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THE CENTRAL LIMIT THEOREM FOR EMPIRICAL
PROCESSES ON VAPNIK-CERVONENKIS CLASSES!

By KENNETH S. ALEXANDER?
University of Washington

Sufficient conditions, which under weak additional assumptions are also
necessary, are found for the central limit theorem for empirical processes
indexed by classes of functions which have the Vapnik—Cervonenkis prop-
erty. This improves an earlier theorem of Pollard (1982a), and leads to
necessary and sufficient conditions for the CLT for weighted empirical
processes indexed by Vapnik~Cervonenkis classes of sets.

1. Introduction. Let X, X, X,,...be ii.d. random variables defined on a
probability space (22, &, P) and taking values in a measure space (T, %), and let
P = #(X). Define the nth empirical measure

) ni=n -1 Z 8X,~
i<n
and the nth normalized empirical process
v, = n"*P, - P).
Given a function f and signed measure @ on (T, %), we write Q( f ) for [f dQ; in
this way, given a class % on functions on T, », may be viewed as a stochastic
process indexed by %
(f)=n"2 3 (f(X;) — Ef(X,)).
i<n

More precisely, when the envelope F of %, defined by
F(t) = sup| f(t)],
feF

is finite P-a.e., », may be viewed as an element of the space [*(%#) of all
bounded functions on %, endowed with the supnorm | - ||z. », may also be
viewed as indexed by some class € of subsets of T, in which case we identify
these sets with their indicator functions. Taking € to be {[0, t]: ¢ € [0,1]} gives
the classical case of empirical distribution functions.

Let ep be the L% P) pseudometric on %, and pp the centered L2%(P)
pseudometric:

pP(f’g) = eP(f - P(f)’g_ P(g))
We say (following Dudley (1978)) that % is a P-Donsker class if v, converges
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weakly in [®(%) to a Gaussian process, call it Gp, indexed by # which has
bounded, puniformly continuous sample paths. G p necessarily has mean 0 and
the same covariance as »,;:

cov(Gp(f),Gp(g)) = P(fg) — P(f)P(g).

When such a process G exists, we say & is P-pregaussian (Dudley (1978) called
such # “GpBUC”).

Considerable efforts have gone into finding conditions on % and P under
which & is P-Donsker. Some of the best successes involve classes # which have
the Vapnik—Cervonenkis (or VC) property (defined below—it is a combinatorial
condition on the regions determined in 7' X R by the graphs of functions in %).
This is a natural property in our context because Dudley (1978) and Durst and
Dudley (1981) showed that, under some measurability assumptions, a class of
sets is P-Donsker for all P if and only if it is a VC class. Pollard (1982a, 1984)
showed that a class of functions with the VC property is P-Donsker provided the
envelope satisfies P(F?%) < co.

The latter condition is not necessary, however: For a nonnegative increasing
function q on [0, 1] we can consider

(1.1) F= {1, o/a(t): t e [0,1]}
and P uniform; », then becomes a weighted empirical d.f., and by a theorem of
Cibisov (1964) and O’Reilly (1974), & is P-Donsker if and only if
(1.2) flexp(—sqz(t)/t) dt/t < oo forall e >0,
0

which is weaker than the requirement that F =1/q € L%(P). Therefore we
would like to improve Pollard’s theorem if possible.

Indeed, we will prove (under some measurability hypotheses) that % is
P-Donsker provided

(1.3) & is P-pregaussian
and
(1.4) u’P[F>u] >0 asu— .

Of course (1.3) is necessary, and we will see that (1.4) is necessary if |P(f)|is
bounded over Z. It is clear that & is P-Donsker if and only if

Fpo={f—-P(f): feF)}

is P-Donsker; therefore it is always necessary for &# to be P-Donsker that the
envelope

Fp(t) = sup|f(¢) - P(f)]
feF
of #p satisfy
(1.5) u’P[Fp>u] >0 asu— .

Thus (1.3) and (1.5) are necessary and sufficient for # to be P-Donsker whenever
either #p has the VC property or sup; ¢ #|P(f)| < co.
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Given a VC class % of sets and a nonnegative function ¢ on %, we can,
motivated by (1.1), define the weighted empirical process »,(C)/q(C), C € ¥,
which is equivalent to taking

F={1/q(C): C € ¥}.

If g(C) is small whenever P(C) is small, this is a way of expanding the
normalized deviation », of P, from P on small sets C, which is analogous to
weighting the tails when considering the Kolmogorov—Smirnov distance between
d.f.’s. We will use our main theorem to obtain necessary and sufficient conditions
for v,/q to converge weakly to Gp/q, where Gp is the weak limit of », on ¥.
(Throughout this paper, ratios which evaluate as 0/0—such as Gp(C)/q(C) or
»(C)/q(C) when P(C) = 0—should be interpreted as being 0. This is justified
by Lemma 3.2 below.)

In two special cases we will obtain more readily checkable versions of these
conditions. These are, first, when ¢(C) depends only on P(C), and second, in the
multidimensional d.f. case (¢ = {[0, ¢]: ¢ € [0,1]%}, P uniform).

Thanks to a result of Dudley (1984, 1985) and Dudley and Philipp (1983), the
same conditions implying % is P-Donsker also imply an invariance principle in
probability for », on &%. Therefore the CLT we obtain is a functional one.

2. The main results. Given a class € of subsets of a set T, and a finite
subset E of T, we say € shatters E if every D C E is of the form E N C for
some C € %. ¥ is called a Vapnik-Cervonenkis (or VC) class if for some n > 1,
no n-element subset of T is shattered by €. The least such n is called the index
of % and denoted V(%). Examples in R¢ include the classes of all rectangles, all
ellipsoids, and all polyhedra of at most k sides (any fixed k). If ¢4 is a
finite-dimensional vector space of functions on T, then

pos(¥) = {{t: g(¢) > 0}: g€ 9}

is a VC class. Any subset of a VC class is a VC class, and {C2 D: C, D € %},
{C\D:C,D e %},and {C N D: C,D € %} are VC classes if ¥ is one. If ¥ and
2 are VC classes in T and U, respectively, then {C X D: C€ ¢, D € 9} isa VC
class in T X U. These and more facts about VC classes may be found in Dudley
(1978, 1984).

A class & of real functions on T is called a VC graph class if the class

R={{(t,x):0<x<f(t)or f(t) <x<0}: feF}

of regions in T X R which lie between T X {0} and the graph of some f € # isa
VC class of sets. The index V(¥) of # is defined to be V(£). To avoid
trivialities, we always tacitly assume V(%) > 2. Any finite-dimensional vector
space of functions (e.g., polynomials of bounded degree on R?) is a VC graph
class (Dudley, 1984). Further, it follows from the above remarks that if ¢ is a VC
class of sets and ¢ a real function on €, then the class {1,/9(C): C € ¥}
corresponding to a weighted empirical process is a VC graph class. If # isa VC
graph class and { a monotone function on R, then {y o f: f € #} is a VC graph
class.
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Because we are working in the possibly nonseparable Banach space [*(%),
and because we take suprema over possibly uncountable classes %#, we must
concern ourselves with measurability. First, we always assume the r.v.’s X; are
canonically formed, that is, the space (£, &, P) on which the X; are defined is
the product of (T, #%°, P®) and a copy ([0, 1], =, A) of the unit interval with
Lebesgue measure, where (T, #%°, P®) is a countable product of copies of
(T, 8, P), and X, is the ith coordinate function.

Second, we must specify just what we mean by weak convergence. Let Z, and
Z be I®°(&F)-valued functions on (Q, &/,P), with Z taking values as. in a
separable subspace L of [*°(&#). We say Z, converges weakly to Z (Z, = Z) if

o [ 9Z)dP - [¢(z)ap

for all bounded continuous real functions ¢ on I°( %),

where [ * denotes the upper integral, [*e dIP = inf{ [ dP: Y > ¢, ¥ measura-
ble}. (Note that the second integral in (2.1) is always defined since L is
separable.) This kind of weak convergence was studied by Dudley. (1966) and
Hoffmann-Jergensen (1986). For our applications, L will be the space of all
bounded, uniformly pp-continuous functions on #.

For any [— o0, oc0]-valued function ¢ on T, there exists a [ — o0, co]-valued
Z%-measurable function, denoted ¢*, on T with ¢ < ¢* and with ¢* < ¢ as. for
any measurable { > ¢. The same holds for functions ¢ on @ = T*. This ¢*
satisfies Plo* > u] = P*[¢ > u] for all u. See Chapter 3 of Dudley (1984).

Finally, we need some measurability assumptions to carry out particular
calculations. First define

f/(a) = {f_g: f,gE.”/,eP(f,g) < a}’

F'a)={f-g f,g€F"(x),epf,8) <a}.
We say & is supremum measurable (for P) if sups|Q( f,(X;);>)| is P-comple-
tion measurable for each function @ which is a linear or quadratic function of
finitely many of the f(X;). We say & is deviation measurable if the classes &
and % ’(a) are supremum measurable for all « > 0, and admissibly measurable
if

{fl[a<F*sb]: f€F" (), P( f21[a<F*sb]) < 0‘}

is deviation measurable for all « > 0and 0 < a < b < o0.

We say % is a functional P-Donsker class if & is P-pregaussian and there
exists an i.i.d. sequence (Y;} of copies of the Gaussian process Gp, defined on
(2, «,P), such that

(22) n~Y2maxsup| ¥ (f(X;) - P(f) - Y(f ))‘ — 0 in probability.
k<n feFl j<k

This apparently stronger property is actually equivalent to &# being P-Donsker,
as the following result of Dudley ((1984), Theorems 4.1.1. and 4.1.10; (1985),
Theorem 5.2) and Dudley and Philipp (1983) shows.
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THEOREM 2.1. The following are equivalent:

(i) & is a P-Donsker class;
(ii) & is a functional P-Donsker class;
(iii) both

(2.3) ZF is pp-totally bounded, and

(2.4) lig})liﬂszplp*[sup{lvn(f—g)lz f,e€F, pp(f,8) <a)>n]=0

; forall 3 > 0.
It is sufficient for each of (i)-(iii) that (2.3) and (2.4) hold with pp replaced by ep.

Here now is our main result.

THEOREM 2.2. Let &% be an admissibly measurable VC graph class of
functions on (T, #, P) with envelope F. If

(2.5) Z is P-pregaussian
and
(2.6) u’P[F*>u]l->0 asu— oo,

then & is a ( functional) P-Donsker class. Conversely if & is a ( functional)
P-Donsker class then (2.5) holds and

(2.7) u’P[FF>u]l->0 asu-— oo.

COROLLARY 2.3. Let % be as in Theorem 2.2. If either supg|P(f)| < oo or
Fp is an admissibly measurable VC graph class, then % is a ( functional)
P-Donsker class if and only if F is P-pregaussian and u?P[Fg > u] — 0.

As discussed in the introduction, Corollary 2.3 is immediate from Theorem
2.2.

If & is contained in a finite-dimensional vector space of functions on T, then
so is #p, and (assuming enough measurability) Corollary 2.3 applies.

REMARK 2.4. The condition in Corollary 2.3 that %, be a VC graph class is
not automatic. For example, let ¢ be the class of all piecewise linear functions g
on [0,1] with finitely many pieces, with — § < g < 1, with all vertices of the
graph of g having rational coordinates, and with P(g) = 0, where P is the
uniform law. Then ¥ is countable, say 4= {g,, &,,... }, but ¥ is easily seen not
to be a VC graph class. Let #:= {n + g,: n > 1}. Then the graph region class of
F is a nested sequence of sets, so & is a VC graph class. But %, = ¢ is not one.

For some classes % of functions, it may be difficult to verify (or conceivably
even false) that # is a VC graph class, but easy to show % is of a form such as

(2.8) F={g-h:ge 9, he#)
with &, 5 VC graph classes. For example, suppose #= {f(- — t): t € R} is the
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class of all translates of a fixed function f of bounded variation on R. Since the
class of all translates of a fixed monotone function on R forms a VC graph class
(Pollard (1982b)), this # has form (2.8). For examples like these, the following
results are useful. Each is an extension of a slightly weaker result of Dudley
(1981).

PROPOSITION 2.5. Any subset of a P-Donsker class is P-Donsker.

PRrOPOSITION 2.6. Let %#,,..., %, be P-Donsker classes of functions on
(T, #), and M > 0. Then {¥,_ ,a;f: f; € F,L; . mla;| < M} is P-Donsker.

COROLLARY 2.7. %#U ¥ is P-Donsker if and only if & and ¢ both are
P-Donsker.

3. Weighted empirical processes. We turn next to weighted empirical
processes, our main application of Theorem 2.2. Suppose we have a VC class % of
sets and nonnegative function ¢ on ¢. We may study the weighted empirical
process v,/q on € by considering the VC graph class

(3.1) Fi={15/q(C): C € ¥).

It is most natural, however, to view », and Gp as indexed by %, not #.
Define

fe=1¢/49(C), Ce ¢,

and define pseudometrics on € by

r5(C, D) = pp( fe, fp),

dp(C, D) = P(C 2 D) = ep(1¢,1p)"
For ¢ € I®(%¥), set

lelle,q = llo/qlle

and define

12(¢) = {9 € £°(%): l19lle,q < o},

endowed with norm || - ||¢, ,. The following is true from the definitions.

LEMMA 3.1. The following are equivalent:

(i) & (of (3.1)) is P-Donsker;
(i) »,/q = Gp/q in I1°(¥), and Gp/q has uniformly rp-continuous sample
paths on €;
(iii) », = Gp in I3(¥), and Gp/q has uniformly rp-continuous sample paths
on %.

Of these formulations, (iii) is essentially the one used by O’Reilly (1974) for
empirical d.f.’s.
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To completely clarify the relation between »,/q = Gp/q in I*°(%¥) and F
being P-Donsker, we might ask whether the rp-continuity of sample paths
mentioned in Lemma 3.1 (which is part of the definition of # being P-Donsker)
is really a natural requirement to impose. Could there be, for example, a natural
notion of weak convergence in [®(%) for which we would have »,/q = Gp/q,
but with the sample paths of Gp/q not rp-continuous, perhaps even with
#(Gp/q) not concentrated on any separable subspace? (This latter possibility is
not ruled out even in the distribution function case, since O'Reilly (1974)
implicitly assumed £(Gp) concentrated on a separable subspace of /(%) when
he took a.s.-convergent versions of weakly convergent sequences.) The answer to
this question is that rp-continuity is natural, as our next two results show. First
define

%¢(a,b) = {Ce %:a < P(C) < b}.

LEMMA 3.2. Suppose ¥ is P-pregaussian, suppose v,/q and Gp/q are
1°(¥%)-valued a.s., and suppose [¢(v,/q)dP — [¢(Gp/q) dP whenever ¢ is a
bounded continuous function on 1°(%¥) and all these integrals are defined. Then
Gp(C)/q(C) > 0 a.s. as P(C) > 0 or 1.

PROPOSITION 3.3. Let € be P-pregaussian. The following are equivalent:

(1) & (of (3.1)) is P-pregaussian;
(i) Gp(C)/q(C) - 0 a.s. as P(C) — 0 or 1, and q is bounded away from 0
on €(e,1 — ¢) forall e > 0;
(iii) Gp/q € I®°(¥) a.s. and has uniformly rp-continuous sample paths.
If q is uniformly dp-continuous on {C € ¢: 0 < P(C) <1} then these are

equivalent to
(iv) Gp/q € I°(¥) a.s. and has uniformly d z-continuous sample paths.

Under any reasonable notion of weak convergence in (%), the hypotheses of
Lemma 3.2 will be satisfied. Therefore by Lemma 3.2, Proposition 3.3 ((ii) = (iii)),
and Lemma 3.1 (ii) = (i)), we have »,/q = Gp/q in I®(%) if and only if F is
P-Donsker.

Since v,(—1,.) = 7,(C) and similarly for Gp, », on & is equivalent to », on

F={15/9(C): C€ %, P(C) < 1} U {~1¢/q(C): C€ €, P(C) > 1}.

Further, {C% C € ¥} is a VC class. By Corollary 2.7, then, it is sufficient to
consider ¢ with P(C) < 1 for all C € %. Let us call such a class ¥ half-bounded.

In our discussions of weighted empiricals, F and Fj, will always refer to the
envelopes of # and %p, where Z is from (3.1). Thus

F(t) = 1/inf{q(C): t € C}.
If € is half-bounded, then

P(f) <2P(C)(1 - P(C))/q(C) <2 fc Fp dP < 2P(F#),
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so if u?P[Fg > u] - 0, then
Sl;)lp(f)l <2P(Fg) < .

It follows that (2.6) and (2.7) are equivalent here. Further, defining for any
function ¢ on ¥,

a,(e) = P*[U{C € ¢: ¢(C) < ¢}],
(2.6) is equivalent to

a,(e) = o(e?) ase—0.
Define
%¢'(a,b)={C:Ce ¥,a<P(C)<b},

q'(C) = q(C°).

We have proved the following:
THEOREM 3.4. Let % be a half-bounded VC class of subsets of (T, #, P) and

g a nonnegative function on €. Suppose F (of (3.1)) is admissibly measurable.
Then v,/q = Gp/q in I*°(¥) if and only if

(3.2) a,(e) =o(e?) ase—0
and
(3.3) Gp(C)/q(C) >0 a.s.asP(C) - 0.

For % not half-bounded it is necessary and sufficient that (3.2) and (3.3) hold
both for %(0, ;) and when % and q are replaced by ¢'(3,1) and q'.

This theorem clarifies one point about the CLT for weighted empiricals: The
only function of regularity conditions on q is to allow the replacement of (3.3), or
possibly (3.2), with more readily checkable conditions, e.g., integral tests for (3.3).
They do not prevent any pathologies intrinsically related to weak convergence.
For an extensive discussion of regularity conditions in the distribution function
case (and for the Brownian bridge) see Cs6rg6, Csorg6é, Horvath and Mason
(1986), Section 2.

Given P and the class ¥, define

Y(e) = (2e{log(e‘1ap(e)) + loglog e‘l})w.
Theorem 1.2 from Alexander (1986) tells us that
limsup|Gp(C) |4 (P(C)) < 0 as,
P(C)—0

so a sufficient condition for (3.3) is that
(3.4) q(C)/4(P(C)) > o as P(C) - 0.

For this to be practical we have to be able to calculate a (-); examples will be
given below.
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Suppose q(C) depends only on P(C),i.e., ¢ = ¢ o P for some ¢ on [0, 1]. Then
(3.2) becomes
(3.5) ¢*(e)/ap(e) > 0 ase— 0.
Suppose ¢ is nondecreasing and define
#(e) = inf{@(P(C)): P(C) 2 ¢,C € %};

thus @ is the largest nondecreasing function for which ¢ e P = ¢ o P on €. Then
under (3.5), there is an integral test for (3.3), as is reflected in the following
result.

THEOREM 3.5. Let € be a half-bounded VC class of subsets of (T, #, P) and
@ a nonnegative nondecreasing function on [0,3]. Suppose F (of (3.1)) is
admissibly measurable. Then v,/¢° P = Gp/@° Pin I*(¥) if and only if

(3.6) ¢*(e)/ap(e) > 0 ase—0
and
o, ds
(3.7) fl/ze'“" )8 — < 0 foralle>0.
0 S

Similar considerations to those in Theorem 3.4 apply when ¥ is not half-
bounded.
For (3.7) it suffices that

o(e)/(elogloge™)"? > 0 ase— 0.

By (3.6), the CLT can hold for nontrivial ¢ only if ay(e) >0 as ¢ > 0.
Unfortunately, many classes of interest do not satisfy this—the subintervals of
[0, 1] under the uniform law, for example. Fortunately, a different sort of CLT
may still hold—one involving truncation. Specifically, for an appropriate se-
quence 7, — 0 we can define

v,(C)
$.(C) = mlmmzm

and look for conditions under which ¢, = Gp/q. This problem is examined in a
separate paper (Alexander, 1985).

The function ap(-) was calculated in Alexander (1984b) for the following
examples.

ExXAMPLE 3.6. The weighted empirical d.f. Here T = [0,1], P is uniform, and
% is {[0, s]: s €[0,1]}. (8.7) is exactly the Cibisov—O’Reilly condition (1.2).
Clearly ap(e) = ¢, so (3.6) says ¢%(e)/e = oo, which is easily shown to be a
consequence of (3.7) for monotone ¢. Thus we obtain O’Reilly’s (1974) result that
(8.7) is necessary and sufficient for »,/¢p = Gp/¢.
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ExaMpPLE 3.7. The multidimensional weighted uniform empirical d.f. Here
T =1[0,1]¢ (d > 1), P is uniform, ¢ is {[0,s]: s €[0,1]%), and ap(e) ~
cge(log e )4~ for some constant c, Therefore (3.6) implies (3.7), so it is
necessary and sufficient for weak convergence that ¢%(e)/e(log e 1)~ > o as
e — 0.

ExXAMPLE 38. Let T =R? (d > 1), let P be a nondegenerate normal law,
and let € consist of all closed half spaces. Then ap(e) ~ c e(log e~ 1)(@~D/2 ag
¢ — 0 for some constant c;, so again (3.6) implies (3.7). Therefore v,/po P =
Gp/ ° P if and only if ¢?(e)/e(loge™1)@ " V/2 5 o0 as ¢ - 0.

We can actually do better than Example 3.7 for weighted multidimensional
uniform empirical d.f.’s. Here the limit process G is the tied-down version W}, of
the Brownian sheet W on [0, 1]¢, so (3.3) clearly holds if and only if it holds for
W. Write q(s) for q([0, s]) and |s| for I'T; _ ;s;. Then Theorem 1 of Kalinauskaite
(1979) provides an integral test for (3.3), which leads to the following.

COROLLARY 3.9. Let q be a continuous function on [0,1]%, nondecreasing in
each argument. Let P be the uniform law on T = [0,1]% Then the weighted
empirical d.f. v,/q on €= {[0, s]: s €[0,1]%} converges weakly to W,/q in
1°([0,1]%) if and only if

Plg<e]l=0(e?) ase—0
and

ds
(3.8) f e O/l — < oo forall e > 0.
fo,13¢ Is|

Here the weak convergence can also be viewed as occurring in the space
D([0,1]%) of Wichura (1969), since both »,/q and Gp/q are in this subspace of
1=([0,1]%) ass.

REMARK 3.10. Kalinauskaite proved the integral test (3.8) for (3.3) under the
added assumptions that ¢ be invariant under permutation of coordinates, with
g(s) — 0 as |s| = 0. However, these are unnecessary restrictions. For ¢ may be
replaced by §(s) = min, g g(s,), where S, is the dth permutation group and
85 = (84q1)s -+ > So(q)); this does not affect (3.8) or (3.3). Further, ¢ may be
replaced by g(s) = q(s) A g(s), where g, is any function satisfying (3.3) and
(3.8) with g(s) = 0 as |s| = 0; this does not affect (3.8) or (3.3) either.

4. Proof of the main theorem. Let us first sketch the proof of the sufficiency
part of Theorem 2.2. Let a, — oo geometrically fast, and write f € #’(a) as
Yiflia,<r<a,,,r Theclass {{1;, cp<q,, 10 f € F'(a)} is (almost) a VC graph
class, with envelope at most Fj, := @, 1{ 4,)- By (2.6), P(F?) is bounded in &.
This enables us to bound the number of functions f, € #’(a) needed to
approximate each fli, _p<q,, .1 BY filte,<F<a,,,) With an error (in L2(P)
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distance) of at most §,, for a suitable sequence (8,) of small constants. The sum
over k can be truncated, and we obtain using bounds from Alexander (1984a):

(41) Vn(f) = z vn( fkl[a;,SF< ah+1])'

k<k,

A method first applied to empirical processes by Giné and Zinn (1984) is now
used: by attaching i.i.d. N(0,1) coefficients g; to each f(X;), the sup over F’(a)
of the second process in (4.1) can be compared to the sup of G, (f):=
L <2, WE(fil1a, < F<a,,,1)» Where (WE), k > 1) are i.id. copies of the non-tied-
down form Wp of Gp. G, in turn, is close to a copy of W, which has a small sup
over % ’(a) since & is P-pregaussian. Therefore we obtain (2.4) for ep. (2.3)
follows from (2.5).

The above method is similar in many ways to one applied in Alexander and
Pyke (1986) to partial-sum processes. Variants of the idea of approximating to
within a different 8, on each stratum [a, < F < a,_,] were used by Bass and
Pyke (1985) and Bass (1985).

Let us list some of the lemmas we will need. Let (¢;) be a Rademacher
sequence, i.e., an ii.d. sequence with P[e; = 1] = P[¢; = —1] = 3, independent
of the sequence (X)), and define the symmetrized empirical process »? by

v(f)=n""2 Y &f(X,).
The following symmetrization inequality is proved by an argument which dates
back at least to Pollard (1982a)—see Giné and Zinn (1984), Lemma 2.7.

LemmMA 4.1. For all 9, a > 0,
Pl > 1] < 2P* [0l 50 > (1 = (20)%) /2]

Lemma 4.3 enables us to use »? in place of », in (2.4). The next two lemmas
will help us compare the tails of ||»?|| #1(ay to those of |Gpllz (4. The first
appeared in Alexander and Pyke (1986) and is based on Lemma 2.9 of Giné and
Zinn (1984). The second is essentially Theorem 2.17 of the Giné and Zinn paper,
which is based on a result of Fernique (1974).

LEMMA 4.2. Let {¢;: j € J} be a finite set of real functions on a space S,
and let {Y;: j € J} and (Z;: j € J} be r.v.’s with {Y;} independent of {Z;} and
EZ; = 1. Then

E

EY,"PJ' <E

JjEJ S

Y YZo;

jEd

s
provided both these suprema are measurable.

LEMMA 43. Let Y, and Y, be centered Gaussian processes indexed by a
countable set S. Suppose for all s, t € S,

E(Yy(t) - Yy(s))* < E(Yy(2) — Yy(s))’,
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and suppose 0 € range(Y)) a.s. Then
EYls < 2E||Y,|ls-

Given a set S with a pseudometric d on it, define for ¢ > 0:
D(e, S, d) = max{k > 1: there exist s,,..., s, € S
such that d(s;, s;) > eforall i # j},

N(e, S, d) = min{k > 1: there exist s;,...,8, € S

such that migd(s, s;) <eforall s € S}.

Then

(4.2) N(e, S,d) < D(e, 8,d) < N(e/2,8, d).

The function log N(-, S, d) is called the metric entropy of S, and the set
{81,..+, 8} in the definition of N is called an e-net. The following result is

essentially due to Pollard (1984) and is based on a lemma of Dudley (1978).

LEMMA 4.4. Let % be a VC graph class of functions on (T, #) with envelope
F, and v :=2(V(¥) — 1). Then there exists a constant K, = K (V(¥)) such
that

D(eP(FZ)I/Z, Z, ep) <Ky*
for all 0 < e <1 and all laws P on (T, %#).
Given % P-pregaussian, let { be a normal N(0,1) r.v. independent of G, and
define Wp on & by
Wi(f)=Gp(f)+ P(f)E.
Then
a1/2
(E(Wol 1) - Wil£))) " = exlf. 8)
and W, is linear a.s., so Wj extends to all #’(a).
LEMMA 4.5. There exists a universal constant K, such that
o 2
E"WP"?”(a) < Kl_/(; (IOg D(S, f, eP))l/ de
for all P-pregaussian & and all a > 0.
Proor. This follows directly from the proof of Theorem 2.1 of Dudley
(1973), (4.2), and the observation that N(e, #"(a), ep) < N(¢/8, F, ep)?. See
also Theorem 2.15 of Giné and Zinn (1984). O

Let
Lx = log(max(x, e)).
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The following result is essentially an immediate consequence of Theorem 2.8 of
Alexander (1984a) and Bernstein’s inequality (see Hoeffding (1963)), though
minor modifications of the former are needed to obtain a bound for ||p?|| g,
instead of for ||v,|| .

PROPOSITION 4.6. Let &% be a VC graph class of functions on (T, %, P),
uniformly bounded in magnitude by a > 0. Let a > 0 and suppose ¥ "(a) is
deviation measurable. There exists a constant K, = K (V(¥)) such that if

(4.3) aM/n'?a®> >3 and Mn'/?/a > K,L(na’a"?),
then
P* [||vf,’||5,,,(a) > M] < 16 exp(—Mn'/%/16a).

ProoF oF THEOREM 2.1. We begin with sufficiency of (2.5) and (2.6). By
Theorem 2.1, it suffices to prove (2.3) and (2.4), with e, replacing pp. But (2.5)
implies (&, pp) is totally bounded (Dudley (1967)) and (2.6) implies &# is
bounded in LY P), so (&, ep) is totally bounded. It remains to prove (2.4) for ep.

By Lemma 4.1, it suffices to prove (2.4) for »?. Our first step is truncation. By
(2.6), there exist 7, — 0 such that

(4.4) limnP(F* > 7,n'/?) = 0.
Fix n, § > 0 and define
Y, = inf{y > 0: nP(F* > y,n'/?) < né1;1}.
Then vy, < 7, for large n, so vy, — 0. Consider now the processes
Vl;( f) = vr(t)( f]'[F* >1',,n1/2])’

v(f) = Vr?( fl[v,.n‘/2<F*s-rnn‘/2])‘

By (4.4),

s Prlls > a] <PIFHX) > nnt” forsome i < n]
=o0(l) asn— .

Further,

Wil sy < 2% X 27,0 P pu sy g,
i<n

and the expectation of the latter is at most 218. Therefore
(4.6) P* [l ey > 1] < 28.
Thus we may work with the truncated process
vi(£) = 92(f) = vl £) =92 (£) = v2(Fipe cypurm)-
(We point out that the reason for making our second truncation is (4.12) below.)
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Next we stratify the process »!. Let (a,) be a geometrically increasing
sequence, say a, = 4%, and define

k

n=max{k > 0: a; < y,n*/?},
(ar,a4,1),  f0O<k<k,
(ap, 1,02, ifk=k,,

py=P[F*>a,].

Since F is only used as an upper bound, we may assume F > 1. Then

(1) = L o Figpeeny).

k<k,

Ik =

Now we approximate f on each stratum. Let K, and v be the constants of
Lemma 4.4 and define

H(e) =1+ L(K(4e71)");
we may assume K, > 1. Let 6, and 6, be constants satisfying
(4.7) 0, <3/256, 460,0,>3 and 0,0;' > max(2K,,64),

where K, is the constant of Proposition 4.6. Fix n and a and define §; and 7,
for k < &, by
1/2

a, = 01( n83/H(8)) ", s = 0,8, H(8,)"%.
Then since y, = 0 we have

0, = maxd, >0 asn - oo,
n
k<k,

while by an easy calculation,

(4.8) Y wi < 56, [“H(e)/*de = 0(1), asn > oo.
k<k, 0

Let ,
F = {fl[F*eIk]: fe,gr},

Gy = {fl[p'*el,,]: fegl"(a)},
Then %, is a VC graph class of index V(#,) < V(&), with envelope at most
Fy=ap dipesq,

By (2.6), P(F2) > 0 as k > o0, so, by rescaling if necessary, we may assume
P(F?) < 1 for all k. Then by (4.2) and Lemma 4.4,

D(3,,97,ep) < D(8,,97,ep) < N(8,/2,9%, ep)
< N(8,/4, Fy, ep)’ < D(8,/4, Fy, ep)’ < exp(H(8,)).
Thus there is a finite subset J#;* of % ’(a) of cardinality at most exp(H(d;))
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such that
(49) eP( flips e gl[F*eIk]) >8, iff,gcH andf+¢g

and such that for each f € %’(a), there is an element of 5, call it @, f, such
that

(4.10) epl Flppe e (Quf)ppecr) < 8
Thus we may write v = »¥ + »®, where

yO(f) = )y ”0((Qkf )l[F*eIk]),

k<k,
(1) = L o8((f = Qe ana)

To handle the error term »{?, observe that by (4.10),

{(f— Qkf)l[p'-el,,]: feg&"(a)} c F(8).
Therefore by (4.8), for large n,
(11)  P*[|p@l g > 1] < P* [uv,‘:uﬁ,(sh, > 1, for some k < k,,],
so we would like to use Proposition 4.6. Fix k < &, and an integer / > 1. Define a
new probability measure P‘® on (T, #) by

PO() = P(IF* > a,)

and let P, := (P®)® X X be the corresponding product measure on (7', £°) X
([0,1], =). On the event [nP(F* > a;) = 1], the distribution of »? on %;'(5;)
under P is the same as the distribution of ({/n)/?»} under P,.

Before we take advantage of this latter fact, we must consider what values of /
will arise. From the definitions we get

(4.12) min nP(F* > a,) =nP(F*>a, ) - .

Since the events {[F* > a,], k > 1} are nested, the process {nP(F* > a,;),
k > 1} can be imbedded in a uniform empirical d.f. Therefore (4.12) and a
theorem of Chang (1964) tell us that the event

R,=[n'<P(F*>a,) <2P(F*>a,)forall k < k,]

satisfies

(4.13) P(R) >0 asn— .

Therefore we need only consider 1 < I < 2np,,.
Define

Fi/(B, PP) = {f ~ g: 1.8 < F{(), epn(f,8) < ).

For functions f, g supported on [F* > a,], we have epw( f, &) = p; %e( f, &).
It follows that %#//(8,) = %' (py /%, P®). It therefore follows from the
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above discussion (using the fact the X; are canonically formed to avoid measura-
bility difficulties) that

P* ["”;?”y,;'(s,,) > 1, for some k < kn]

<P(R))+ ) P* [“”3”3?,;'(89 > Mgs Rn]
(4.14) k<kn

=0+ T T P[bfllspiminn, ron < (/1)1
k<k, l<2np,

X P[nP(F* > a,) =1].

Hence, provided we can verify (4.3) for the appropriate constants, we can use
Proposition 4.6, (4.7) and (4.8) to obtain

RHS(4.14) < 0o(1) + Y 16exp(—n'/?n,/16a,.,)
k<k,

=o(1) + Z 16exp(—(6401)_192H(3k)) .
(4.15) ek

<o)+ Y &,
k<k,

<o(1)+ Y m,=0(1) asn— oo.
k<k,

Combining this with (4.14) and (4.11) gives
(4.16) P*[1#@ll g > 1] = 0(1) asn— oo.
Let us now verify (4.3) as required, with a,,,(n/0)"/?y,, [, and p~'/%§, in

the roles of the a, M, n, and a, respectively, in (4.3). Since ! < 2np,, the first
inequality follows from

@ 020,01/ 182 > day,/n'/%0} = 40,6, > 3.
To prove the second, recall we have assumed a},,p, = P(F2) <1 for all k.
Hence for large n,
L(la}.1ps/8}) < L(npy) + L(8;7)
< L(naz?) + L(8;2) < 6L(8;') < 8H(8,),
while by (4.7),
(/1) "0yl /a1 = 46,07 'H(8,) > 8K,H(3,).
Thus (4.3) is established.
It remains to handle »{", which we rewrite as

”;(zl)( f)= E eU,i(f),
where

U.(f)= kEk V2@ f )X ps (e 170
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Observe that since each 52 is finite, measurability is no longer a problem. Let
(£,) be an ii.d. sequence of normal N(0,1) r.v.’s, independent of (X;) and (¢;),
and let p == E|{)|. Let E, denote expectation with respect to the £,’s, ie., with
the (¢;) and (X;) held fixed, and define E, similarly. Since £(¢;§;) = Z(§)), it
follows from Lemma 4.2 that

(4.17) E Pl g < l‘_lEe"”;f“f'(a),

where

”pf( f)= E giUni(f)°
i<n
Conditionally given (X;), »¢ is a Gaussian process, to which we would like to
apply Lemma 4.3. Note that since 0 € #’(a), we have 0 € range(»$) a.s. Since
&, is a uniformly bounded VC graph class, it is P-pregaussian by Lemma 4.4
above and Theorem 1.2 of Dudley (1973). Therefore so is ¢, and we may take a
copy W, of Wpon each 7, with the W,’s independent. Define

G(H)= % 2W,((Q4f )itre c1y1)s

Gi(f)= L 2Wy(flipeery)

k<k,

for f € #'(a). For f, g € F'(a),
E(vi(f) - v8(8))" = T (U f) - U(8))*

i<n

= X Pn((Qkf_ ng)zl[F*eIk]);

k<k,
while
E(G1) = G&)' = T 4P((@uf - @) Lir- )
Thus on the event

L,= [Pn((Qkf - ng)zl[F‘eI,,]) < 4P((Qkf - ng)zllF*elk])

forall k < k, and f, g € .ﬂ"(a)],
we obtain
E(vi(1) - #(2))" < E(G,(f) - G.(&))’
for all f, g € #'(a). Therefore by Lemma 4.3, on L,,
(4.18) Evill #1a) < 2E1Goll (-
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Meanwhile, by Lemma 4.5, Lemma 4.4 and (4.8),
E|G, - Gl < kZ E\Will s,
<k,

(419) = o[ T (8"

=o0(l) asn— .
Since
E(Gi(f) = Gi(&))" = P((f — &)'1ire <y

< P((f - 8)") = E(Walf) - Wi(2))",
Lemma 4.3 gives
(4.20) E|Gill#+(ay < 2E||Wpl| g+ (a-

By standard integrability properties of Gaussian r.v.’s, E||Gp|| 5, .is finite for
all «; since & is L'-bounded, 5o is E||Wp|| 5+ (4)- Thus by dominated convergence
and the uniform ep-continuity of Wy on %,

E|Wpl|gay = 0 asa— 0.
Combining this with (4.17), (4.18), (4.19) and (4.20) shows

P[“V;(;l)“f'(a) > "7] =< P(L;cz) + Sgpn_lEe“V;(zl)”f’(a)

=P(LS) + o(1)
with the o(1) being when we let n > « and then a — 0.

We will be finished when we show P(LZ) — 0 (regardless of ). Fix k <k,
and f,g € #F'(a), and let h; = (Q,f — ng)zl[p'*el,,]- Then ||/, < 16a}.,
and var(h,(X)) < P(h}) < 16a},,P(h;). Further, by (4.9), if h,+ 0 then
P(h,) > 8%. Therefore by Bernstein’s inequality,

P[P(hy) > 4P(hy)] < Pv,(Ry) > 30'/P(h,)]
< exp(—9nP(h,)/64a},,)
< exp(—9H(8,),/2560,).

Therefore, using (4.7),
P(LS) < Y, |92 %xp(—9H(3,),/2560,)
k<k,
< X exp(—H(8,))
k<k,
=o(1)

as in (4.15), and the sufficiency part of the theorem is proved.
Since (2.5) is necessary by definition, we turn to (2.7). But (2.7) is equivalent to

(4.21) nP*[||n"2(8x — P)||s> 8] > 0 forall § > 0,
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which is necessary by Theorem 2.2 and Remark 2.3 of Alexander (1984c). (Note
that necessity of the analog of (4.21) in separable Banach spaces is well known.)
' O

Proposition 2.5 is immediate from Theorem 2.1, so we move on to Proposition
2.6.

PROOF OF PROPOSITION 2.6. It is sufficient to show that, given M > 0 and
P-Donsker classes # and ¥, f:={f+g f€F, g€ 9} and X= {af: f €
&, |a| < M} are P-Donsker. Further, we may assume P(f) = Oforall f € FU .

Clearly ¢ and X are totally bounded, since % and ¥ are by Theorem 2.1.
Therefore we must prove (2.4) for # and )¢ assuming (2.4) for # and 9.

Let %, and ¥; be 8-nets in & and ¥, with |%;| = N(§, #, pp) and |¥;| =
N(8,9, pp). By Theorem 2.16(b) of Giné and Zinn (1984), which is based on a
result of Sudakov (1971), since &# and ¥ are P-pregaussian we have

(4.22) 8%log N(8, F,pp) >0 asd — 0,

and similarly for .
Suppose e, fEF, g,he 9, and (e+ g)— (f+ h) € F'(8). Let e; € %
with pp (e, ;) < 8, and similarly for f;, g5 and h;. Then

[v.((e + &) — (f+ )| < 20l + 2Iallons)

+|v,((es — &) — (fs + hy)) |-
Since’

pples + &, fs + hs) < 58,
it follows that

lim sup P *[|[7,]| -5, > 61] < limsupP *[|[3,]| 55, > 1]
n n
+ limsup P * [||vn||g,(8) > n]
n

+2|%5|%|%|%exp( —n/5082),

and (2.4) for # follows from (2.4) for # and ¢ and from (4.22).

The proof for )¢ is similar, but now if f,g€ %, |a|< M, |B|< M, and
af — bg € A"’(8), then we approximate a and b by the nearest integer multiples
of 8. There are at most O(M8™!) such multiples, and the error in », created by
this approximation is at most 28||v,||#. Since ||»,||# is bounded in probability,
the proof can proceed similarly to the proof for #. O

5. Proofs for weighted empiricals. We will need the following.

LEMMA 5.1. Let € be a P-pregaussian class of sets and q a real function on
€. If Gp/q € I*(¥) a.s., then

(5.1) q%C)/P(C) » o asP(C) — 0.
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ProoF. Suppose (5.1) is false. Then take a sequence (C;) in ¥ with
P(C;,,) < P(C;)/2 and ¢*(C;)/P(C;) <M< 0
for all i. If i > j then

P(16,/4(C) - 1¢/4(C))) = P(C,/C.)/q%(C)) = 1/2M.

Therefore F:= {1,/q(C): C € €} is not eptotally bounded. But by
Proposition 3.4 of Dudley (1967), this contradicts Wp/q € I*(¥) a.s., hence
also Gp/q € I®(¥) as. O

Proor oF LEMMA 3.2. Since v,/q € [*(%) a.s., we have

IP./qlle=11(8x — P)/qll¢< 0 as.
It follows that as., 8x(C) = 0 for all C with both P(C) and ¢(C) sufficiently
small. Therefore by Lemma 5.1,

limsup|»,(C)/q(C)| = limsupn'/2P(C)/q(C) =0 as.
P(C)—0 P(C)—0
q(C)—0 9(C)—0

Define the bounded continuous function ¢ on [®(%) by

¢(¢) = limsup|¢(C)|.
P(C)~0
q(C)—0

By our hypothesis,

J#(Gr/a) dP = lim [o(s,/q) dP =0,

so ¢(Gp/q) = 0 as. It follows from the fact that Gp is uniformly continuous,
and convergent in probability to 0 as P(C) — 0, that for each ¢ > 0,

limsup|Gp(C)/q(C)| =0 as.
P(C)-0
q(C)=¢

The lemma for P(C) — 0 now follows. The proof as P(C) — 1 is similar. O

PROPOSITION 5.2. Let ¥ be a P-pregaussian class of sets and q a real
function on €. If Gp/q € I®(¥) a.s. then

limsupGp(C)/q(C) =0 a.s.
P(C)—0

for some finite constant 6.

Proor. It suffices (by Lemma 5.1) to prove the same results for Wp. By
Theorem II1.3.5 of Jain and Marcus (1978), we have the representation (at least
in law) of W} as a uniformly convergent series:

WP(C) = E ‘Pj(C)fj,

Jjz1
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where (£) is an i.i.d. normal N(0, 1) sequence and ¢,(C) = (1¢, &;)2(p) for some
g, € L*(P). Therefore by Lemma 5.1,

19,(C)/a(C)| < lIg,ll .2pyP(C)"*/1a(C)
-0 as P(C) - 0.

It follows that limsupp ¢, -, ¢Wp(C)/q(C) is a tail r.v. of the sequence (§;), hence
is constant a.s. by the Kolmogorov 0-1 law. O

Proor OF PROPOSITION 3.3. First observe that the obvious analogs of
Lemma 5.1 and Proposition 5.2 as P(C) — 1 are also valid.

(i) « (iii) by definition. Suppose (iii) holds. Then rp(C, ¢) = 0 as P(C) = 0
or 1 by Lemma 5.1, so Gp/q approaches a limit a.s. as P(C) - 0 or 1. By
Proposition 5.2 and symmetry of Gp, this limit must a.s. be 0. Further, bounded-
ness a.s. of Gp/q implies ¢ bounded away from 0 on €(e,1 — ¢) for all & > 0.
Thus (iii) = (ii). Similarly, (iv) = (ii).

Suppose (ii) holds. Then clearly Gp/q € [*(¥) a.s. Uniform rp-continuity on
%(e,1 — &) for all ¢ > 0 is also clear. If ry(C,,C) = 0 and P(C) =0 or 1, then
P(C,)~ 0 or 1 or ¢(C,) ~ ®, so Gp(C,)/a(C,) > 0 = Gp(C)/q(C). Thus
Gp/q has rp-continuous sample paths, and (iii) holds.

Suppose ¢ is uniformly dp-continuous on {C € ¥: 0 < P(C) < 1}. If (iii)
holds then using (ii) and Lemma 5.1 we see that rp is uniformly d p-continuous.
Thus (iii) = (iv). O

It remains to prove Theorem 3.5. In establishing necessity of (3.7), the
following will be critical.

PROPOSITION 5.3. Let % and ¢ be as in Theorem 3.5. If ¢ > 0 on (0, 3] and

(5.2) Gx(C)/9(P(C)) >0 a.s.asP(C) -0,
then
(5.3) / V2= )/s ds/s < oo forall e > 0.

0

ProOF. We may assume ¢(0) = 0 and that ¥ contains sets of arbitrarily
small positive probability.

Suppose the integral in (5.3) is infinite for some ¢ > 0. We will show that there
is a sequence (C,,) in € and a constant § > 0 such that

(5'4) ' P(Cm+1) < P(Cm)/3
and
(55) Y exp(—09*(P(C,))/P(C,)) = .
m>1
Observe that by Lemma 5.1,

(5.6) P%(s)/s > o ass— 0.
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Let
E:={P(C): Ce ¢}.

Then we can write

O1/2\E= U (r,v),

0<n<N

a union of disjoint intervals, for some 0 < N < c0. Let I == {n > 0: r, < v,/3},
M := card(I), and S :=U,, . ,(r,, v,). We can write S = U, _ ,,, < u(@,,, b,,), again
a union of disjoint intervals, with b, > b, > .-+ and M < co. Let

o = inf(9)
with inf(¢) interpreted as ;. Then either M = o« or ¢ > 0.

Case1l. M = 0. Then there exists ¢ > 0 such that

00 = Lb°exp(—£<_p2(s)/s) ds/s

(5.7) @
< Y /b"'e‘e$2(bm)/“ds/s+ Ef e )/ ds /s,

m>0"%m m>0"bm+1
Thus we get two subcases.

CASE la. The first sum on the right side of (5.7) is infinite. Then by (5.7), if
m, is large,

=) fb”eXP(—£<T>ay2(bm)/S)d9/s

m=m,

IA

Y (b,/%%(b,))exp( - 5%(b,)/b,,)

m>m,

Y exp(—3°(b,)/by)-
m=mg,
Now for each m > 1 there is a set C,, € ¥ with b, < P(C,) < b,,_,/3 and
o?(P(C,))/P(C,,) < 29%(b,,)/b,,. (5.4) and (5.5), with § = ¢/2, now follow from
(5.8).

(5.8)

A

CaSE 1b. The second sum on the right of (5.7) is infinite. For m > 0 define

V. = {[bm+l’ am) N {32lbm+l: lZ 0}’ if bm+1 < Qs
" {bm+1}’ if bm+1 =Aps
and let {s,: £ > 0} be the set U, , (V,, in decreasing order. Then

9s, _
0= L% [Ten(-ae)s)ds
mzmg 8, €[ by 11, ap] 5k

(5.9)

< kz 8exp(—ep*(s,)/9s;)-
>0
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Now inf([s,, ©) N S) <3s, for all £>1, so we can find C, € € with
s, < P(Cy) < 3s,, p(P(Cy)) < 29(s,), and P(C,)in the same interval [b,,,,, a,,]
as s,. Then (5.4) holds, and ¢*(P(C,))/P(C}) < 49%(s;)/ss, so (5.5), with
0 = ¢/36, follows from (5.9).

CAsE 2. o > 0. Let s,, :== 6/9™. For some ¢ > 0 we have

o=y, /s,,, exp(—ep*(s)/s) ds/s

m>0"Sm+1

< Z (sm - sm+l)s;z-ll-lexp(_£‘p2(sm)/gsm)

m>0

=8 Y exp(—eg*(s,)/98,)-

m=>0

As in Case 1b we have inf([s,,, 00) N S) < 3s,,, so (5.4) and (5.5) follow similarly.
Thus we can satisfy (5.4) and (5.5) in all cases. Define

D, =C,\ UCJ, m>1,

j>m
so the D,, are disjoint, and by (5.4),
P(D,) = P(C,)/A.
Using (5.6) we have for large m,
¢(P(C,.))

> 01/2/2] >P

|WP(Dm)| > 01/2‘p(P(Cm))
P(D,)” P(C,)"”

8¢°(P(C,))
> exp| - ———————|.

P(C,)
Since the D,, are independent, it follows from this and (5.5) that
IWP(Dm)I :I
P|——-= > 02/2i0.| = 1.
[tp(P(Cm))

We can therefore define 7, j>1, to be the jth index m such that
|Wp(D,,)|/9(P(C,,)) > 6'/%/2. Then [7; = k] is an event in the c-algebra gener-
ated by Wp(D,),..., Wp(D,) for all £ > 1, so is independent of Wyp(C,\ D),
since W), is independent on disjoint sets. Fix A > 1. Now Wp(C,,) = Wp(D,,) +
Wp(C,,\ D,,) as. for all m, so using (5.6), for large £ we have

[Wp(C,, 0'/2 Wp(C,\ D 612
o WG Y O LA Y
o(Pc,) #(P(C)) =4
= P[|WP(Ck\Dk)| = 01/2‘P(P(Ck))/4]
2 P[[Wa(C,\ Dy)| < AP(C,\ D)’

>1—-A"2
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Since 7; > j this shows
PIWA(C,)/9(P(C,)) > 6'%/4i.0.] =1.
By (5.6) the same holds for G p, which contradicts (5.2). O

ProoF oF THEOREM 3.5. Let h be a nonnegative function on (0, 2] and
define

n(s) = (2s{V(¥)L(s'ax(s)) + h(s)})"".

The proof of Theorem 1.2 of Alexander (1986) shows that if sh(s) ~ m(s) as
s — 0 for some positive nondecreasing function m and

Y exp(—h(p/s)) >0 ass—> Oforall0<p<1,
Jjz0

then
limsup|Wx(C)|/m(P(C)) <1 as.
P(C)—0
(Note that this gives (3.4) above when h(s)is LLs™ ')
Suppose (3.6) and (3.7) hold. Fix § > 0 and define A(s) by
— _ /2
8p(s) = (2s{V(‘€)L(s 1ap(s)) + h(s)})l .
From (3.6) it follows that (sL(s 'apg(s)))”? = o(9p(s)) as s — 0, so
sh(s) ~ 18%p%(s). Hence for small s,
h(s) = 8%%(s)/4s.
Therefore, since § is arbitrary, we will have

(5.10) lim sup|Wx(C)|/9(P(C)) =0 as.,
P(C)~0

provided we can show

(5.11) Y exp(—09*(p’s)/n's) >0 ass—Oforall 8 >0and0 <p < 1.
Jj=0
But

L exp(—85%(n's)/ms) < XL (1—p)™ fu 'j’.ﬁsexp(—w@z(r)/r) dr/r

Jj=0 Jj=0
=(1-p)7" f()sexp(—8u¢2(r)/r) dr/r,

and so (5.11) follows from (3.7).

By (3.6), (5.10) also holds for Gp. Since (3.2), with ¢ = @ o P, is equivalent to
(3.6), weak convergence now follows from Theorem 3.4.

Conversely if the weak convergence holds then so do (3.2) and (3.3) for
q = ¢ ° P, so (3.7) follows from Proposition 5.3 and (3.6) from (3.2). O
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