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A CLASS OF MARKOV PROCESSES WHICH ADMIT
LOCAL TIMES

BY VLAD BALLY AND LUCRETIU STOICA

Center of Mathematical Statistics and National Institute for Scientific
and Technical Creation

A class of standard processes which admit local times at each point is
considered. The following regularity properties are assumed: T, —» T, = 0 (as
x — a) in P®probability and P*(T, < o) > 0 for all pairs of points a, b
(T, = inf{t > 0: X, = x}). The class under consideration turns out to be very
large. It is already known that a wide class of processes with independent
increments fulfill our hypothesis. We also observe that the class is left
invariant by the usual transformations: time change, subprocess and u-pro-
cess (h-path) transformations.

The first important result of the paper is that every continuous additive
functional may be represented as a mixture (integral) of local times. This
theorem is used to prove two further results. The first one asserts that every
process in the class has a dual process which remains in the class. Particularly
Hunt’s hypothesis (F) is satisfied. The second one generalises the occupation
time and downcrossing approximating models. Such approximation theorems
are proved for a C.A.F. whose representing measure is given.

Introduction. In this paper we study a class of standard processes for which
each point admits a local time. Mild regularity properties, expressed by (1.1a-b)
in the text, are assumed. These properties are equivalent to the following:
T,=0, P“as, T, —> 0 (as x = a) in P%probability and P*T, < o) > 0 for
any a, b in the state space. Interestingly enough, these conditions turn out to be
also equivalent to the following: the resolvent admits a density (Green) function
which is finite, strictly positive and continuous, with respect to a certain Radon
measure.

The class under consideration is rather large. By a result of Kesten (see [4])
every process with independent increments which admits a local time at the
origin fulfills our hypotheses. Moreover, in Section 4 we show that the usual
transformations (time change, subprocess and u-process (A-path) transforma-
tions) leave the class invariant.

A central result of the paper is Theorem 2.2, which asserts that every
continuous additive functional may be represented as a mixture (integral) of
local times by means of a Radon measure. The problem of representing additive
functionals was previously treated in the literature by several authors. For
example, Griego [8] proved under Hunt’s hypothesis (F) a statement identical
with Theorem 2.2. However, in our work hypothesis (F) will be obtained “a
posteriori” in Section 5 by using the representation. Further results on measures
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associated with additive functionals were proved by Azema, Kaplan-Duflo and
Revuz [1], Revuz [14], Nevison [12] and Rao [13]. Though our subject is similar,
the assumptions, methods of proof and applications are different.

The representation theorem is used in this paper to get two further results.
The first one is about duality. It is proved in Section 5 that for every process in
the class there exists a dual process which remains in the class (see Theorem 5.4).
The works of Hervé [9], Taylor [17], Smith and Walsh [15] and Chung and Rao
[5] deal also with the construction of duality. Although the papers [15] and [5]
are more probabilistic, their general results cannot be directly applied. On the
other hand, though some of their ideas would work in our frame, major
difficulties still remain to be solved. So we do not adopt the methods from these
papers and prefer a direct intrinsic approach in the spirit of the potentially more
theoretical papers [9] and particularly [17].

In another line, the representation theorem is used for getting approximation
theorems for continuous additive functionals. It is well known that the local time
at a point can be approximated by means of various processes constructed
pathwise from the “geometry of the trajectory” (e.g., occupation time and
downcrossing processes). A natural question would be to generalise this result to
a functional whose representing measure is known.

In Theorem 6.4 it is shown that the correspondence between additive func-
tionals and their representing measures is bicontinuous, under certain cir-
cumstances, so that the vague convergence of measures is equivalent to the
convergence of the functionals in some sense. Thus if we have a measure p, the
associated additive functional can be approximated as follows: first approximate
the measure by discrete measures of the form Za;e, , then approximate the local
times at points x;, by known methods with processes A?, finally the process
Ya;A’ should approximate the functional corresponding to p. This is proved in
Theorems 7.1 and 7.2. We point out that Sections 6 and 7 are completely
independent of the results in Sections 3, 4 and 5. Therefore the reader interested
only in convergence theorems may read them immediately after Section 2.

1. Preliminary results. Let X = (2, #, %, X,, 6,, P*) be a standard pro-
cess with l.c.c.b. state space (E, &). We refer to Blumenthal and Getoor [3] for
terminology and notation not explicitly introduced in this paper. Sometimes we
will work with a metric d compatible with the topology of E. The Alexandrov
compactification point will be denoted & and the lifetime of the process is
denoted by ¢ = inf{t > 0: X, = 8}. (U,) will be the resolvent of the process. For
a continuous additive functional (C.A.F.) A, the fine support will be denoted by
supp A, and the p-potential kernel and 1-potential will be denoted by

Ugf(x) = B f()*e—Ptf(Xt)dA,) and uy(x) = UL(x).

For fe &, we will denote by f-A the C.A.F. defined by (f:A),=
J&f(X,) dA,. The space of continuous functions on E will be denoted by C(E),
while C(E), Cy(E) and Cy(E) will be the subspaces of functions with compact
support, resp. vanishing to 8, resp. bounded. The uniform norm of a function will
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be denoted by | f|| = sup{f(x): x € E}. The support of a measure p will be
supp p.
A major role in this paper is played by the functions:
¢P(y) = E*(exp(-pT,); T, <), p=20,
where T, = inf{t > 0: X(t) = x}. For p = 1 we shall write simply ¢,(y) instead
of ¢L(y). Note also that ¢2(y) = P/(T, < ).
Our hypotheses on the process X are

(1.1a) lim ¢, (a) =1=¢,(a) foreverya € E,
x—a
(1.1b) o(y) >0 foreveryx,y€ E.
The first equality in (1.1a) is equivalent to each of the following conditions:
(1.2) lim 7, =0 in P%probability for every a € E,
x—a
(1.3) lim p?(a) =1 foreverya € E and p > 0.
x—a

To see this we write for some ¢ > 0,
¢(a) < e"PUT, > e) + P(T, <),
and hence
(1-e™)PXT, > ¢) <1 - g/a),

which yields (1.2) if we assume the first equality in (1.1a). The other implications
are obvious. It is also clear that under our hypotheses condition (1.3) holds also
for p = 0.

Condition (1.1b) is equivalent to

(1.4) <p§"(y) >0 foreveryx,y€E

for some p > 0.
Let us now list the properties following directly from our hypotheses:

(1.5) The fine topology coincides with the initial topology of E. Every
p-excessive function is continuous for any p > 0. The resolvent of the process is
strong Feller. There exists a reference measure. X is a Hunt process.

PROOF. Let D be a finely open set and x € D. Then E*(exp(—Tp:)) <1,
and so, under (1.1a) we may choose a neighbourhood V of x such that ¢.(x) >
E*(exp(—Tp.)) for every y € V. For y € D° we have T, > Tp. and so ¢,(x) <
E*(exp(— Tp:)). We conclude that V c D, which proves the first assertion. The
next two assertions are immediate consequences of the first one. The existence of
a reference measure for a process with strong Feller resolvent is well known, and
the last assertion follows from Theorem 4.3 in [16]. O

REMARK. If the space E is connected, then condition (1.1a) implies (1.1b).
To show this we fix a point a € E and put C = (¢, > 0), D = (¢, = 0). Since
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T,<T,+ T,°0p foreverya,y€ E, it follows that
(1.5%) Pa(%) 2 9o ¥)9y(%).

Let x € D and V = {y: ¢(x) > 0}. By (1.1a) V is a neighbourhood of x. By
the above inequality V c D. So we have proved that D is an open set. Since
relation (1.1b) is not used in the proof of (1.5), it follows that ¢, is continuous
and so C is also open. We have E=CUD,CND= @ and a€ C. If E is
connected, then D should be empty, which implies (1.1b).

Next we give some useful properties of ¢?:

(16) Foranyp=0

() |9F — oI < @P - v(x, ¥)/9P(y) for every x,y € E, with y,(x, y) =
1 - @2(y)95(x).

(b) For every p-excessive function s and every x,y € E |s(x) — s(y)| <
s(x)Yp(%, ¥)/ Py (%)
Except for the constant functions 0 and co every p-excessive function is strictly
positive and finite.

(¢c) The function (x, y) = ¢ y) is continuous.

ProoF. Since the proof is analogous for any p > 0, we shall give it only for
p = 1. In order that, for some ¢ > 0,

lq)x(z) - q)y(z)l < (px(Z)C foranyz € E:
it suffices that

(+) P(2)(1-¢c) <9 2) and ¢,(2) <1+ c)pl2).

By (1.5’) we have @(2) = ¢(x)9(2) and so, in order to get the first
inequality in (*) we may take c such that (1 — ¢) < ¢,(x), thatis ¢ > 1 — @ ().
Similarly the second inequality in (*) holds provided ¢ > ¢, (y)~! — 1. Since
¢ = y(x, ¥)/9,(y) fulfills these conditions, (a) is proved.

To prove (b) one writes

1.7) s(x) > E"(exp(—Ty)s(X(Ty))) = s(y)p(x),
which yields the inequality in (b). The statement in (b) follows immediately from
the inequality.

For the assertion in (c) we first write

|92(8) — @(¥)| <|9a(B) = @l ¥) | +|0a(¥) — @:(¥)]-

Since ¢, is l-excessive, it is continuous, and hence the first term in the
right-hand side of the inequality vanishes when y — b. The second term is
dominated by y(a, x)/@,(x), which also vanishes when x — a. O

We shall now discuss the problem of recurrence and transience. We recall one
of their equivalent definitions [Corollary (2.3) and Proposition (2.4) in [6]]:
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DEFINITION. A standard process is called transient if for every compact set
K,U(-, K) < o (U is the potential kernel of X).
The process is called recurrent if for each finely open set B, U(-, B) = co.

(1.8) The process X [which fulfills (1.1a) and (1.1b)] is either transient or
recurrent.

To prove the above assertion we need the following lemma:

LEMMA. Let X be a standard process such that U,(Cy(E)) ¢ C(E) for some
p > 0. Assume that for each x € E there is a finite continuous excessive function
¥ such that lim,_, P,y = 0 and y(x) > 0. Then X is transient.

Proor. For any g >0
w>p W2Uy=Uy—(p—qUUy
2 U (¢ —pU¥) - U(y — pUpy) asq—0.

Since lim, _, P4 = 0, we have pU,¢(x) < ¢(x) and so ¢y — pU,¢ is continuous
and strictly positive in a neighborhood V of x. Hence U(-, V') < oo, which ends
the proof of the lemma. O

We go on and prove (1.8): If X is not recurrent then there exists a finely open
set V such that Ul,(x) < oo for some x € E. Since the function ¢ = Uly, is
excessive, by (1.6)(b) ¢ is strictly positive and finite everywhere. Now, by using
the above lemma, one gets (1.8).

REMARK. In the recurrent case each excessive function is constant and
PX(T, < o) = 1 for every x, y € E. This follows from Proposition (2.4)(v) in [6].

(1.9) The process X admits a o-finite excessive reference measure. In the
recurrent case this measure is even invariant.

In the transient case the excessive reference measure may be easily con-
structed in the following way: one chooses a sequence (x,) such that {x,:
n € N}isdensein E and put p = X2 ", . Then the needed measure is pU. The
existence of an invariant reference measure in the recurrent case is discussed in
[1], [10] and [18]. In our framework the invariant measure is defined by

w(h) = B [r(x) as) + B2 [“1(X) 5], fee.,

where x and y are two arbitrary fixed points in E. The proof can be done as in
[10] and is even simpler.

In Section 5 we will see that each excessive measure is a Radon measure (see
Remark 5.7).



246 V. BALLY AND L. STOICA

2. Representation of C.A.F.’s. Under our hypothesis every point a € E is
regular for itself and consequently it has a local time. We denote by L* a version
of the local time which is normalised by

(2.1) Ea(fowe—SdLg) =1.

It is known from Theorem 1 in [7] that, under this normalisation (s, x, @) —
L (w) is measurable. By the strong Markov property one obtains

(2.1) B [TetdLz) - ().

From (1.5) it follows that each natural potential is regular and so each natural
additive functional with finite 1-potential is continuous. The aim of this section
is to show that such a functional may be represented as the integral of L* with
respect to a Radon measure p(dx). We recall that a continuous additive func-
tional (C.A.F.) A is uniquely determined by its 1-potential

uy(x) = Ex('/(;we‘sdAs).

Thus the representation of A is equivalent to the representation of u, by means
of the extremal 1-potentials ¢,, x € E. So Choquet’s representation theorem
would work here. Revuz’s measure can be also used to produce the representing
measure. However, we prefer a direct proof for the sake of completeness. In the
end of this section we will discuss the connection with Revuz’s measure.

Now we give without proof the simple part of the result.

PROPOSITION 2.1. Let p be a Radon measure on E such that the function
defined by

(2.2) x> [o x)u(dy), xeE,

is finite. Then A% = [Liu(dx), t >0, defines a C.A.F. A* = (A"), whose
1-potential is the function from (2.2).

The main result of this section is the following theorem.

THEOREM 2.2. For every C.A.F. A, with finite 1-potential, there exists a
unique Radon measure p such that the function in (2.2) is finite and

(2.3) A,= foy(dx) for everyt > 0 a.s.
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ProoF. We note first that by restriction we may assume that the fine
support of A is included in some compact set K. For a fixed ¢ > 0 one may
choose a finite family of points {x; i < n} and a measurable partition of
K{V;: i < n} (n depending on ¢), such that x; € V,C {x: d(x,x;) <&} and
K c UV,. Then we define A; = 1y A, u; = u,, ¢; = u,(x;) and p, = La;e, . Then
for every x € E we have

|uA(x) - Zai%i(x)l =< Zailai_lui(x) - q)x;(x)l°

Lemma 2.3 from below implies
llei ;= @l < 2sup{y(x;, %), (x) i x € V,n K},

and hence
(24) |us - oo, < 2(Leai)sup{v(y, x)oy) "1 2, y € K, d(x, y) < ¢}
Let us fix a point a € E. By using (1.7) one gets

n(E) = Ya; <07 Yua) =0"'uy(a) < w,
where © = inf{g,(a): x € K} > 0. It follows that the measures p,, & > 0 are

uniformly bounded. By a compactness argument one may find a sequence e, 0
and a measure g on K such that Be, = 1 weakly. Then

Jim Jo (@ dy) = [ (x)n(dy).

Since [, (x)n(dy) = Za;9,(x), by (2.4) one gets u, = u,, with the notation
from the preceding proposition. Therefore we obtain A = A*. The unicity of
results in a more precise form from Proposition 2.4 below. O

LEMMA 23. Let K be a compact set, a € K and u, v two 1-excessive func-
tions such that u(a) = v(a) = 1 and Pxu = u, Pyv = v. Then for any x € E we
have

ju(x) = o(x)| < 25up{r(a, 3)9,(a) " y € K).

PrROOF. For x € K the inequality follows from (1.6)(b). Then by using the
relation Py (u — v) = u — v one gets the inequality for every x € E. O

PROPOSITION 2.4. If Aisa C.A.F. and p is a measure satisfying (2.3), then
Uif(x) = [H(9)ox)u(dy), feé,x<E,
p(dy) = 9,(x)'Ul(x,dy), =z€E,
U(x, dy) = 9(x)9,(2) 'Ul(z, dy),  x,2€E.

Proor. By (2.1’) one gets
Up-f(x) =f(y)ef(x), y€E.
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Then the first stated relation follows by integration with p(dy). The other
relations are easy consequences of the first one. O

REMARK 2.5. If A and p satisfy (2.3) then the fine support of A, which is a
closed set in the usual topology, coincides with the support of p.

Griego [8] has a result similar to Theorem 2.2. under Hunt’s hypothesis (F).
The representing measure of the potential associated to the additive functional
is used to represent the additive functional as in (2.3). This is possible because in
that paper the local time is normalised by

[o¢]
a -ps al —
E (fo e dLs) g,(a,a), ackE,

with g, the Green density function given by hypothesis (F). Revuz’s measure
introduced for processes with a reference excessive measure, generalises the
representing measure of the potential associated to the additive functional,
which is defined under duality hypothesis. In the remainder of this section we
shall discuss the relation between the representing measure obtained in Theorem
2.2 and Revuz’s measure.

Let £ be a fixed o-finite reference excessive measure (as we observed in (1.9)
such a measure exists). If A is a C.A.F. with finite 1-potential, we denote by p ,
the measure obtained in Theorem 2.2, while Revuz’s measure will be denoted by
v,. It is defined by the following increasing limit (see [14]):

(25) w(f) = lim PBN(f-AQTY),  feé..
Since v;. 4 = f - v, it follows that », is carried by the fine support of A. Hence

v, x = h(x)e,, where 0 < h(x) < 0. The function x — h(x) is measurable be-
cause

h(x) = v, x(E) = im2"E*(L*(27")).
From (2.3) and (2.5) one deduces that »,(dx) = h(x)p o(dx). In Remark 5.7 we

will show that A is continuous by using duality results. It seems difficult to
prove this directly.

3. The Green function. Let us denote by 7 the representing measure for
the usual time of the process. This measure is defined by ¢ A { = [L?n(dy) and
satisfies:

U f(x) = B [fe(X) ds) = [1()ax)dn(3) forfee,

where ¢ is the lifetime of the process.
Obviously 7 charges any open set. The above relation and the uniqueness of
the representing measure ensure that

[[1(X)ds = [Lit(o)n(dy) forfes..
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This yields
$
Uf(x) = B+ ['e(X,) ds)
$
= [E( [ferm dL2)i(5)n(ay)
0

= [&.(x, »)()n(ay)

and so, the Green function with respect to the reference measure 7 is

(31) g2, ) = B [ferary),  p=o0.
0

By the strong Markov property

(3.2) 8(%, y) = 92(x)g,(y,5), Dp=0.

In particular, on account of (2.1), g,(x, ¥) = ¢,(x). We also mention the follow-
ing straightforward relation (see Proposition 2.3, Chapter IV in [3]):

(&o(x, ¥) — 8,(x, ¥))/(a - p)

(3.3) = [2,(x,2)g,(2, ¥) dn(2)

= fgq(x, 2)g,(z, y)dn(y) forp=0,q>0.
We give now some properties of g,,.

ProrosiITION 3.1. Forp >0

(a) 0 < g, <max(p~',1),
(b) x > g,(x, ¥) is p-excessive for every y € E,
(© (%, ¥) > g,(x, y) is continuous.

ProOF. The first inequality in (a) is a consequence of (3.2). To prove the
second inequality let us write (3.3) in the form

(3.4) 8x(%, ¥) =g(x,y) + 1 - p)U,g (-, y)(x).

Since (U,) is sub-Markovian and g, = ¢ <1 it follows that U,g,(-, ¥) < 1/p
andso g, <1+ (1 —-p)/p=1/pforp <1.1If p>1,(34)implies g, < g, < 1.
Assertion (b) follows from (3.1).

By (1.6)(b) the functions g,(-, ), y € K, are equicontinuous for every com-
pact set K. Since g,(x, y) = ¢,(x), which is continuous, the continuity in y
follows from (3.4), and (c) is proved. O

PROPOSITION 3.2. In the transient case g, is finite and assertions (b) and (c)
in Proposition 3.1 hold also for p = 0.
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REMARK. Using the results of Section 5 one can show that in the recurrent
case g, = 0.

Proor. We first prove that g, is finite. Let y € E be fixed. Clearly ¢)(x) =

E*(T, < o) is 0-excessive. Let us check that in fact @) is a regular potential.
Smce X is transient one may apply Hunt’s theorem and get a sequence f,,
n € N of bounded measurable functions such that Uf, 1 ¢). For any & > 0 one
may choose n, such that Uf,(y) > )(y) — e =1— ¢ for n > n,. It follows that

Uf(x) +e> Ex(Ufn(XTy); T, < oo) +e> (Uf(y) + e)P*(T, < ) > ¢3(x),

for every x € E and n € N. We may conclude that (pg is a regular potential, as a
uniform limit of regular potentials. Let A be the C.A.F. with 0-potential equal to
0 .
¥y, that is,
E*(A,) = 9)(x).
Since ¢%(y) = 1 we have
EX(9,(Xg,); T, < @) = BT, < 00) = ¢}(%),

and so E*(A(T,)) = 0. It follows that the fine support of A is exactly {y}. This
implies that A is a version of the local time. Since two versions of the local time
differ by a multiplicative constant, E*(A_) < oo implies that gy(x, y) =
E*L2) < oo.

Let us prove the continuity of g,. As g(-, y) is 0-excessive, it is continuous
for each fixed y. It remains to prove that for each compact set K, the functions
in the family gy(x, -), x € K are equally continuous. One uses (3.4) to get

&, y) = &=, y) + (Uw,)(x).

Since (x, y) = g)(x, ¥) is continuous it remains to study the function
(x, y) = (Upp,)(x). Let a € E be fixed. By (1.6)(a) we have

|(Usp,)(x) = (Usa)(x)| < Uplle, — 9al)() < ¥(@, ¥)9a(¥) " (Uppa)(x),

which shows that the functions of the family y — (Uyp,)(x), x € K, are equally
continuous at a. This completes the proof. O

We finish the section by giving a proposition which formulates conditions
(1.1a-b) in terms of resolvents.

PROPOSITION 3.3. Let Y be a Hunt process and (W,) its resolvent. We
assume that for some fixed p > 0

W,i(x) = [{(2)h,(x, ) du(y) forfeé,,

where p is a Radon measure and h€ £® &,.
() If h, is locally bounded and continuous in each argument, then

hy(x, ) = 9P (x)h,(y, )
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(i) If (x, y) = h,(x, y) is finite, strictly positive and continuous, then @P” is
continuous and Y fulfills (1.1a-b).

PROOF. Let y be fixed, (V,),c~ a sequence of open relatively compact sets
such that V,,, € V,, and N,V, = {y}, and f, = p(V,)" "1y, Since h,, is continu-
ous in y, lim ,W, f,(x) = p(x ¥). By the strong Markov property one gets

(3.5) E"(exp( _pTVn)w,pfm(X(TV,,))) = W,fn(x) form > n.
Obviously W, f,(x) < sup{h,(x,2): z € V,} and so, by the above relation one
gets
W, f, < sup{h,(x,2): x,z € V;}.
Now we may take limits over m in (3.5) and get
Ex(exp(—TVn)hp(X(TVn), y)) = h,(x,y), foreveryne N.
The first term in the above relation converges (as n — o) to

E*(exp(—pT,)) (3, ¥) = of(x)h,(y, ¥),
which proves (i). Assertion (ii) follows immediately.

REMARK 3.4. For a Hunt process conditions (1.1a), (1.1b) are equivalent to
the existence of a finite, strictly positive, continuous Green function.

4. Transformations of the process. In this section we shall prove that the
main transformations considered in the literature leave invariant the class of
processes defined by (1.1a-b).

Let us begin with the time change transformation. For a C.A.F. A which is
finite on [0, {] the process X(¢) = X('r(t)) with 7(¢) = inf{s > 0: A(s) >t} is
the so called time changed process. Let E be the fine support of A. Since E
is closed the remark from page 233 in [3] ensures that X is a standard process
with state space E.

PROPOSITION 4.1. Conditions (1.1a-b) hold for X.

Proor. Let T = inf{s > 0: X(s) = x}. A simple look shows that T, = A(T,)
a.s. forx € E. Then

¢y (x) = E‘(exp(—f )) = E’"(exp( —A(T, )))

By (1.2) lim, _, T, = 0 in P*-probability, hence from every sequence y, — x one
may extract a subsequence such that T, — 0, P* as. on this subsequence. An
analysis argument shows that lim y_,xqpy(x) = 1, which proves (1.1a). Condition
(1.1b) obviously holds. O

Let us now look at the subprocess transformation. Consider a strong multi-
plicative functional M for which every point is permanent. Let X be the
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canonical subprocess associated to the functional. This is a standard process. For
notations and properties related to X we refer to [3]. For (w,A\) € @ X R, and
x € E, T(w,\) = inf{s > 0; X,(w,\) = x)} is equal to T(w) if T(w)<}\ and
oo if T(w) = A. Then

,(x) = E*(exp(-T;)) = E*(M(T, )exp(—T,)).

The same argument as in Proposition 4.1 shows that lim ,_, @ (x) = 1, which
proves:

PROPOSITION 4.2. Conditions (1.1a-b) hold for X.

To finish we shall verify that the u-process transformation (or hA-path trans-
formation) conserves properties (1.1a) and (1.1b). Concerning u-processes we
refer to Chapter 1, Section 4 in [11]. Let u be a finite strictly positive O-excessive
function. The corresponding u-process is Hunt and its resolvent is

W, (x, dy) = u(x) " 'Uy(x, u(y) dy).

Since u is continuous, (W,) fulfills the conditions in Proposition 3.4, and so
(1.1a-b) hold for the u-process. Thus we have:

PROPOSITION 4.3. The u-process transformation conserves (1.1a-b).

5. Duality. The aim of this section is to prove that under conditions
(1.1a-b) the process X admits a dual process X fulfilling also this hypothesis.
The key result of the section is the following:

PROPOSITION 5.1. Let X be a standard process satisfying (1 la—b) Assume
that X is transient. Then there exists a Feller process X which is in duality with
X and satisfies (1.1a-b).

PROOF. Let us consider the Green function g,, p > 0, and the reference
measure 7 defined in Section 3, and define

fU(5) = [g,(x, ) f(x)n(dx) forfe&,, p=0,yEE.

By (3.3) (ij) is a resolvent. Clearly (Ij’p) is in duality with (U,) with respect to ,
that is

(U,f,g)=(f,&U,) forf,ge&, andp=0

(co-kernel and duahty notations are those from [3] and [11]).

Since (Ij ) is not sub-Markovian, it could not be associated to a Markov
process. Therefore we shall modify it by means of an appropriate (U) -excessive
function, in order to get a resolvent which is sub-Markovian and even Feller The
needed function is produced by the following lemma.
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LEMMA 5.2. There exists a finite, strictly positive, continuous (U;,)-excessive
function w such that

(5.1) lin}sgo(x, y)/w(y) =0 foreveryx € E.
y—)

Proor. If E is compact we may take w = gy(a, ) with a € E and (5.1)
is trivial. If E is not compact, let us consider a sequence (K,) of compact sets
such that K, c K,,, and UK, = E. We denote by T, = Ty: and note that
sup,T, = §. Slnce KS+ O one deduces from (1.1b) that Px(T < ) > 0 for any
x € E.Let us fixa pomt a € E and define

w,(y) = E*(go(X(T,), y), T, < ) > 0.

By (3.3) one has
q(gO(x’ ')ﬁq)(y) = qugO(" y)(x) fOl'x, Yy € E‘

Since g4(+, ¥) is excessive, it follows that g (x, ) is (U )-excessive. Hence w, is
also (l7 )-excessive.

By (3 2) 8o(%, ¥) < 8y(y, y) for any x, y € E. Since y — g((y, ¥) is finite and
continuous, it is bounded on compacts and hence one may apply Lebesgue’s
theorem to check that w, is continuous. By the definition of g, and the strong
Markov property

w,(y) =E>(L% - L}) ~ 0

We consider now another fixed point z € E. By taking a subsequence we may
assume that w,(z) <27" Since T,< T, + T, 0r,, P* as., it follows that

@(x) = ¢(¥)@Y(x), and so
(5.2) &o(x,2)go(y, ) = 80(y, 2)8¢(x, y) foranyx,y € E.
One concludes that

w,(y) < w,(2)go(y, ¥)/80(y,2) < 27"84(y, ¥)/8:( ¥, 2),

which ensures that w = ¥, w, is a continuous, strictly positive and finite (l)'q)-
excessive function. Next we note that w,(y) = g.(a, y) for y € K¢ and so
ngy(a,y) < w(y)for y € K¢, which yields (5.1) for x = a. By using (5.2) one gets
(5.1) for every x € E, which completes the proof of the lemma. O

Now we use w in the above lemma to define the resolvent

W,(dx, y) = w(y) Uy (w(x) dx,u);  p=0,
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LeEMMA 5.3. The resolvent (W,) is of Feller type.

ProorF. Clearly this resolvent is sub-Markovian. Let us consider p > 0. Since
&, and w are continuous it follows that for f € C(E), W,f is continuous. By
(3.3) 8o = &, and so, from (5.1) it follows that W, f € C\(E). Since C( E) is dense
in Cy(E) and the operator W, is bounded, one has W,(Cy(E)) c Cy(E). Next, to
show that W, (Cy(E)) is dense in Cy( E) we shall use Hahn and Banach’s theorem
(this kind of argument was used for the first time in connection with duality in
the framework of axiomatic potential theory; see Lemma 29.4 in Hervé [9]). By
using this theorem it will suffice to show that any signed bounded measure »
such that »(W,f) = 0 for any f € Cy(E), is null.

Let us write such a measure in the form » = », — »_ where v, and »_ are
bounded nonnegative measures. We define

s.(2) = [g,(x, Yw(n)vi(dy),  s_(x) = [g,(x, y)w(y) v_(dy).

Since g,(x, -)w(-)"' € Cy(E), s, and s_ are finite. They are the p-potentials of
the following C.A.F.’s:

A= [Liw(x) v (de), A7 = [Liw(x) ™ (dv).
Next, for any f € C(E), one has

0= [{W,(y)»(dy)
- fff(Z)w(z)gp(z, y)w(y) 'n(dz)r(dy)
= [1(2)w(2)(5,(2) = s_(2))n(de).

It follows that s, = s_, 5 a.s., and hence, s, and s_ being excessives, they are
equal everywhere. Since a C.A.F. is uniquely determined by its p-potential, this
yields A* = A™. by the unicity of the representing measure, w= v, = w™l»
which implies » = 0.

Now let X be the process associated to (W,). Clearly this process is in duality
with X with respect to the measure w - . The Green function with respect to
this duality measure is w(y)~'g,(x, ¥), p = 0. Since this function satisfies the
hypothesis of Proposition 3.3(ii), X fulfills (1.1a-b). This completes the proof of
Proposition 5.1. O

bl

Now we are able to prove the main result of this section.

THEOREM 5.4. Let X be a standard process satisfying (1.1a-b). Then for
every excessive measure £, there exists a standard process satisfying (1.1a-b),
which is in duality with X with respect to the measure ¢. The resolvent of this
process is uniquely determined.



MARKOV PROCESSES WHICH ADMIT LOCAL TIMES 255

PROOF. Let us assume first that X is transient. Let X be the Feller process
produced in Proposition 5.1. The excessive measure § has a density v with
respect to the duality measure w -, which is excessive with respect to X (see
Proposition 1.11 of Chapter VI in [3]). Since X satisfies (1.1a-b), v is strictly

- positive, finite and continuous. Then by Proposition 4.3, the u-process associated
to X and o satisfies (1. 1a—b) Clearly this process is in duality with X with
respect to £ The unicity is an immediate consequence of the duality relation. O

Let us now prove the theorem in the recurrent case. For any p > 0 the
p-subprocess satisfies (1.1a-b) and is transient. Since the measure £ is excessive
with respect to the p-subprocess one may associate to it a dual process with a
resolvent (V?), ., o. From the unicity property one deduces that V? = V¢, ,_ , for
every 0 < g < p. This allows us to define a resolvent (V). , w1th V.=Vr,, for
p < r. Since the resolvents (V?), ., are associated to standard processes, the
hypotheses of Theorem 4.3 in [16] are verified, and hence the resolvent (V}), . o
produces a Hunt process. Then by Remark 3.4 this process fulfills (1.1a-b). This
completes the proof. O

REMARK 5.5. We note that the duality obtained here has better regularity
properties than Hunt’s hypothesis (F). In our case the Green function is continu-
ous, strictly positive and finite. The excessive and co-excessive functions are also
continuous.

REMARK 5.6. If X is transient, then any dual is transient. This is an easy
consequence of the duality relation and of the fact that under (1.l1a-b) an
excessive function is either identical infinite or finite everywhere. If the process
X is recurrent, then there exists only one dual process. This follows from the fact
that in this case the co-excessive functions are constant.

REMARK 5.7. Each (U )-excessive function is finite, strictly pos1t1ve and
continuous. If ¢ is an excessive measure then there exists an (U ) excessive
function u such that £ = u - 1, and consequently, every such measure is a Radon
measure. If », is the Revuz measure associated to L* with respect to £, then
u(x) = v (1).

In proving the first two assertions one may consider only the transient case,
because p-subprocesses, p > 0, can be used in the recurrent case. If w and (W,,)
are those constructed in the proof of Proposition 5.1, then a function v is
(U )-excessive iff vw ™' is (W,)-excessive, which implies the two assertions. For
the third assertion one should use a formula from [14] in order to get:

n(1) = lim a [UR(1)(7)é(dy)

Tim a e (5,x)8(dy) = lim aul(x) = u(x).

REMARK 5.8. In constructing a dual process we could not use the resolvent
(U,), because the sub-Markov property would be lacking. An example of this



256 V.BALLY AND L. STOICA

may be obtained by modifying the Brownian motion on the real line by a
random time change associated to an additive functional with density function
which is strictly positive, bounded and continuous.

It would appear natural to try to work from the beginning with an excessive
reference measure ¢ instead of 1 and with its associated dual resolvent, which
would be sub-Markovian. However, it seems to be difficult to show directly that
the corresponding Green function is continuous.

6. Convergence to a C.A.F. In [2] the convergence of increasing processes
to the local time is studied. By using the representation theorem in Section 2 and
the methods introduced in [2], we shall give a convergence theorem to a C.A.F.
When speaking about an “increasing process” A we shall assume without other
mention that A is a nondecreasing, adapted, “cadlag” process with A(0) = 0 and
A_, = sup,A,. Information about such processes will be expressed in terms of the
modified processes:

A(t) =f e *dA,.
[0, £] °

The distance between two increasing processes will be defined by
d,(A, B) = supE"(sup(A_t - E,)z)l/z.
x
We note that for every ¢ > 0
1+ 2e'l)supE"(supe_(2_e)‘(A, - B,)2)1/2
x t

>d,(A, B)
> Jsup E"(sup e (A, - Bt)z)l/z.

In order to evaluate the distance between two increasing processes we shall
introduce three parameters. The first one is the 1-potential of A, that is,

ua(x) = EX(A,) = E"(fooe‘sdAs).
0
The second one is the “additivity error.” Assuming that A_ < o a.s. one may

define
(6.1) I[,=A_,—A,—e'A_o0,
Then, for each x € E, the P*-optional projection of T’ is

Iy = EX(A,7) — &, - e 'uy(X)),
where the first term in the right-hand side of the above equality is the “cadlag”

version of that martingale.
Now I is defined by

1/2

(6.2) T = sng"(sgp(Ff)z)
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The last parameter refers to discontinuities:
A(2) = A(t) - A2 -)
and

_ 1/2
A= supE"(supA%) .
t

X

In [2] the following result is proved:

LEMMA 6.1. Let A be a C.A.F. and B an increasing process with parame-
ters T and A. Let us denote by ¢ = sup, E*(B%)/2 V 1. Then

dy(A, B) < cK\(Jluy — ugl|V?+ T +8) < cK,d,(A, B)"?,
where K| and K, are universal constants.

We shall also need the following lemma:

LEMMA 6.2. For any increasing process B
lug(x) — up(y)] < (v(x, y)ug(x) + 2T) /g,(x).

ProoF. By integrating in (6.1) one gets
ug(x) = E"(_B(Ty)) + E"(I‘(Ty)) + ‘Py(x)uB(y),
which yields
up(x) = E(L(T))) + ¢(x)up(y)
and
ug(y) = EX(I(T,)) + ¢ y)up(x).
From these two inequalities one deduces
EX(T(T,)) /up(x) + (7) < up(y)/up(x) < 0,(x) (1 — EX(I(T,)) /up(x)),
and further
—T/up(x) + 97) < up(y)/up(x) < 0(x) (1 + T/uy(x)),
which yields the assertion of the lemma. O
Let us now consider a sequence of increasing processes A”, n € N, with
parameters u, = u4n, I, and A,. We assume that A" are supported by a
compact K, in the sense that [°1x.(X,)dAZ =0 a.s. Let us also consider a
C.AF. A supported by the same compact K and set u = u,.
THEOREM 6.3. The following assertions are equivalent:

() u,(x) - u(x) for everyx € E, T, > 0 and A, - 0.
(ii) dy(A™, A) > 0.
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Proor. The only interesting implication is (i) = (ii). To prove it we shall
first show that

(6.3) llu, — ull = ,0.
Let us write
u,(x) = Ex(A_n(w) - A_n(TK)) + Ex(A_n(TK) - A™(Ty ‘))
= Ex(exp(_TK)un(XTK)) + E*(I(Tyk)) + E*(A(T)),
u(x) = E*(exp(—Tx)u(X(Tx))),
which yields ||u, — u|| < ||u, — u||x + T, + A,, where
llu, — ullx = sup{lu,(x) — u(x): x € K}.
By using Lemma 6.2 one gets
|un(y) = u()] <lun(x) — u(x) |+ [2T, + v(x, ¥)(n(x) + un(3))] /().

Since T, = 0, u,(x) - u(x), the map (x, y) - y(x, y) is continuous and
v(x,x) =0, a compactness argument yields |, — u||x — 0, which ends the
proof of (6.3).

Let us verify that

(6.4) sup supE"((Xfo)z) < .

We have
w0 2
o 7o)
= 2Ex(f°°e-‘(ffg - A7) dA;‘) + E"(fooe“A’; dA,)
0 0

0 — 0 o0
= 2B+( [T AL 06,da7) + 2B%( [T (e) dar) + E¥( [Te-wraar).
0 0 0

Let us denote by a, = sup, E *((A™)?). By passing to the optional projection
under the integrals in the last member of the above equalities, some simple
calculations yield

a, < 2|lu,l| + (2T, + A,)/a,,.
Since by (6.3), sup,||u,|| < « and by the hypothesis in (i), sup,T, < oo and

sup,A, < oo, the above inequality implies that sup,a, < o, and (6.4) is proved.
Now, by using (6.3), (6.4) and Lemma 6.1, the proof ends. O

The topological properties of the correspondence between C.A.F.’s and repre-
senting measures are given by the following theorem:

THEOREM 6.4. Let A*, n€ N, and A be C.A.F.’s with the fine support
included in the same compact set K. Put u, = u,n, u = u, and denote by p,,
n € N, p the measures associated to the C.A.F.s via (2.3). Then the following
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assertions are equivalent:

(a) p, = p in the weak topology;

(b) Ufn(x, dy) = Uy(x, dy) in the weak topology for every x € E;
(©) Ujn(x, dy) = Uj(x, dy) in the weak topology for some x € E;
(d) u,(x) = u(x) for every x € E;

(e) u, = u, uniformly on compacts;

(®) dy(f-A" f-A) >0 forfe C(E), f>0;

(&) dy(A™, A) > 0.

ProoF. The equivalences (a) < (b) < (c) follow from Proposition 2.4. The
implication (b) = (f) and the equivalence (d) < (g) are consequences of Theorem
6.3.

The implication (e) = (d) is obvious and the converse follows from (1.6)(b),
which shows that (u,) are equicontinuous. Implication (f) = (g) is obvious. The
last thing we have to prove is (d) = (a). For x € E one has

uy(x) 20 p,(K), where® =inf{p(x): ye K} >0.

This shows that the measures p,, n € N are uniformly bounded. If » is a
limit point of the sequence (u,), then the implication (a) = (d) ensures that the
1-potential of A” = [L* dv(x) coincides with the 1-potential of A, and hence
A = A’. By the unicity of the representing measure it follows that u = » and the
proof ends. O

REMARK. If the local time has a version for which the map (¢, x) > L? is
continuous, (a) implies that lim ,|A? — A,| = 0 for every ¢ > 0, a.s.

7. Approximation of a C.A.F. by occupation time and downcrossing
models. In this section we shall use Theorem 6.3 in order to obtain approxima-
tion models for a C.A.F.; models which are analogous to those already known for
the local time. Let us consider a C.A.F. A with compact fine support K,
1-potential u and representing measure u. For a fixed ¢ > 0 we choose a finite
measurable partition of K, {V,, & < n_}, such that K c UV, and sup{d(x, y):
%,y € V,} <, for every k < n. Let us also choose a system of points x,, k < n,
such that x, € V,. We denote by hg(e)=sup{l — (V)P (x): x,y €K,
d(x, y) < ¢}. This frame will be used in the following two applications.

a. Occupation time model. Let n be the representing measure of the usual
time (see Section 3). We assume that the sets V,, are chosen such that (V) > 0,
for every £ < n,. Let us define

03(t) = [1(X,) ds

and
A(t) = §Oi(t)u(Vk)/n(Vk).
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THEOREM 7.1.

(a) lim,_, (d,(A% A) = 0.

(b) If the local time has a version for which (t, x) — L% is continuous, then
lim, A=A, foreveryt>0 a.s.

(¢c) In any case, if (e,) is a sequence such that Yhg(e,) < oo, then
lim,Aé» = A, for everyt >0 a.s.

Proor. Let us denote by u, and u, the representing measure and the
1-potential of A*. It is easy to see that p(V,) = u(V,) and so one has

Ju#) = u()| < o)) = T2V

+|Z¢x,,(x)u(Vk) - f¢y(x)u(dy)~
< Z [ lo(x) = o) dy) + I [ l9,(x) = 0 (x) ().

It follows that
(7.1) la, ~ ull < 2R ()u(K).

Theorem 6.3 implies (a), and Theorem 6.4 implies (b). By Lemma 6.1 one gets
dy(A% A) < chg(e)u(K) and a Borel-Cantelli argument implies (c) [by (6.4) the
constant ¢ does not depend on ¢]. O

b. Downcrossings. For this model we assume that x, is an interior point of
V,. Let S, = Ty, and T}, = S, + T, b5 _(the crossing times). Define
T)=0, T;=T, and Tp*'=Tf+ Tyobp, forn>1.
Since T} 1 00 as n — o0, one may define
Di(t)=n onTr<t<Tp*,
di =1 - E*(exp(—T,))
and
D; = %diDli(t)N(Vk)-

THEOREM 7.2.

(a) lim, _, ydy(D5, A) = 0.
(b) Let (&,) be a sequence such that Lhy(e,) < oo. Then lim Df» = A, for
everyt >0 a.s.

PROOF. A simple calculation yields
E*(Di(e0)) = ¢.,(x)/d;.
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Let y € KN Vg be such that d(x, y) < 2¢e. Then from T, + T..° 0T, > T,
P*r-a.s. one deduces

E*(exp(—T})) = . (¥)9,(xs).

It follows that d; < 1 — @(x,)9, (¥) < hg(2¢). We note that T(D}), A(D,) <1
and so

[(D°) < X diT(D;)p(Vy) < hy(2e)u(K),
A(D*) < Ld;A(D;)u(Vy) < hg(2e)p(K),
up(x) = Zd,ﬁupi(x)n(Vk) = (ka(x)M(Vk)~

Further, as in the case of the above occupation time model we get

|upe(%) = ua(x)| = |upx) = [o,(x)u(dy)| < hy(e)n(K).

By Lemma 6.1 this yields
dy(D%, A) < Cv(K )hg(e),
where C is a constant which does not depend on ¢ [see (6.4)]. (a) and (b) follow. O

Acknowledgment. We would like to thank the referee for his helpful
suggestions and comments.

REFERENCES

[1] AzeMa, J. K., DUFLO, M. and REVUZ, D. (1969). Proprietes relatives des processus de Markov
recurrents. Z. Wahrsch. verw. Gebiete 13 286-314.
[2] BaLLy, V. (1986). Approximation theorems for the local time of a Markov process. Studii st
Cercetdri Matematice 38 139-147. Bucuregti.
[3] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory.
Academic, New York.
[4] BRETAGNOLLE, J. (1971). Resultats de Kesten sur les processus a accroisements independants.
Sem. Prob. V. Lecture Notes in Math. 191 21-36. Springer, Berlin.
[5] CHuNG, K. L. and Rao, M. (1980). A new setting for potential theory (I). Ann. Inst. Fourier
(Grenoble) 30 (3) 167-198.
[6] GETOOR, R. K. (1980). Transience and recurrence of Markov processes. Sem. Prob. XIV.
Lecture Notes in Math. 784 397-409. Springer, Berlin.
[7] Geroor, R. K. and KESTEN, H. (1972). Continuity of local times for Markov processes.
Compositio Math. 24 277-303.
[8] GriEGO, R. (1967). Local times and random time changes. Z. Wahrsch. verw. Gebiete 8
325-331.
[9] HERVE, R. M. (1962). Recherches axiomatiques sur la theorie des fonctions surharmoniques et
du potentiel. Ann. Inst. Fourier (Grenoble) 12 415-571.
[10] MARUYAMA, G and TANAKA, H. (1959). Ergodic property of N-dimensional recurrent Markov
processes. Mem. Fac. Sci. Kyushu Univ. Ser. A 13 157-172.
[11] MEYER, P. A. (1968). Processus de Markov: la Frontiére de Martin. Lecture Notes in Math.
77. Springer, Berlin.
[12] NEvison, C. (1976). Potentials of Markov processes without duality. Ann. Probab. 4 497-501.
[13] Rao, M. (1980). A note on Revuz measure. Sem. Prob. XIV. Lecture Notes in Math. 784
418-436. Springer, Berlin.



262 V. BALLY AND L. STOICA

[14] REvuz, D. (1970). Mesures. associees aux fonctionelles additives de Markov. I. Trans. Amer.
Math. Soc. 148 501-531.

[15] SMYTHE, R. T. and WALsH, J. B. (1973). The existence of dual processes. Invent. Math. 19
113-148.

[16] Sroica, L. (1983). On the construction of Hunt processes from resolvents. Z. Wahrsch. verw.
Gebiete 64 167-179.

[17] TAYLOR, J. C. (1972). Duality and the Martin compactification. Ann. Inst. Fourier (Grenoble)
22 (3) 95-130.
[18] UENoO, T. (1960). On recurrent Markov processes. Kodai Math. Sem. Rep. 12 109-142.

CENTER OF MATHEMATICAL STATISTICS DEPARTMENT OF MATHEMATICS
STR. STIRBEI VODA 174 NATIONAL INSTITUTE FOR SCIENTIFIC
77104 BUCHAREST 12 AND TECHNICAL CREATION
RoMANIA BD. Paci1 220 79622

BUCHAREST

RoMANIA



