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If f={flteT} is a centered, second-order stochastic process with
bounded sample paths, it is then known that f satisfies the central limit
theorem in the topology of uniform convergence if and only if the intrinsic
metric p,2 (on T') induced by f is totally bounded and the normalized sums
are eventually uniformly pf—equicontinuous. We show that a centered,
second-order stochastic process satisfies the central limit theorem in the
topology of uniform convergence if and only if it has bounded sample paths
and there exists totally bounded pseudometric p on T so that the normalized
sums are eventually uniformly p-equicontinuous.

1. Introduction. It is well known that if we consider a stochastic process as
a function from a probability space into a space of functions L, E C R7, then
this function, in general, will be nonmeasurable and nonseparably valued in the
topology of uniform convergence. One case where this happens is the empirical
distribution function, which can be considered as a sum of “independent and
identically distributed” stochastic processes. It is well known that the normal-
ized empirical distribution function converges in law to a Brownian Bridge and
this is an example of a central limit theorem in which we do not assume either
measurability or separability.

Recently Dudley and Philipp [3] have generalized this idea for nonmeasurable
and nonseparably valued random elements and proved the central limit theorem.
In their paper they have shown that total boundedness of the intrinsic metric,
induced by the empirical process, and equicontinuity in the limit of the normal-
ized sums with respect to the intrinsic metric is a sufficient and necessary
condition for the central limit theorem. This result has been used by Giné and
Zinn [6] to obtain other sufficient conditions for the central limit theorem under
certain measurability conditions.

In the present paper we shall use the setting of stochastic processes and we
shall use some results from Hoffmann-Jergensen [8]. In Chapter 7 of [8] the
author has developed a theory of convergence for nonmeasurable and nonsep-
arably valued functions, which extends the usual notion of convergence. Since
the book is not published yet, we shall prove all the results we need from this
book.

The results in [8] have been used by Andersen in [1] where the central limit
theorem for Banach-space valued functions is investigated. We shall use some
results from this paper.
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Our main section is Section 5. In this section we introduce the set CLT of all
functions satisfying the central limit theorem in the topology of uniform conver-
gence. It turns out that a function belonging to CLT must be a centered,
second-order stochastic process with a.s. bounded sample paths and that the
intrinsic metric induced by the process must be totally bounded. Furthermore, it
turns out that the limit measure is concentrated on the bounded functions and
therefore can be considered as a Gaussian measure on the space of bounded
functions. Our final result gives necessary and sufficient conditions for the
central limit theorem. One of the conditions is the condition in [3].

In Sections 2-4 we introduce basic notation and definitions, some results
about stochastic processes, and some results about Radon measures.

Let us finally point out that the three settings: empirical processes, stochastic
processes, and Banach-space valued functions are, more or less, equivalent and
most of the results can be translated from one setting to another, so it is a
matter of taste which to prefer. For us the setting of stochastic processes seems
the most natural.

2. Notation and definitions. Let (S, %, p) be a probability‘ space and
(M, #) a measurable space. We say that a function g from S into M is
p-measurable or a random variable on (S, &, p) if g is (¥ (p), A )-measurable,
where #(p) is the set of all p-measurable sets.

Since we are going to work with nonmeasurable functions we need the
following concepts: We let p* and p, denote the outer and inner p-measure and
if A is a function from S into R = [ — o0, c0] then we denote the upper and lower
p-integral of h by [(*hdp and [,hdp and we denote the upper and lower
p-envelope of h by h* and h,, i.e.,

(2.1) A* and h, are p-measurable functions from S into R,
(2.2) hy(s) <h(s) <h*(s), VseS,
(2.3) pa(hye <g < h)=py(h<g<h*)=0, for all yp-measurable func-

7/ tions g from S into R.

If ¢ is an S-valued random variable on a probability space (2, %, P) with
distribution P¢{ = p, then we say that § is P-perfect if
(2.4) P*(te A)=p*(A), VACS.

Envelopes and perfect random variables are investigated in [2] and we shall
use some results from this paper. _

We denote the set of all y-measurable functions from S into R by L°(p). On
L%(p) we define the family of functions {|| - || ,|0 < p < oo} by

2 .
= f arctg|g| dp, if p=0,
mTJs

lgll, = {/|g|p dp
S

p— esssup|g(s)|, if p = oo,
seS

1A1/p
} , f0<p< oo,
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for g € LO(p). For all g € L°(p) we have that
(||g|| )lA(pV(p/q))
q ’

(2.5) g, < 2
;Ilgllq, 0=p<g<l

0<p<gq<o,

Let T be a set, then we denote the set of all functions from T into R by R7,
the set of all bounded functions from T into R by B(T) and we let

lellr = sup|o(t)|, Ve¢eRT
teT

We let T'(T') be the set of all finite partitions of T, i.e., if a € I'(T) then
a={A;}}., where n € N and

n
AigT, A,ﬂAJ=Q, Vi#j, UAi=T°

i=1
If o € R7 then the difference function Ag of ¢ is defined by
Ap(u,v) =@(u) —@(v), Vu,veT,
and if p is a pseudometric on T then we define the following oscillation functions
w,(e,a) = sup{|A(p(u, v)||u, 0 € T: p(u; v) < a}, a>0,
w(p, A) = sup{l’Atp(u, v)||u,v e A}, AcCT.

We denote the set of all bounded and uniformly p-continuous real-valued
functions on (T, p) by C(T, p). It can easily be checked that

CT. ) = {p € B(T)| lim w,(¢, a) = 0}.

Let {Y,,} be a sequence of R”-valued functions on a probability space (2, F, P).
We say that

{Y,} is eventually bounded if
@6) lim Lmsup P*(|¥,llr > @) =0,

A=>0 psoeo
{Y,} is eventually totally bounded if {Y,} is eventually bounded and

(2.7) Ve>0, 3acI(T): limsupP*(l‘}laxw(Yn, A) > e) <eg,
€Ea

n—oo
{Y,} is eventually uniformly p-equicontinuous, where p is a
) pseudometric on T, if
lim limsup P*(,(Y,, @) >¢) =0, Ve>0.
a=0 nooo
If L is a subset of R7, then (L, - ||) denotes L equipped with the topology
induced by || ||z, and H(L), 9(L), (L), and %(L) denote the sets of all
compact, open, closed, and Borel subsets of (L, | - ||r). A Borel measure on
(L, |l - ll) is a measure on (L, #(L)) and a Radon measure p on (L, || -||r)isa

(2.8
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finite Borel measure on (L, || - ||7) so that
(2.9) u(B) = sup{p(K)|K < B, K € (L)},
for all B € #(L).
Let {Y,} be a sequence of L-valued functions on a probability space (2, #, P).

We shall use the following definitions of convergence in law and eventual
tightness due to Hoffmann-Jergensen [8, Chapter 7]:

{Y,} converges in law to a Borel probability measure y on
(L, Il - llp) if

(2.10) *
[edv=1m [“g(¥)aP, VgeC(LI I,
L n—>o00 YQ

where C(L, || - ||7) is the set of all bounded, continuous functions from (L, || - || 1)
into R,

(Y,} is eventually tight on (L,| -|l7) if, V ¢>0,3 KeXx'(L):

(2.11) limsup P*(Y, & G) <e, for all G € 9(L) so that G 2 K.
n— oo

If {Y,} is a sequence of P-measurable functions then (2.10) is consistent with
the definition of convergence in law for random variables.

The following result can be found in [7] (see Example 7.28) but for complete-
ness of the paper we will give a proof below.

THEOREM 2.12. Let {Y,} be a sequence of B(T)-valued functions on
(2, F, P). Then the following three statements are equivalent.

(2.12.1) ({Y,} is eventually tight on (B(T), | * |Iz),
(2.12.2) ({Y,) is eventually totally bounded,

{Y,} is eventually uniformly p-equicontinuous for some totally

(2.12.3) bounded pseudometric p on T, and {Y,} is eventually bounded.

ProorF. We have by Theorem IV.5.6 in [4] that

Ve>0, VKex(B(T))AacTI(T): sup w(f,A)<e,
Aca, feK

and from this it follows easily that (2.12.1) implies (2.12.2).
Assume that (2.12.2) holds and choose {a;} < I'(T) so that

(2.12.4) limsupP*( sup w(Y,, A) > 2‘f‘1) <2771 VjeN.
n A€aq;

Put % = o(ay,..., a;) and define p by
p(u,v) =sup{2™"|u # v (mod £#,)}, Vu,veT,

with the convention sup @ = 0. Then one can easily check that p is a totally
bounded pseudometric on T satisfying

{ueTlo(v,u) <277} =F(v), VoeT,
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where #(v) is the #-atom containing v. Hence
w,(f,27) < sup w(f,A), VfeB(T), VjeN.
Aca;
Now using (2.12.4) one can show that {Y, } is eventually uniformly p-equicontinu-
ous, i.e., (2.12.3) holds.
Assume finally that (2.12.3) holds and let ¢ > 0. Choose {a;} C R, a;]0,
a € R, and n, € N so that

(2.12.5) limsupP*(wp(Yn, a;) > 2‘f) <e-277%  Vjx1,
n

(2.12.6) P*(||Y,|lr>a) <e/2, Vnzx=n,.
Let K,,=N™, {f € B(M)|\w,f,a)) <27, ||flr<a}andlet K=N%_,K, C

C/T, p). Then by Corollary IV.6.8in[4] K € X (B(T)).If G 2 K and G is o';)e:l
then by compactness of K there exists m € N so that G 2 K,,. Hence by (2.12.5)
and (2.12.6)

limsupP(Y, & G) <.
n
This shows that {Y,} is eventually tight. O

REMARK 2.13. The Portmanteau Theorem (see, e.g., Theorem 8.1 in [9]) can
be extended to the nonmeasurable case. The proof of this extension is the same
as the ordinary proof.

3. Stochastic processes. For a real valued function f on S X T we will use
the following notation:

fr=1F(-,t) €RS, f(s) =f(s,:) eRT..

A stochastic process f on (S, &, ) with timeset T is a real valued function on
S X T, where (S, &, p) is a probability space and T is an arbitrary set, so that
f,€ L%(p) for all t € T, and it is said to be centered if

fftdu=0, vteT,
S
and a second-order process if
fft2du< w, VteT.
S

A stochastic process f on (S, %, p) with timeset T induces a family of
pseudometrics on T, {pP|0 < p < o}, by
pf(u,0) =lfu—flp, Vu,veT.

Let us point out that pf, called the intrinsic metric induced by f, has been
considered quite often (see, e.g., [3] and [6]).
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THEOREM 3.1. Let f be a stochastic process on (S, & p) with timeset T, p a
pseudometric on T, and p € [0, o]. Then

(3.1.1) pf(u,v) <|w,(f, a)*"p, Vu,oeT:p(u,v)<a,
and, furthermore, if

(3.1.2) 3a>0:|w(f, a)*"p < o

and

(3.1.3) pe(f€C(T,p)) =1,

then

(3.1.4) Ve>0, 38>0:p(u,0)<8d=ppf(u,v)<e.

REMARKs. (1) (3.1.3) says that f(s) is bounded and uniformly p-continuous
for p-almost all s € S.

(2) If (3.1.4) holds then total boundedness of p implies total boundedness of
P

Proor. (3.1.1.) follows from Theorem I11.1.2 and Example II.1.5 in [2] and
(3.1.4) from (3.1.1)—(3.1.3) using the Lebesgue dominated convergence theorem. O

The following theorem is due to Hoffmann-Jergensen:

THEOREM 3.2. Let f be a stochastic process on (S, &, u) with timeset T and
p a totally bounded pseudometric on T so that

(3.2.1) r«(f € C(T,p)) =1.
Then
(3.2.2) pe(feC(T,0p)) =1, Vpel[0,].

ProoF. By (2.5) we need to show (3.2.2) only for p = 0 and since (3.2.1) holds
it is no restriction to assume that f(s) € C/(T, p) for all s € S. Notice that
(3.1.2) is satisfied for p = 0.

Let (T p) be the completion of (T, p). Then (T, p)isa compact pseudometric
space, T is a dense subset of T and p = p|py 7, Where p|p 1 is the restriction of p

to T X T. By Theorem 1.6.17 in [4] f(s) admits a unique, uniformly g-continuous
extension A(s) to T. Since for every ¢ € T' there exists a sequence {t,} C T so
that p(t,,t) = ,_ 0, we have, by continuity of A,

ft(s)éht(s) Vse€eS.

Therefore A is a stochastic process on (S, &, p) with timeset 7' and of = 0%lrxr-
Let A = {(u,v) € T x Tlph(u, v) = 0}. Then

(u,v) €A h,=h, pas.
The product space (T X T, p ® p) is a compact pseudometric space and therefore
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there exists a countable dense subset A, of A. Since A, is countable we can
choose a nullset N € &#(p) so that

h(s,u) = h(s,v), Vse€S\N, V(u,v)€A,,
and by p-continuity of A(s) for all s € S we get
(8.2.3) h(s,u) = h(s,v), VseS\N, V(u,0)eEA.

Now let s, € S \ N and assume that f(s,) is not uniformly pf-continuous. Then
there exist ¢ > 0 and a sequence {(u,,v,)} € T X T so that

(3.2.4) | f(s0su,) — f(S0s0,)| 28, VR2>1,
(3.2.5) of(u,,0,) <27, Vnx=1

By compactness of (7' X T, p X p) there exists a convergent subsequence
{(¥ (k) Oncry)} Of {(un, v,)} and let (u,v) € T x T be its limit p01nt Theorem
3.1 ensures that p, is p-continuous; thus by (3.2.5) we have that pj(u, v) =

ie., (u,v) € A and by (3.2.3) that

kli—lbr:o | f(SO, un(k)) - f(so,vn(k))l =|h(30’ u) - h(SO, O)I = 0;
but this contradicts (3.2.4). O

ExaMpLE 3.3. Let y be a Gaussian Radon measure on (B(T), || - ||;). Then
there exists a probability space (2, #, P) and a stochastic process f on (2, #, P)
with timeset T so that f is P-measurable and has the distribution y. If there
exists a totally bounded pseudometric p on T so that y(C,(T, p)) = 1, then, since
all the pseudometrics pf, p € [0, o), are equivalent, it follows from Theorems
3.1 and 3.2 that

(3.3.1) pf is totally bounded, for all p € [0, ),

(3.3.2) y(Cu(T, pf’)) =1, forall p € [0,00].

4. Results about Radon measures. Since the following two results are
stated in a little bit more general form than we need, they form a separate
section.

THEOREM 4.1. Let T be a set, p a pseudometric on T, and {Y,} a sequence
of B(T)-valued functions defined on some probability space (2, #,P). If Y,
converges in law to a Radon probability measure y then the following two
statements are equivalent.

(411) Y(CAT, p)) = 1
(4.1.2) {Y,} is eventually uniformly p-equicontinuous.
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Proor. Letforall 8 >0and ¢ > 0
Fy. = {f € B(T)lw,(f,8) > ¢},
= {f € B(T)|w,(f,8) > ¢,V &> 0},

= {f € B(T)lw,(1,8) > ¢},
= {f € B(T)|w,(f,8) >e,v5>0}.
Then Fj, is a closed set and G, an open set. By the Portmanteau Theorem (see
Remark 2.13) we get that
Y(Gy,) < liminf Py(Y, € Gy,)
< limsup P*(Y, € F;,) < v(F;,),

n— oo

so since Fy, |5_ o F. and Gg, l5_, oG, for all € > 0 we have
v(G,) < ;in}) limsup P*(w,(Y,,8) > ¢) <v(F), Ve>0,
2% n-ow

and then the equivalence follows from the fact that
G, 1. oRTNC/(T,p) and F.1,_,RT\ C(T,p). m]

THEOREM 4.2. Let T be a set and y a Radon measure on (R, || - ||) so that
for all finite subsets T, of T the marginals of y on RT are centered Gaussian
measu:es. Then the following statements hold:

(4.2.1) ¥(B(T)) = 1,

if f is a stochastic process induced by vy then pf is totally bounded

(4.2.2) forallp € [ 0,00) and y(C(T;pp)) =1 for all p € [0, oo].

REMARK. If (4.1.1) holds y can be considered as a Gaussian measure on

(B(T), Il - lI7)-

ProoF. If T, C T and ¢ € R” then we let @7, be the restriction of ¢ to T,
ie, p, € RT, and let vz, be the marginal of y on R7e. We define for all @ > 0
B(9,a,T,) = {¥ € R™|lpy, = ¥liz, < a} C R
By the definition of a Radon measure on (R7, || - ||) [see (2.9)] it follows that
(423) Ve>0, YVa>0, 3A cR7, A finite: 'y( U B(e, a,T)) >1-—¢

pEA
and since (R, || - ||z) is pseudometrisable and y is 7-smooth
(4.2.4) AM e #(RT), M separable: y(M) =1,
V ¢ € RT we have that

(4.2.5)
¥(B(9, a,T)) = inf{v(B(¢, a, T,))|T, € T, T, finite}, V> 0.
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We have, by assumption, that for all finite subsets T, of T, vy, are centered
Gaussian measures and it is well known that

(426) ‘YTO(B((p’aa TO)) = 'YTO(B(O’ a, TO)), Vazx Oa V*P € RT°

Using (4.2.3), (4.2.5), and (4.2.6) we have that for all a > 0, y(B(0, a,T)) > 0
and, consequently,

(4.2.7) y(B(T)) > 0.
Choose M in (4.2.4) and let {g,} be dense in M. We define ®: T - RN by
() = {a(2)}.

If we put the product topology on RV, then there exist {¢;} C T so that {®(¢;)}
is dense in ®(T) c RV, i.e., for every ¢ € M and all ¢ > 0 there exist m € N,
neN,and ¢t € T so that

1 — Pullr < & Pl < & +|Pn(2)],

I‘pm(t) - (pm(tn)l <e.
We define the function ¢: R” - R by

(4.2.8)

q(9) = sup |o(t,)], Vo eR”
neN

Then q is a seminorm on RZ. Using (4.2.8) we have for all p € M and all ¢ > 0
@lly < & + |@ull < 2¢ +|@,(2)| < 3¢ +|@u(2,) |
< 4e +|o(t,)] < 4e + q(9),

SO

lollr < q(¢), VoM.
The converse inequality holds for all ¢ € R” so

(4.2.9) lelr=aq(e), VoM.

Now ¢ is measurable with respect to the product o-algebra on R7. By Corollary
2.2 in [5] this c-algebra equals Za(R7). Let A = {p € RT|q(¢) < }. Then,
since A D B(T'), we have by Theorem 11.3.4 in [6] and (4.2.7) that y(A) = 1, so if
we let My= M N A then y(M,) =1 and by (4.2.9) M, C B(T) thus (4.2.1) is
proved.

If there exists a totally bounded pseudometric p on T so that y(C (T, p)) =1
statement (4.2.2) follows from Example 3.3. Let us find such a p. By (2.9) and
(4.2.1) there exists a sequence {K,} of closed, compact subsets of (B(T), || - ||l1)
so that K, c K, ., and y(K) = 1, where K = U2, K,. If we define a sequence
of functions {p,} from T X T into R by

pa(u, v) = sup{|o(x) — ¢(v)|lp € K, },
then Theorem IV.5.6 in [4] states that {p,} is a sequence of totally bounded
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pseudometrics on T. The pseudometric we are looking for is now defined by

o(,0) = % 27"(p,(u, 0) A 1),

i=1

since p is totally bounded and all ¢ € K are uniformly p-continuous. O

5. The central limit theorem. This is the main section of the present
paper.

DEFINITION 5.1. Let (S, %, pn) be a probability space, (SN, #N, uN) the
countable product of (S, &, p) and {7,} the sequence of natural projections from
SN into S, i.e., m(s) =s, for all s = {s,} € SN.

Furthermore, let T' be a set, L a subset of R7, and f a real valued function on
S X T such that {f(s)|]s € S} C L.

We say that f satisfies the central limit theorem in (L,| -|y) or f €&
CLT(L, || - ||7) if there exists a Radon probability measure y; on (L ||+ 1l7) so
that 1/ VnX™, f(w;) converges in law to Y-

REMARK. The assumption that y is a Radon measure is justified by the fact
that it is consistent with the usual axioms of set theory to assume that all finite
Borel measures on (R7, || - ||) are Radon measures.

In the definition of the CLT we use the product space (SN, &N, uN) and the
sequence of natural projections {,}, but one could ask what happens if we
replace {m,} with a sequence of independent identically distributed S-valued
random variables defined on some probability space. The next proposition gives
the answer:

PROPOSITION 5.2. Let (S, &, p) be a probability space, T a set and f a real
valued function on S X T so that f(s) € L C RT for all s € S. Furthermore, let
X = {X,} be a sequence of independent, identically distributed S-valued random
variables, with common distribution p, defined on some probability space
(Q, #, P). Then

(5.2.1) if f e CLT(L, | - ||7), ‘/— Z f(X;) converges in law to v;,

i=1

(52.2) if X is P-perfect and — ‘/— Z f(X,) converges in law to some Radon
probability measure on (L || l7), f€ CLT(L,|| - |1)-

PrOOF. Let A be any bounded real valued function on SN. Then by 11.2.1.1
and 1.2.4.4, both in [2], we have

—f*(—h)dp” < —f*(—h(X))dPS /*h(X)dPs —f*hdu"'

~



174 N. T. ANDERSEN AND V. DOBRIC
and if X is P-perfect, by Theorem I1.2.2 in [2]

[ h(x)dP= [ hdu.

The results follow now from the statements above and the definition of conver-
gence in law. O

The next theorem gives some consequences for f and v; if f € CLTRT, || - ||7):

THEOREM 5.3. Let (S, &, ) be a probability space, T a set and f a real
valued function on 8 X T. If f € CLT(RT, || - ||;) the following six statements
hold:

f is a centered, second-order stochastic process on (S, &, p) with

(5.3.1) timeset T.

(5.3.2) if T, T and TO is finite, then the marginal of v; on R is a
centered Gaussian measure,

(53.3) y(B(T)) =1,

(5.3.4) of is totally bounded, ¥V p € [0,2],

(5.3.5) v (C(T,pp)) =1, Vpe[0,00],

(5.3.6) lfllp < o0,  p-a.s.

Proor. Let T, C T be finite, fr, the restriction of f to Tj, and v, the
marginal of v, on T;. From Definition 5.1 it follows that if f € CLT(RT, || ll)
then fr € CLT(IR T, , || - ll) with the limit measure RES By Proposmon 3.7in[1]
we have that 5.3. 1) and (5.3.2) hold and that p} equals p%, where h is the
stochastic process induced by y. Now using Theorem 4.2, Theorem 3.2, and (2.5)
we get (5.3.3)-(5.3.5). Let {,} and (SN, &N, uN) be as in Definition 5.1. Then by
the Portmanteau Theorem (see Remark 2.13)

n
lim sup (MN)*(

(5.3.7) e N,” a‘/;)

<v(peRplly > a) 2,.,0,

which gives that {(1/vVn)L?, f(m;)} is eventually bounded.
Perfectness of {m,} ensures that

p*(1fllr > ¢) = (2N *(| F(m) |7 > ¢)
(5.3.8) . n-1 t
< (wV) )| > ‘2‘) (n)* ( E.lf(ﬂi) > ‘2‘),

for all £ € R and all n € N. Let ¢ > 0 be given and choose n, € N and a > 0 in
(5.3.7) so that
0|

S i(m)

i=1

>a\/17)>e/2, V> n,.
T
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If we let t = 2an, + 1 then by (5.3.8) we have that

p*(Ifllp>¢) <e,
which proves (5.3.6). O

In the definition of the CLT on (R”,]| - || ) we have not required much about f
and the limit measure y;, but the previous theorem states that f must be a
stochastic process with sample paths which are bounded almost sure, and that ¥
is concentrated on the bounded functions. Without loss of generality we shall
assume that f(s) € B(T) for all s € S and in this case, since B(T') is closed and
open in (R7,|:|l;), we have that fe& CLT(®RTZ,| -|,) if and only if fe
CLT(B(T), | - ll7); consequently we only need to investigate CLT(B(T), || - ||z)-
Since (B(T), || - ||7) is a Banach space we can use all the results from Section 3 in
[1], eg.,

ProPOsSITION 5.4. CLT(B(T), || - |lz) is a linear space.
ProoF. Proposition 3.9 in [1]. O

The next theorem is a main theorem in this paper and it gives necessary and
sufficient conditions for CLT(B(T), || - ||)-

THEOREM 5.5. Let f be a centered, second-order stochastic process on
(S, &,n) with timeset T so that {{(s)|s € S} € B(T). Furthermore, let X =
{X,} be a sequence of independent, identically distributed S-valued random
variables with common distribution p and defined on some probability space
(R, #, P), and assume that X is P-perfect. Finally let

S.= ¥ 1(X): (2, %, P) > RT.

i=1

Then the following four statements are equivalent:

(55.1) f e CLT(B(T), | - liz),
1
(5.5.2) { ﬁs,,} is eventually tight on (B(T), |- i),
1
(5.5.3) {—‘/;—Sn} is eventually totally bounded,

1
(5.5.4) there exists a totally bounded pseudometric p on T so that {ﬁsn}

is eventually uniformly p-equicontinuous.
If one of the statements holds (and hence all) then
(5.5.5) pf is totally bounded, ¥V p € [0,2],

(5.5.6) v (C(T,pf)) =1, Vpel0,c].
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ProoOF. The equivalence between (5.5.1) and (5.5.2) follows from Theorem 3.6
and Proposition 3.2, both in [1], and (2.4). If we can show that (5.5.4) implies
that {(1/Vn)S,) is eventually bounded then the equivalence between (5.5.2),
(5.5.3), and (5.5.4) follows from Theorem 2.12.

Now assume that (5.5.4) is fulfilled and let ¢ > 0. Choose 8 > 0 and n, € N so
that

€
(5.5.7) P*(wy(S,,8) > Vn) < 30 Vnzn,
and since p is totally bounded there exist {¢;}%_,, where k € N, so that
(5.5.8) VteT: inﬁp(t, t;) <é.
1<
By the k-dimensional central limit theorem there exists a > 1 so that
€
P*(r?::|sn(ti)|>a\/r7) <3 vV n=n,.
Now by (5.5.7) and (5.5.8)

P*(IS,llp > 2aV) = P*(supISn(t) —5,(t) + S,(t,)| > 2avm, j = 1...k)
teT
< P*(supISn(t) —Sy(t)| > avm, j=1... k)
teT
+P(mal)z(|Sn(tj)| > a\/ﬁ)
j<

< P*(w,(S,,8) > Vn ) + P(I?Sa;(|Sn(t,-)| > aln)

<&,

so {1/ Vn )S,.} is eventually bounded.
Finally (5.5.5) and (5.5.6) follow from Theorem 5.3. O

Let us finish this paper by giving some consequences of the previous theorem.

PROPOSITION 5.6. Let the conditions and setting be as in Theorem 5.5 and
let p be a totally bounded pseudometric on T so that {(1/Vn)8S,} is eventually
uniformly p-equicontinuous. Then f € CLT(B(T), || - |r) and v;(C(T, p)) = 1.
On the other hand, if f € CLT(B(T),||lr) and p’ is pseudometric on T
then v;(C(T, p’)) = 1 is equivalent to {(1/ Vn )S,} being eventually uniformly
p’-equicontinuous.

Proor. Theorem 5.5 and Theorem 4.1. O

ExXAMPLE 5.7. By Theorem 5.5 and Proposition 5.6 a necessary and sufficient
condition for the central limit theorem is that p,2 is totally bounded and
{a/ Vn )S,} is eventually uniformly p,z-equicontinuous. As is mentioned in Sec-
tion 1 this is exactly the necessary and sufficient condition for the central limit
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theorem found by Dudley and Philipp [3] and used by Giné and Zinn [6]. In
some contexts there exist more natural pseudometrics on 7' than the intrinsic
metric pf. Theorem 5.5 tells us that if we can show totally boundedness and
eventually uniformly equicontinuity of {(1/Vr)S,} with respect to this more
natural pseudometric, then still the central limit theorem for f holds.
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