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THREE PROBLEMS FROM THE THEORY OF RIGHT
PROCESSES!

By THoMAS S. SALISBURY

Purdue University and York University

Using the continuum hypothesis, we produce an example answering three
problems from the theory of right processes. In particular, we give a nontriv-
ial example of a strong Markov process which is not a right process.

We will consider the following three questions:

1. Are right processes invariant under change of realization; that is, does the
definition of a right process depend only on the finite dimensional distribu-
tions of the process?

. Are all “reasonable” strong Markov processes necessarily right processes?

3. Are all a-excessive functions for a right process necessarily nearly Borel?

[\

These problems lie at the foundation of the theory of right processes, and
have been unresolved for some time (see Sharpe [10]). Their relationship is that a
positive answer to either question 3 or 2 would imply one for question 1 as well.
We will show however that there is a negative answer to each. Though it suffices
to show this for question 1, it will be convenient to discuss 1 and 2 separately.
Roughly speaking, our processes will be Brownian motions in R” that have been
forced to add various pathological functions to their collections of excessive
functions.

Essentially, a right process is a normal, right continuous, strong Markov
process (X,), taking values in a U-space E (in our case, it will be a continuous
process, and E will be R*), which possesses the additional measurability prop-
erty that the a-excessive functions f are nearly optional [that is, f(X,) is
indistinguishable from an optional process, for each initial law]. We refer the
reader to Sharpe [10] for the precise definition.

By a reasonable process, in question 2, we mean a process satisfying all the
above conditions except the last one. Thus the second question asks whether this
technical condition, needed to make the arguments of probabilistic potential
theory work, is really necessary.

Write P* for the law of (X,) started at x. Then at a minimum, we must
assume that P*(A) is universally measurable in x for each measurable A. It is
well known (see (9.4) of Getoor [5]) that if these functions are in fact Borel in x,
then our three questions have positive answers. Our interest therefore lies in
non-Borel processes. These arise naturally; for example, the operation of killing a
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process on a Borel set preserves the universal measurability of the transition
function, but not necessarily its Borel measurability.

Note also that for question 1, it is crucial that we allow our processes to be
realized on spaces other than path space (that is, we consider right processes in
the sense of Sharpe [10], rather than Getoor [5]). In fact, question 1 is equivalent
to that of whether the canonical realization of a right process, on path space, is
also a right process. A second realization of a right process will be a right process
as well if and only if it is a.s. right continuous in the topology of the Ray-Knight
compactification E of E, given by the original realization. Thus question 1
amounts to asking whether the set of simultaneously E and E-right continuous
paths is a P*-measurable subset of the set of E-right continuous paths, for
each p.

Let Q consist of all continuous paths on R”, and let (X,) be the coordinate
process on Q. Let P be the law of Brownian motion in R” started at x, and let
e, be a point mass concentrated on the function identically equal to x. Our
examples will involve the probability measures

Py forx & Z,

PZ:{ forx € Z,

Ex

where Z is universally null in R® (that is, it is universally measurable and
receives no mass from any finite continuous Borel measure on R*).

The PZ(A) are universally measurable in x. Let n > 2. Then Brownian
motion in R does not hit points, and hence for any stopping time T > 0,

PY(Xp € )
is a continuous measure. Thus
PH(Xp€Z, X, €Z) =0,
showing that (X,) is strong Markov under (P5). Write
Q, = {w e Q; w(t) € Zfor some ¢t > 0}.

Assume the continuum hypothesis and the axiom of choice. We will show

LEMMA.

(a) For n > 2, there is a universally null Z in R" such that every nonconstant
path hits Z.

(b) For n > 4, there is a universally null Z' in R" such that Q, has inner
measure zero and outer measure one under each Pj.

This immediately yields

THEOREM.

(a) For n > 2 there is a universally null Z in R" such that no realization of
(X,, P}) is a right process.
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(b) For n > 4 there is a universally null set Z' in R" such that (X,, P5,) has two
realizations, one of which is not a right process and the other of which is.

PROOF. Take Z to be the set given by (a) of the lemma. Let (X,, P§) be a
right process which is a realization of (X,, P§). Then by (9.4) of Getoor [5],
f(X,) is as. right continuous, for each excessive f. Take f = 1ge\ z- Since
f(X,) = f(x) P§ as. for each t, we have that f is excessive. Thus f(X,) = f(x)
for each t, P as., and hence X, a.s. never hits Z when started outside Z, a
contradiction.

The realizations in (b) are (X,) on Q and (£\ Q) U {constant functions},
respectively, where Z’ is the set given by (b) of the lemma. (Note that, though
we have not mentioned them, shift operators ©, are usually assumed to come
with the machinery of right processes. With this in mind, note that @\ @, is
preserved by all shifts.) The a-excessive functions for (P},) are

f=8 1gnz th 1z,

where g is a-excessive for (P¥) and A > 0 is arbitrary (such f are universally
measurable since Z’ is universally null). f(X,) is a.s. right continuous on @\ €.,
since it equals g(X,) there. As in part (a), f(X,) is in general not right
continuous on ., hence is not a.s. right continuous on Q. O

The theorem answers questions 1 and 2. Since 3 = 1 (see Sharpe [10]), the
a-excessive functions for the process of (b) cannot be nearly Borel. We can see
this directly, as if B O Z’ is Borel then by (b) of the lemma, P§(X hits B) =1
for each x, so that 1g., ;- cannot be nearly Borel.

Proor oF LEMMA (a). Let N’ c R be uncountable and universally null (see,

for example, Sierpinski and Szpilrajn [11]). Then
N=N"+Q

is as well. In addition, N\ C is dense, for any countable C (as y + Q intersects
C for only countably many y € N’).

Write A for the first uncountable ordinal (the usual notation @ being unac-
ceptable to a probabilist).

Let ©; be the set of w € & whose projections onto the jth component are not
constant. Since { is separable, it has cardinality 8, (by the continuum hypothe-
sis), so we can well order £, as

(wﬁ)p<>\'
Well order N as well, as

(ya)a<>\'

Since N is dense, there is some a(0) such that w, hits {y,} X R*"'. Let the
first such hit be at

Xo = (ya(0)$ 20), zp e R"L

Let a(1) be the first a > a(0) such that w, hits {y,} X R*~! [we may find such
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an « since by choice of N,
N\ {%; a < «(0)} is dense],

and let the first such hit be at x, = (,), 2,) Iterate by transfinite induction, to
obtain a set

Zy = {xp; B <A}
which is hit by every w € Q,.
Now let » be a continuous finite Borel measure on R”. Take a disintegration

v(dx) = n(y, dz)p(dy),

where p and each 7(y, -) are finite Borel measures. Then p = p? + u¢ where u¢ is
atomic and p° continuous. Let A be a countable set on which p? is concentrated,
and let B D N be Borel, with p¢(B) = 0. Then

v*(Z,) <»(Z, 0 (AXR™)) + fB\An(y, R ")u(dy) =0,

so that Z, is universally null. Similarly, we obtain universally null‘Zj which are
hit by all elements of €, j =2,..., n. Then Z = UZ; works for part (a). O

ProoF oF LEMMA (b). Now let
Q' = {w € Q; w is nonconstant, and the capacity of its range is zero}.

Brownian paths in R*, n > 4 have capacity zero (and hence no self-intersec-
tions), so P{f(Q’) = 1 for each x. The set of compact subsets of Q has cardinality
N, since © has a countable base. Well order the set of compact subsets of Q, that
have positive P¥ measure for some x, as

(Ka)a</\'

Then we may choose ¢, € K, N @’. Since Range(g,) is of capacity 0, we may
choose ¢, in K, N ' not to hit it at any ¢ > 0. Choose x, € Z N Range(y,).
Now suppose @, € ', x5 € Z are given, < a. Choose ¢, € K, N &’ not to hit
the countable set {x4. 5. ,}. The capacity of

U Range(g;)

B<a )
is zero, so we may choose Y, € K, N Q' not to hit it at any ¢ > 0. Choose
x, € Z N Range(y,). By transfinite induction we obtain

Z'={x;,a<ACcZ

such that for each a, both €, and 2\ @, intersect K, By the tightness of
probability measures on the Polish space 2, we obtain the conclusion of part (b).
O

In view of the discussion of question 1 in terms of the Ray—Knight compacti-
fication E, it is instructive to write down the compactification of the process
given in (b) of the theorem. We must first specify a preliminary compactification
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of E=R" We of course choose the 1-point compactification S”. Then
it is easily verified that E is the space S™ X {0,1}, in which E embeds as
(S"\Z’) X {0} U Z’ X {1}. The associated Ray process on E performs a
Brownian motion on R” € S™ X {0}. The points of S™ X {1} are eternal holding
points.

It should be remarked that a straightforward modification of our arguments
shows the same results under the weaker axiom system ZFC + Martin’s axiom
(see Martin and Solovay [8] and Laver [7]).

Also note that Z will not be capacitable (for the Newtonian capacity). Under
Godel’s axiom of constructability, a standard argument (using 8.F.7 of
Moschovakis [9]) shows that Z may be taken to be the projection of a coanalytic
set (PCA). As far as capacitability goes, we may do better. Under Godel’s axiom
there is a function R — R whose graph G is coanalytic yet contains no perfect
subset (see 5.A.6 of Moschovakis [9]). The latter property implies that G has
inner capacity zero, while, since G is a graph, a variant of Hall’s lemma (see the
argument in the appendix to Davis and Lewis [2]) shows that G has positive
outer capacity. See also 33.1 of Choquet [11]. )

Some of the arguments we have used are well known in the set theoretic
literature; see in particular Sierpinsky and Szpilrajn [11] and Hausdorff [6]. Also
relevant are Talagrand [12] and Erd6s, Kunen, and Mauldin [4].

Acknowledgment. The author is indebted to Norbert Brunner for several
helpful discussions of these sources.
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