}" and note that the increment =, \ E, is
independent of =,, ¢ < ¢,. Recall that, by deﬁnition if A(¢,) = r,, then there
exist points x € K, such that x + r,A C K \ E, . Let Y, be one of these points
(e.g., the first in the lexicographic ordering) and “let Y, be any point in K, if
A(t,) < ry. (We may have to ignore a few k for which K, = &.) Thus Y, 1s a
random point in K, , depending only on E,, such that ¥, + ,LAC K\ &, <
A(ty) = 1.

Let M, be the number of points in (5, \ %, ) N (Y, + r,A). Thus, M, is
Poisson distributed with parameter

(¢ — 6 )Yy + rpA| = (8 — t)rf = (G/t, — Dw,
=k~ log k(K + cbllogk) < logk + 1,

if % is large enough. Hence

(3.18) P(M, =0) > exp(—(logk + 1)) =e !/k
and
(3.19) Y P(M, =0) = .

k

Since the distribution of M, is independent of Y,, it follows that M, is
independent of =, and, since ¢} < t,,,, that the variables M, are independent
(possibly ignoring the first few k). By the Borel-Cantelli lemma and (3.19),

(3.20) P(M, =0i.0.) =1.
By the choice of c,A(t,) > r, for all but a finite number of % a.s., and thus
(38.21) P(M, = 0and A(t,) = r,i.0.) = 1.

However, if A(t,) > r, and M, =0, Y, + r,A c K\ E,. Hence, for such %,
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A(#}) = r, and, provided k is large enough,
t;V(t;) = (1 + bloglog t,/log t,)w,
(3.22) =logt, + cloglogt, + bloglog ¢, + be(loglog t,)’/log t,
> logt; + (b + c)loglogt; — 1.

Consequently, a.s., limsup(¢V(¢) — log t)/loglogt > b + ¢, which proves Lem-
ma 7.0

REMARK. The same method can be used to show that
-1 < liminf(nV, — logn — (d — 1)loglog n)/logloglogn < 0 a.s.

Devroye [5], [6] has shown that this liminf equals —1 when d = 1. It seems
more difficult to use our method to estimate

limsup(nV, — log n — (d + 1)loglog n)/logloglog n.

Deheuvels [1], [3] has shown that this limsup equals +1 when d = 1 and that it
is < 1 for d > 2 in the case of a cubical gap.
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