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THE LAW OF LARGE NUMBERS FOR PARTIAL SUM
PROCESSES INDEXED BY SETS!

BY EVARIST GINE AND JOEL ZINN
Texas A & M University

This note provides necessary and sufficient conditions for the law of large
numbers for partial sum processes indexed by sets of [0,1]¢ and based on
ii.d. integrable random variables.

1. Introduction. Let X be a real random variable and let {X;: j € N%} be
a family of independent identically distributed random variables with £(X;) =
&Z(X). The partial sum processes corresponding to { X;} and indexed by subsets
A of [0,1]¢ are defined as

(1) S((X,A) =8,(4)= ¥ X;3,,(4), Ac[o1]

lil<n

where, for j = (j,..., j;) € N% we write |j| = max,_, 4/, Several central
limit theorems and laws of the iterated logarithm have been obtained for the
processes S,(A), uniformly over classes .« of subsets of [0,1]¢ under certain
metric entropy assumptions (on /). See, e.g., [1], [2], and references therein.
Actually these limit theorems are usually proved for “smoothed versions” of S,
(which we define below). It is therefore natural that there should exist a general
law of large numbers for S, and for its smoothed versions so that the CLT and
the LIL would be refinements that hold under stronger conditions. The aim of
this note is to present such a result.

For references to previous work on the law of large numbers for partial sum
processes, see Bass and Pyke [3], which contains the following interesting result.
Let 7 be a family of Borel measurable sets satisfying

2 Jimn, sup AM(A(8)) =0,

where A is Lebesgue measure and, for A € &/,
A(8) = {x eR% inf |y— x| < a}
yE€0A

is the § annulus about the boundary dA of A. Assume also E|X;| < co. Then
(3) as.— lim ||S,(X) - (EX)A|,/n%=0,
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where, if F is a set valued function, we write
(4) |F|| = sup |F(A)|.
Aey

It turns out that condition (2) is appropriate to ensure

(5) ¥ 8,,/nd - "“ S0,
ljlsn
but that if the X, are centered (note that ES (X, A) need not equal A(A)EX),
then (3) holds under much weaker conditions which are also necessary. (See
Corollary 2, Proposition 1, and Remark 2 below.)
Define, for X, X;, j € N¢, ii.d. random variables, and for finite measures A,
n € N, the processes

(6) S (X,A)= Y XA (ANI,;), Aed, neN,

l7l=n

where &/ is a class of Borel subsets of [0, i] 4 Here we assume

(7) 0 < E|X| < o,
and, letting
(8) L= {(x,...,24): (Jp — 1)/n < x, <jp/n,1 <k <d},

where j = (jy,..., J;), we also assume that {A,} is a sequence of positive Borel
measures on [0,1]¢ satisfying

(9) c/n?<A,(I,;) < cy/n® forsome ¢, >0, c, < o0, forall n €N.

In 1), A\, =ZX.8,,/n% and S,/n?=8, . The usual A, in [1] and [2] is
A, = A, Lebesgue measure.

One of our two main results states that, under conditions (7) and (9),
ISx,(X)ll» converges to zero or not independently of the law of X as long as
it is integrable; the other one gives necessary and sufficient conditions for
ISx(X)ll.»— O (as. or in probability) in terms of the size of &/ for different
metrics associated to {A,} (the size of &/ is measured by metric entropy). Let us
then recall that if (T, d) is a metric or pseudometric space, the covering number
N(7,T,d), 0 < 7 < diameter of (T, d), is defined as

N(7,T,d) = inf{m: ¢,,...,t, € T such that sup mind(¢,, t) < 7}
teT r<m

Then In N(7, T, d) is the metric entropy of T for the distance d. We will use on
&/ the distances

(A, B) = ndt- 1/p)( Y |)\n(AnInj)—)\ BﬂI,)| ) )

lJl<n

(10) Durr
l<p< A,Be¥,
(11) d,‘mw(A,B)=|r;|xaxnd|)\n(AnInj)—)\ (Bn1l,;)|, ABe,
Jl<n
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and will write
(12) N, (7, #)=N(r,o,dy ,), 1<p<ow,7>0.

Note that for any 1 < p < o0,
dasdy <4y

and therefore
(138) N, (7, ) < N, ol &) < N, (T, 0), > 0.

A, =X, <n J/,,/n then we denote d,  , simply by d,, , and N, , by N, ,,
and we have:

1/p
dn,p(A,B)=( Y 8,,.(AB)/n ) , l<p<w,A,Bed,
Jjlsn

(14)
d, .(A,B) = ’1';|)ax6j/n(A s B).
Jl=n

So, for 1 < p < o0, d, (A, B) is the Lp():ljlsn8j/,,/nd) distance between the
indicator functions I, and Ip. Note also that d, (A, B) =0 if and only
if An{j/n: |jl<n}=Bn {j/n: |jI<n}, and d, (A, B) =1 otherwise.
Hence, if

(15) A% := number of different subsets A N {j/n: |j|<n}, Ae,
we have that, for all 7 < 1,
(16) N(r,#,d, ) = A%,

The quantities A¥ were first used in connection with the law of large numbers by
Vapnik and C‘ervonenkls [6].

Finally, here is some more notation. {¢;: j € N?} denotes always, in what
follows, a Rademacher family of random variables (i.e., the ¢; are ii.d. and
Ple; =1} = P{e —1} = 3) independent of any other set of random variables
that appear in the argument where they are used. Also, we will write S, (¢, A) =
Li<ntA(ANL), AC[0,1]% (X/): je Nd} denotes always an independent
copy of (X j e N9} so that {X X/: jeN? is a set of 1ndependent
symmetric random variables that symmetnzes {X;}. Note also that S (X, A)
and S, (X, A) are written as S,(X), S, (X) and Sn(A), S, (A) when no confu-
sion is possible.

2. Results and proofs. Before stating the laws of large numbers we make
the following trivial (but convenient) observation about measurability.

LEMMA 1. Let &/ be any collection of measurable subsets of [0,1]¢,
let {?\n}n_1 be a family of finite positive Borel measures on [0,1]%, and let
{X;: JEN 4} be i.i.d real random variables with the law of X. Then for all
ne€N, ||S\(X)|l, is a Borel measurable function of the R™ “-valued random
vector X, = (X |j| < n}. If A, is discrete, the conclusion holds even if the
subsets A € « are not measurable.
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ProoF. Let C, ., < [0, A,([0,11%)]™ be defined as

Cow={(AlaNL)), : Acw).
Let D, ,, be a countable dense subset of Cn’ = Then
IS\u(X),= swp KX, 9)|= sup KX, ] =
Y€GC, » )

Y€D, »

Now we prove that, under conditions (7) and (9), the sequence ||S, (X)),
converges to zero or not, a.s. or in probability, independently of the law of X as
long as it is integrable. This is in contrast to the law of large numbers for
empirical measures ([4], [6], [7]).

THEOREM 1. Let {X;: j € N?} be i.i.d. real random variables with the law
of X such that 0 < E|X|< o0 and EX =0. Let {A,}7_, be a sequence of
positive Borel measures on [0, 1] satisfying condition (9), and let o/ be a class
of Borel subsets of [0,1]¢ (if the measures A, are discrete then the sets in </
need not be Borel). Then the following are equivalent:

@) lim,, , ISy (X)ll»= 0 a.s. (respectwely, in probability);
(i) lim, _, [IS,( (e)|| 2= 0 a.s. (respectively, in probability).

PRrROOF. Only the case of a.s. convergence is proved since convergence in
probability can be treated similarly. For 0 <M < o0 and j € N7 let XM =
X,1(|X| > M), and let X ,, = X;— XM. Then, since EX =0 and E|X]| < 00,
the strong law of large numbers m R g1ves, as in [4], Theorem 8.3, that

as.— hm hmsup”S)\(XM EXM)"

—boon

(17) <as.— hm limsup ) co| XM — EXM|/n?

M= n-owo |j<n

=¢, lim E|X™ - EXM| =
2M--»c:o

Therefore, by considering (X; 5 — EX; j;)/2M instead of X}, j € N¢ we may
(and do) assume that the random variables X; in (i) are centered and bounded
by 1.

Suppose (i) holds. Then

as.— lim IS\ (X - X, = 0.
Hence,
lim sup || S, (X — X’)||,=0 in probability.
N-oow p>N
By Lemma 1, for all N € N,

2( sup 18, (X — X)) = 2( sup 1S, (el X — XDl ).
n=N n=N
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So
lim sup ||S,\(s|X - X)) ||d= 0 in probability.
N-ow p>N "

By applying Hoffmann-Jergensen’s inequality ([5], pages 164-165; e.g., [4],
Lemma 2.8) to the random variables

Y, v={e]X; - X/N\(ANL,;):n2jVN Aco} el*(Nx),

(18) Nli_rpooE::?V ISy (el X, — X71) | = dim. E“ZJ',Y;NH =0

(Note that, although I®(N X %) is not separable, ||Y/| is a random variable by
Lemma 1.) But, by Fubini’s theorem and Jensen’s inequality,

Esup||sA X - X')|, = EIX - X|Esup (EN e)||ﬂ

This, together with (18), proves (ii).
Assume now that (ii) holds. Using convexity and the contraction principle in
[5], Corollary 4.2, applied to the variables Y; y, it follows that

Esup ||S,(X)|,< Esup |S, (X - X")],
n=N nsN
= E sup ||S>\,,(8|X - X)) ||ﬂs 2E sup ”SA,,(S) "d_
n=N n>=N

But if (ii) holds then this last expectation tends to zero as N — oo by
Hoffmann-Jergensen’s inequality. Hence ||S, (X)||,— 0 as. O

The next result gives concrete conditions on the class &/ which are necessary
and sufficient for convergence of {||S, ||}

THEOREM 2. Let X, {X;: j € N?}, {\,}, and  be as in Theorem 1. Then
the following are equivalent:

(1) hmn—»oo"S}\(X)"d_ 0a.s;

(if) lim,, . ISy (X)ll,= O in probability;
(iii) lim, _, [In NA (T .sai)]/n 0 for somep € [1, 0] and all 7 > 0;
@iv) lim, , ,[In NA (T &)]/n% =0 for everyp € [1,00] and all 7> 0.

ProoF. By Theorem 1 and (13), it is enough to prove:

(D [In N, ((m, Jzi)]/n —»0forallT>0= ||S>\(e)||d—> 0 a.s. and
an ||S,‘(e)||d—-> 0 in probability = [In N, (7, o)]/n? - 0 for all 7 > 0.

Proof of statement (I): Given 7 > 0 let &/, , C &/ be the family of centers of a
minimal covering of &/ by d, ,-balls of rad1us not larger than 7/2 and center
in «/. Then #4/,,= N, 1(1'/2 &), and, by hypothesis, for all 7> 0 there
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exists N, such that if n > N,, then
N, 1(1/2, ) < exp{r2n?/16¢c}}.

Then, since for each A € &/ there is B € &/, , such that |S, (¢, A) — S, (¢, B)| <

d,\ 1(A, B) < 1/2, the standard sub-Gaussian estimate ([4], inequality (2.17))
gives

P([s\(e) > 7} < P(IS (), > 72}

<Ny, (7/2, ) sup P{lS,\n(e, A)|> 7/2}
Ae

< 2N, ,(1/2, #)exp{ —1°n?/8¢c}} < 2exp{—1°n?/16c}}.

Therefore ¥, P{||S) (¢)||,> 7} < oo for all 7> 0 and statement (I) is proved.
Proof of statement (II): As shown in the proof of Theorem 1, if || S, @ls—0
in probability, then

(19) Tim E[, (o), = 0.

By dividing by c; if necessary, we may assume nX,(I,;) < 1. Then n°C, , isa
subset of [0,1]% (C,, ,, is defined in the proof of Lemma 1 above). Let Ln »C
[O, 1] be the convex hull of n Cn = that is,

L, .= convex hull of {x € [Oyl]ndi = (%)) 1<n>

x=nh\(ANL,),Ac).

d_
&;X; /n =0.

Let N, (7, L, ,/) be the covermg number of L, , for the distance d(x, y) =
max, ; . n|x -y % ¥ €10, 1]™". The proof of Lenuna 4 in [7] shows that there
exists (1) < oo, independent of n, such that, if

So, (19) is just

(197) lim E sup

n-ow  xeL, .,

)y

ljl=n

(20) N, .(37/2, L, ;) > exp{2n9In(1 + 1)},

then

(21) E sup | ) & /nd > [+ 1) = 1](¢r) - n7?) /2.
x€L, 4'|jl<n

Since N, (7, L, ) = Ny (7, &) for all 7> 0, if (iii) with p = co does not
hold, then for some 7> 0 there exists N, such that (20) holds for n > N;.
Therefore (21) also holds for these values of n, in contradiction with (19/). O

REMARK 1. Here is a different proof of Theorem 2 for p = 2. By Theorem 1
the law of large numbers is independent of X. So we can take x; = g; iid.
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standard normal random variables, and then S, (g8, A) =X ;. .8 A (A N L,;)is
a Gaussian process. Using Dudley’s majorization and Sudakov’s minorization as
in [4], Theorem 8.3, one obtains Theorem 2 for p = 2. Actually, Sudakov’s
minorization gives that the condition

supr®In N, ,(n%?r, /) >0 asn - o

>0

is necessary for ||S, ||, — 0. This is a stronger statement than necessity in
Theorem 2 for p = 2.

Recall the definition of S, (X, A) from (1) as well as those of d,, ,, dn s and
&% ((14)—(16)) for the case A, = ;. ,8;/,/n® In this case, Theorem 2 gives:

CoROLLARY 1. Let X and X;, j € N“, be as in Theorem 1, and let / be a
class of subsets of [0,1]% Then the following are equivalent.

() 11S(X)/n% 0~ 0 a.s;

(i) |1S,(X)/n%|,— 0 in probability;
(iii) for all = > 0 and for some (all) p € [1, o0), [In N(7, , dn p)]/n - 0;
@iv) [In A¥]/n? - 0.

Next we consider the situation studied in [3]. Here A is Lebesgue measure.

CoROLLARY 2. LetX, X;, j € N9 be i.i.d. real random variables such that
0<E|X|<owwand EX # 0. Let & be a family of Borel subsets of [0,1]¢. Then

(22) lim [|8,(X)/n¢ = (EX)A, =0

a.s. (or equivalently in probability) if and only if both,
(i) any of the conditions (i)—(iv) in Corollary 1 hold for X — EX and
(i) im,_, ,|A - Z|j|sn8j/n/nd"d= 0.
ProoF. Since
S, (X,A)/n?— (EX)A(A)
(23) =S,(X - EX, A)/n? + (EX)(Z<0,/(A)/n? — N(4)), A,

sufficiency of conditions (i) and (ii) is obvious. Suppose now that (22) holds with
convergence in probability. Then (22) also holds with the variables X; replaced
by their symmetrizations X; — X7; that is,

hm |S.(X — X*)/n?| =0
in probability. Since E|X; — X/| # 0, condition (1v) in Corollary 1 holds and

therefore so do all the others for an ii.d. set {Y;: j € N9} of integrable, centered
random variables. In particular we can take Y, = X, - EX,. So,

||Sn(X - EX)/nd"d—» 0
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in probability and (a.s.). This and (22), (23) give condition (ii) by the triangle
inequality. O

The following proposition connects Corollaries 1 and 2 with the law of large
numbers of Bass and Pyke [3] described in the Introduction.

PROPOSITION 1. Let </ be a class of Borel subsets of [0,1]¢ such that
(@) lim sup A(A(8)) =

-0 pew

Then
(i) for all > 0, sup, N, b (7, &) < o0, and
(ll) hmn—»oouzulsn j/n/n - }‘"d_ 0.

ProoF. Let us denote
r,(8) == supA(A(8)), &>0.
Aey

Given 7 > 0, let m, be such that

(24) ry(dY2/m.) < 1/8,
and let N, be such that for all n > N,

> 8,,/n - A“ <r1/8,
P,

llsn

(25)

where, for each m € N,
R,, = {B: B is a union of squares I, ;, | j| < m}.

(2) ensures m, < co. N, exists because L S,,8j/,,/n"’ - ,+«A and £,, consists of a
finite number of A-continuity sets.

Given A e/, let A, =U(L,; |jl<m,I,;C A} and A™:=U(L,;: |j| <
m,ANI,;+ @} Then A"‘\A E.%’ and A™\ A,, C A(dY?/m).

So by (24) and (25),if A € &/ and n > N,,

L 8,(A"\A)/n< ¥ §,,(A™\A4,, )/n?
(26) lJlsn lilsn
<MA™\A4,, ) +1/8 <1/4.
Then (26), the triangle inequality, and (25) give
N, 7, ) <N,(/4, %, ) < N(7/8,#,,,\), n=N,
where we denote N(7, #,,,A) == N(1, %, d,) with d,(A, B) = A(A » B). But

N(7/6, Z#,,, M) is independent of n. This proves (i). The proof of (ii) follows
along similar lines and is omitted. O

REMARK 2. The previous proposition is a source of examples of classes
satisfying Corollary 2 (and therefore also Corollary 1). Here are some trivial
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examples of (a) classes of sets that satisfy Corollary 1 but not (22) and (b) classes
that satisfy (22) but not condition (2). Let B, c [0,1], r € @ N [0,1], be Borel
subsets of [0,1] and let A, = {(x, y): x =r, y € B,} € [0,1]° Define

/= {A: Aisaunionof A,’s}.
Then A¥ < 2" (= 2" if B, N {k/n,1 < k < n} # ¢ for all n) so that
[in &%]/n2 >0
and Corollary 1 holds. If B, = Q N [0,1] for all r, then

K4

ljl<n
and (22) does not hold. If B, = @° N [0,1] for all r, then
ljlsn o

but condition (2) fails to hold.

If A, =p, n €N, in Theorem 2 (e.g., Lebesgue measure as in [1] and [2]),
then

d)\,,,l(A7 B) = E IF‘(A N Inj) - ”(B N Inj)|

lJl=n

(27) < Y #((AnL,;)s(Bn1L,))

ljl<n
= p(A 2 B), n€N.

So, if we let N(r, %/, u) denote the covering number of & for the distance
d(A, B) = p(A 2 B), then (27) and Theorem 1 give the following:

COROLLARY 3. Let {X;: j € N%} be i.i.d. with E|X;| < o0 and EX; = 0. Let
p be a positive measure on [0,1]¢ such that for some ¢ < o and for alln € N
and |j| £ n,

p(I,;) < c/ne
Let o be a class of Borel measurable subsets of [0,1]¢ such that
(28) N(7,s,p) < o0
for all + > 0. Then

=0 a.s.
4

(29)

)> le"‘(' n Inj)

ljl=n

n—oo

REMARK 3. (i) Condition (28) for 7 is equivalent to &/ being relatively
compact in L () (as a class of indicator functions).

(ii) Arguments similar to those in Proposition 1 show that if ./ satisfies
condition (2) for p (instead of ) then it also satisfies (28) and therefore (29).
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(iii) But condition (28) is not necessary for the law of large numbers (29) to
hold. To see this let %, C [0,1] be the class of all Borel sets of [0,1] and let
&= {Bx[0,1]: Be %,} c[0,1]% Let p=p, = Lebesgue measure on [0,1],
and let p? = p2 = Lebesgue measure on [0,1]?, n € N. Then, since %, is not
totally bounded in L (p), neither is o/ totally bounded in L,(p?): that is, (28)
does not hold for « and p2. However, for 7 > 0,

Ng (r,#)=N, (1,8) <N, (r,8)<([+']+1)",

and therefore,
[hl N, (7, .sa{)]/n2 -0,
showing that the pair (=, p?) satisfies the law of large numbers (29).
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