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MEASURABILITY PROBLEMS FOR EMPIRICAL PROCESSES

BY MICHEL TALAGRAND

Université Paris VI and The Ohio State University

To a class # of bounded functions on a probability space we associate two
classes & and %,. The class & is a Donsker class if and only if % and %
are Donsker classes. The class &% corresponds to a separable version of the
empirical process. It is obtained by applying a special type of lifting to &.
The class %, consists of positive functions that are zero almost surely. It
concentrates the pathology of # with respect to measurability. We use this
method to prove without any measurability assumption a general contraction
principle for processes that satisfy the central limit theorem.

1. Introduction. Let T be an index set provided with a pseudometric d. Let
X be a uniformly bounded process on T (complete definitions are given in the
next section). In order to obtain a reasonable behavior of the process, the
probabilist will consider a separable modification of X. It has been observed for a
long time ([5], page 107) that liftings can be used to define such a separable
modification, although this observation does not seem to have been used much.
In some respects, liftings are a very orderly way to define a separable modifica-
tion, since, for example, they preserve lattice operations.

Let us say that the process X satisfies the CLT if the natural map @ —» Z =
1=(T) satisfies the CLT. The definition of the CLT involves the n-dimensional
process X (™ on Q" given by

XM (w1505 0,) = (Xt(wl)! cees Xt("-’n))'

We shall describe a special class of liftings, called consistent liftings, which have
the further property that for each n, (pX )™ is a separable modification of X ™.
We then show that X satisfies the CLT, if and only if, the two processes pX and
X = |X — pX| satisfy the CLT. The study of pX is easier than the study of X,
since pX has much better measurability properties than X. For example, it
satisfies the measurability hypothes1s of [4]. Intuitively pX is the ” part
‘of X. The study of X is also easier, since X > 0, and for each ¢, X = 0 a.s., S0
there is no problem of finding the limit measure. Intuitively, X is the “smgular
part of X. As an application of this technique, we prove the following compari-
son principle. If Y is another process on T such that’

Vs,teT,VoeQ, |Y(0)- Y(0)|=<|X ()X, (),
then Y satisfies the CLT.
Let us also mention that the regularization using liftings can also be used if
the hypothesis that X is uniformly bounded is weakened to the hypothesis that

for each w, sup,|X,(w)| < . The standard technique is described in [7], where
many other examples of regularization via liftings are given.
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2. Separable versions via liftings. We denote by (2, =, P) a complete
probability space, and by T' an index set. A n-dimensional process is a map X:
T X & - R™ such that for ¢ € T, the map w - X(¢, w) = X,(w) is measurable.
A process X is called uniformly bounded if the collection of maps X, is
uniformly bounded. A process Y is called a modification of X if for each ¢,
Y, = X, as. (where the negligible set may depend on #). Suppose now T is
provided with a pseudometric d. We say that a process X is separable if there
exists a countable set D of T, that is dense in (T, d), and a null set N in © such
that

Vo & N,Vte T,Ve> 0,
X,(w) is a cluster point of {X,(w), u € D, d(t,u) < ¢}.
A lifting of L® = L®(2) is a map p: L® — L * = £>°(Q) that is linear, multi-
plicative, positive, with p(1) =1, and p(f) € f for each f € L* (note that
f € L* is a class in £*). For f € #%, we write p( f ) instead of p(class f ).
If X(w)=(X}w),..., X(w)), we set
(1) pX(0) = (pXN@), ..., pX](w)),
where for simplicity we write
pX/(w) = p(X/(-))(w).

The following result is proved in [5]. For completeness we give the short proof in
our setting.

ProrosITION 1. If (T,d) has a countable basis of open sets, for each
multidimensional process X, pX is a separable modification of X.

ProOF. Let U be an open set of (T, d) and B be a closed ball in R". For
teU,let A, = {w; pX,(w) € B}. Let D be a countable subset of U such that
U, epA, has the largest probability among all choices of D. Then, for ¢t € U, we
have P(A,\U,cpA,) = 0 so we have p(A,) C p(U,cp4,). Let

N = P( U Au) U Au'
ueD ueD

For t € U, we have A, C p(A,) since B is closed (see [5], page 52, Remark 3). So,
for w ¢ N,wehave w € A, = w € U,_pA,. In other words

pX(w)eB=3ueD, pX,(0)eB.
The result is now clear, since (T, d) and R™ have countable basis of open sets. [
As we will show in the next section, it is useful to consider the process X
valued in (R™)*, with basic probability space 2* where X® is given by
Xt(k)(wv ey wk) = (Xt(wl)’ LR} Xt(wk))’
When p is a lifting, there is no reason why the process (pX)® given by

(2) (PX)(tk)(wl’ LA “’k) = (pXt(wl)’ (AR pXt(wk))
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should be separable (actually the example of [8] shows that this is not the case in
general). Suppose, however, that the lifting p has the property that there exists a
lifting p* on L®(QF, =%, P*) with the property that for each function g of
L>(Q), and each 1 < i < k, we have

(3) p*(&°)(wy,- .-, @) = p(&)()),
where gi{(w,, ..., ;) = g(w;). Then, if we set Y(w,, ..., w;) = X,(w;), we have
BTy N(0es 04) = X, (0.

In other words, (2) shows that (pX)® = p*X®), It then follows from Proposi-
tion 1 that (pX)® is a separable modification of X,
It is now natural to state:

DEFINITION 2. A lifting p of L*(Q) is called consistent if for each & there
exists a lifting p* of L*(Q*, =%, P*) that satisfies (3).

We have proved:

THEOREM 3. If (T, d) is separable, and if p is a consistent lifting, for each
k, (0X®) is a separable modification of X®.

It has been shown in [6] that every complete probability space admits a
consistent lifting.

3. Processes that satisfy the CLT. Consider the map ¢: @ —» Z = [*(T)
given by ¢(w) = (X, (@) — EX,),cr- We say that the process X satisfies the
central limit theorem (CLT) if ¢ satisfies the CLT as in [9]. This means the
following: On the space (2%, £, P*) product of countably many copies of
(2, =, P), define S,(w) =L, ,#(w;). Then there is a (Radon) measure p on
(Z, || - | such that for each bounded norm continuous function g on Z, we have

(4) lim [ g(S,/Vn) dP~ = [gdu.

If & is a class of (uniformly bounded) measurable functions on £, we say it is a
Donsker class if the process X,(w) = h(w) indexed by & satisfies the CLT.
Conversely, the process X satisfies the CLT if and only if the class of functions

{(X;te T}

is a Donsker class. That this is equivalent to the usual definition of Donsker
classes is proved in [3], Theorem 5.2. We now obtain the following decomposi-
tion.

THEOREM 4. Let p be a consistent lifting. Then the process X satisfies the
CLT if and only if the process pX and the process X given by X = |pX — X|
both satisfy the CLT.
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It follows from Theorem 3 that pX has excellent measurability properties,
and can be studied by the methods of [4]. An important point in the result is the
absolute value in the definition of X; this will make the use of comparison much
easier.

The first step towards Theorem 4 is the following:

PROPOSITION 5. Let Y be a uniformly bounded process on T. Assume that
for each t € T, Y, = 0 a.s. Then Y satisfies the CLT if and only if |Y| satisfies
the CLT.

PROOF. Assume that Y satisfies the CLT. Taking for g in (4) a function
depending only on one coordinate, we see that p can be only the Dirac measure
at the origin. Taking for g in (4) the function g(x) = inf(1, ||x||/¢), one sees that
for each & > 0, there is m such that for n > m we have

(P")‘({"% > e}) <e.

Conversely, this condition is easily seen to imply that Y satisfies the CLT.
Let U c Q" be a set of measure > 1 —¢ such that

Sup ‘/_ Z Y,(w;)
If we fix a subset I of (1,...,n}, and denote by J its complement, we can
identify the space Q" with @7 X Q7. Let p = card I, g = card J. We suppose
D, q = 1. The set

Vi={a € Q% PY({B Q% (a,B) € U}) =0}

is such that P™(U N (V; X 27)) = 0, by Fubini’s theorem. Let V = UV, x Q7,
where the union is taken over all choices of I with 1 < card I < n. Let U’ =
U\ V. We have P%U’) = P*U).

Fix now « =(w;,...,w,) €U’ and t€T. Let Ic(1,...,n} with 1<
card I < n. Let N = {Y, # 0}. Write w = (a, 8), a« € @/, BEQJ Since a & V,
we have

V(wy,...,w,) € U,

<eE.

P({B € Q’; (a,B) € U}) >0,
so there exists 8’ with (a, 8’) € U, such that no component of 8’ belongs to N.
If o = (a, B’), write o’ = (w}). We have Yy(w}) = O for i & I, and Y,(!) = Y/(w;)
for i € I. It follows that

Y.(w, } <e
‘/_ tél ( ) ‘

Since this is true for all I, we have ¥, _ ,|Y(w,)|/Vn < 2¢. So, for w € U’, we
have ¥, _,|Y|,(w;)/ Vn < 2e. This shows that |Y| satisfies the CLT. The converse
implication is straightforward. O

Before we start the proof of Theorem 4, we recall the following criteria, due to
Dudley [2] in the case d = d,. As stated below, it follows by essentially the same
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argument. The details have been carried out in [1]. We denote by d, the
pseudometric on T given by
5) dy(s, t) = [E(X, - X,)" - (EX, - EX,'|".

PROPOSITION 6. For a pseudometric d on T, consider the condition
Ve>0,3a > 0,3n,,Vn > n,,

(P")* ({(wl,..., w,) € O
(6)

1
Sup —| Y (X,(w;) — EX, — X,(w;) + EY,)I > e} <e.
d(svt)<a ﬁ i<n
If X satisfies the CLT, condition (6) holds with d = d,, and (T, d,) is a totally
bounded. Conversely, if condition (6) holds for some d > d,, and if (T, d) is
totally bounded, X satisfies the CLT.

ProOF OF THEOREM 4. Assume first that X satisfies the CLT. Consider the
pseudometric d, given by (5). It is also the pseudometric associated to pX.
Theorem 3 shows that (pX)® is a separable modification of X®), It follows that
there is a countable set D of T and for each n a null set N, of 2" such that

1
(0g5...,0,) €EN,= Sup —

pX,(w;) - pX,(w,) — EX, + EX
S 2 X (w;) o) ¢

i<n
1
< Sup ——=|X pX|(w;)— pX,(«;) - EpX, + EpX,|.
do(s, )<a ‘/E i<n
s,teD

Let
Nn' = Nn U {0) [ Qn, 3i < n, 38 (] D, st(wl) #* Xs(wi)}.
Then P*(N,) = 0, and

1
(wl,...,wn)$N,:=> Sup e

Xswi - Xwi _EXS+EX
do(s,t)<a\/’_7: ZP ( ) p t( ) P pA,

i<n
(7) 1
< Sup —|Y X.(«,) - X,(w,) - EX, + EX,|.
do(s, t)<a ‘/;; i<n
s, teD

It then follows from Proposition 6 that p X satisfies the CLT. Let X! = X, — pX..
Then (7) shows that if (w,,..., w,) € N,/ we have

1

Sup ‘/— Z Xs’("-’i) - Xt/(wi)
(8) do(s,t)y<a VI | i< p
1
<2 Sup —|Y X,(w;) - X,(w;) - EX, + EX,|.
do(s, )<a ‘/;

i<n

Moreover, we know that for fixed ¢, [, _,X/(w;)|/Vn = 0 as.
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From (6) and (8) it follows that

Ve>0,3ny,,Vn>n,,

Y X(w)| 2 e}) <e.

1
P")* | {(wy,..., w,); Sup —
O
This shows that X’ satisfies the CLT. Proposition 5 then shows that X = | X’|
satisfies the CLT. This completes the proof of half of Theorem 4. The proof that

X satisfies the CLT when pX and X do is routine and is left to the reader. O

A comment might be in order. What happens if one applies p to a process that
is already nice? As implicitly shown in the above proof, for each n, there is a null
set N, such that if (w,,...,®,) € N/, the set

{(pX(@y),...,pX(w,)) €R™ te T}
is contained in the closure of the set
{(X(wy),..., X,(0)) €eR™ te T}.
So, for example, the process pX will satisfy random entropy conditions that are

at least as good as the random entropy conditions satisfied by X.

4. A comparison principle. The following theorem is an easy consequence
of a new inequality of Fernique when enough measurability is assumed. The
point here is that we prove it without any measurability assumption, as an
application of Theorem 4.

THEOREM 7. Let X,Y be two uniformly bounded processes. Assume that X
satisfies the CLT and that

Vs,teT,VoeQ, |Y(w)-Y/(0)|=<|X(0)-X,()]
Then Y satisfies the CLT.

In the measurable case, the proof will use the following criteria. In the case
d =d,, it follows from [4], Theorem 2.14d, e. As stated below, it is simple
adaptation. We denote by (2, =, @) another probability space and by 4 a
standard normal r.v. on Q’.

PROPOSITION 8. Let X be a uniformly bounded process satisfying the CLT
such that X™ is separable for each n. If dy(s, t) = (E(X, — X,)*)/?, then

1
lim limsupE| Sup |—= Y (X (@;) — X,(«;))h(w})|| =0.
820 po00 s, teT ‘/77 i<n
dy(s, t)<d

Moreover, if for some pseudometric d > d, for which (T, d) is totally bounded,
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the following condition holds:
Ve> 0,38 > 0,3n,,Vn = n,,

(P" x Q"){(wl,..., Wy Wy eens @h);

Sup
d(s, t)<é

then X satisfies the CLT.

>e}<s,

= ¥ (X(0) - Xlo)(a)

i<n

We now prove Theorem 7.

FIRST STEP. We first assume that for each 7, the processes X™ and Y™ are
separable. Let

d(s, t) = (E(X, - X)),

do(s, t) = (E(Y, - ¥,)%)",

so dy < d. Also (T, d) is totally bounded. Actually, if M(8) denotes the smallest
number of d balls of radius 8 necessary to cover T, we have

;irr:)82logM(6) =0

(See [4], Theorem 2.16.)
Let ¢ > 0. We fix 8§ > 0 such that the following hold:

268(log M(8))"” < &%

An,, Vn = n,,

©®) .

S, teT i<n

Sup ‘/— Z (X(“’ t(“’i))h(“’z{) ) <é
d(s t)<8
It is obvious from the definition of the CLT that we have, for each a > 0,

{Sup 2 X(o;)| 2 a}) =
teT

i<n
It then follows from [9], Proposition 24, that we have

1
{ Sup |— > 82}) =0
s, teT n

Let n, > n,, such that for n > n,, we have P"(A,) > 1 — ¢, where

lim (P")*

lim (P")* L (X,(w) = Xfw)) = d*(s,2)

i<n

A, = {(wl,...,wn) e Q% Vs, teT,

- E (X,(w;) — X,(«;))" < d?(s, t) + 52}.

lSn
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Let us denote by E, the conditional expectation at w,,..., w, fixed. Let

B, = {(wl,..., w,) € ",

Ey| Sup ‘/— Y (X (w;) — X(w;))Rh(e})]|] < }
s, teT i<n
d(s t)<é
It follows from (9) that P*(B,)>1—¢ Let C,=A,N B,. We now fix
(wy,--.,w,) € C,. Consider the Gaussian process ® on T, with basic probability

space Q" given by
0,(wl, .. »w)—‘/—ZX(w)h(w)

The pseudometric on T associated to © is given by

1 \ 1/2
46,0 = (5 £ (Xo) = Xa)| -

i<n
We note that since (w,,...,w,) € A,, we have
d(s,t) <8 =ds,t) <28.
We now estimate

a=Eg| Sup ‘/— Y (Yy(w;) — Yi(w))h(w))
d(S,t)<8 i<n
We have
sk s |70 (000 - Hehen) |
dy(s, t)<28 i<n

so Fernique’s comparison theorem as in [2], (2.29), shows that

a < Eg|l Sup
dy(s, t)<28

since (w;, ..., w,) € B, and since T can be covered by M(8) d, balls of radius 28.
It follows that
> e}) < 2e.

Q"({ Sup
d(s, t)<é
> e}) < 4e,

1/2 < 9¢2
‘/" E (Xs(wz) Xt(wt))h(w ) + 266M(8) - 2

i<n

= E (%(0) - %(a))h(e)

i<n

Using Fubini’s theorem and P"(C ) > 1 — 2¢, we get

= E (%(00) = ¥o))(a)

d(s, ) <8 i<n

P" X Q"({ Sup

so Proposition 8 shows that Y satisfies the CLT.
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SECOND STEP. We turn to the general case. We fix a consistent lifting p.
Since liftings preserve lattice operations, we have

Vs,teT,Vw €Q, |pY,(w) — pY (@) | <[pX () - pY ()],
so Theorem 3 and the first step show that pY satisfies the CLT. Let
Y'=Y-pY, Y=Y X=|X-pX|
For s,t € T, w € Q, we get
¥/(0) - ¥/(0)] < 2[pX(0) = pX(0)| + X () + X().

Proposition 1 shows that there is a null set N; and a countable subset D of T
such that

Vo & N,,Vte T, pX,(w)isa cluster point of {pX,(w); s € D}.

Let N, be a null set containing N;, such that for & & N, s € D we have
Y/ (w) =0, X(w)=0.
We have

Vo & N,,Vte T,¥vse D, |Y/(0)|<X,(0)+2[pX,(0)— pX,(w)].
Taking the infimum for s € D gives
Vo & N,,Vte T, Y,(0)=<X,(0).

Since l—ft(w) > 0, this makes it obvious that Y satisfies the CLT. The proof is
complete. O
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