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THE CENTRAL LIMIT THEOREM FOR EXCHANGEABLE
RANDOM VARIABLES WITHOUT MOMENTS!

By MicHAEL KLASS AND HENRY TEICHER

University of California, Berkeley and Rutgers University

If {X,, n>1} is an exchangeable sequence with (1/5,C7X; - a,)) —
N(0, 1) for some constants a, and 0 < b, — oo then b,/n* is slowly varying
with @ = 1 or ; and necessary conditions (depending on «) which are also
sufficient, are obtained. Three such examples are given, one with infinite
mean, one with no positive moments, and the third with almost all condi-
tional distributions belonging to no domain of attraction of any law.

1. Introduction. Exchangeable random variables {X,, n =1, 2,...} have
long been recognized as a natural generalization of i.i.d. random variables and
the de Finetti representation of the corresponding probability measure [5] in the
case of an infinite sequence has played a fundamental role in the subject. In
particular, this has paved the way for a central limit theorem for exchangeable
random variables with finite variance under the classical normalization 1/ Vn .
Specifically [1], if EX, =0, EXZ=1, then Z((1/Vn)L!X,) - N@©,1) iff
Cov(X,, X,) = 0 = Cov(XZ, X}). Contrary to the ii.d. case, a central limit
theorem may also obtain under the normalization 1/n. Specifically [9],
if EX, =0 and Cov(Xi, X,) =p >0, then Z((1/np)IrX;) » N(,1) iff
EX, X, --- X, exists and coincides with the 2th moment of a standard normal
distribution for all &2 > 1.

Suppose, however, that nothing is stipulated about finiteness of moments.
Under what conditions will there exist constants @, and 0 < b, - oo for which
L((1/b,)X-1X; — a,)) = N(0,1) and which normalizations b, are permissible?
It turns out that b,/n* must be slowly varying with & =  or 1 and Theorem 2
gives accompanying necessary and sufficient conditions.

In contradistinction to the i.i.d. case, a central limit theorem can be obtained
for exchangeable random variables with infinite mean. An example is also given
of exchangeable random variables obeying a central limit theorem for which
almost all distributions of the conditionally i.i.d. sequences do not belong to the
domain of attraction of any law.

2. Mainstream. Let S,=1X7_ X, n > 1where {X,, n > 1} is a sequence of
exchangeable r.v.’s on the probability space (2, #, P). Then {X,, n > 1} are
conditionally i.i.d. given some o-algebra ¥ Cc # and ([3], Corollary 7.3.5) there
exists a regular conditional distribution P* given ¢ such that for each w € Q the
coordinate r.v.’s {§, = &5, n > 1} of the probability space (R®, B®, P¥) are i.i.d.
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THEOREM 1. If there are constants 0 < b, — oo and a,, for which

Sn —a,
(1) L\ — | 2 NO,),
then there exists a positive sequence ¢, |0 such that

Snn —a,
@ 2| 22| - N,
where
(3) Son = Z Xjn = E XjI[|Xj|senbn]'

Jj=1 Jj=1

The decisive portion of the proof is contained in

LEMMA 1. Under the hypothesis of (1),
n- P{|¢] > ¢b,} =50, e> 0.
ProOF. Let T,* =Y7_,£* where {£{*, j>1} is a symmetrized version of
{§;, J = 1}. Then for any ¢ > 0 and & > 0, via (1)

(2/ﬂ)1/2e—(ks)2/2 )
- > lim P{|S, — a,| > keb,}

(4) > 111msupr‘°{|T*| > 2keb,} dP

n— oo

1 hmsup/P { §¥ 1 x> v, > 2keb } dP.

n—oo

Define 7 = inf{1 <k < n: £%_ piex1> e5,1 2 2k} and oo if no such integer exists
and note that

n T
Pw{ Z gj*I[lﬁfl>€bn] > 2k8bn} > épw{ Z gJ*I[I€1*|>8bn] > 2k€bn, T< n}
Jj=1 Jj=1

> 27 CGk+Dpels < py,
Now if Y,,,...,Y,, are iid. with
PAY, =1} =8/n=1- P{Y, =0},
then on the set A, = A,(¢,8) = {w: nP{|£F| > eb,} > &)

Pe{r<n}>P* { 2 Tygrs 5,1 = 2k}

j=1

k,—08 1
> Pe{Y, + - +Y,, > 2k) = (2k)!+o(;)
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via monotonicity and the Poisson approximation to the binomial [7] so that via

)

12\ (ke)? /2 @k+2)
—| - e (*)7/2 > limsup 2~ @** Pelr <n}dP
ke(w) n_,oop '/;1,, {T }
272(8/2)*e?
> — " limsupP{A,},
@Ry meupPiA)

implying as £ — oo that for all ¢ > 0, § > 0,
P{w: nP*{|¢¥| > ¢b,} > 8} = P{A,} = o(1),

as n - .
Next, if m(-) denotes a median and D, = {w: |m(£,)| < b,e/2}, clearly
P(D,} -» 1 as n — oo. Thus, for all ¢ >0, § > 0,

8 8
nli_EI:OP{w: Po{|g,] > ¢b,} > ;} lim P{Dn n [P‘"‘{|§1| > eb,) > ;]}

eb, 6
< lim P{w: P“’{|£1 -m(§)]> —} > —}
n— oo 2 n
< lim P{w: P|¢¥ by i 0

: >—3)>—) =
e {“’ {' > } 2n} ’

yielding the lemma. O

ProoOF oF THEOREM 1. According to the lemma, lim, _,  P{B, (¢, )} = 0, all
e> 0, 8 > 0, where B,(¢,8) = {w: nP{|§,| > eb,} > 6}. Hence, there exists a
sequence ¢, | 0 for which lim P{B,(¢,,08)} =0, all § > 0. Thus,

n— o

P{S,+8S,,} < P‘“{ U (i€ > e,0, }dP
(5) '/ j=1[ ! ]

< P{B,(&,,8)} +8—,.,8—5.00,
so that (S, — S,,,)/b, = p 0 whence (2) follows via (1). O

Define
J J
(6) Tno= Zgi,n,mE ng’lugﬂs.e.,,b,,], 1<j<n,
i=1

i=1

where ¢, is as in Theorem 1 and set

2 _ 2 _ 2
v2, = E“(T, a,,), n=x=1.

nw

(7) a,,=E“T,

nnw?’

As usual, ® will denote the standard normal distribution function.
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LEMMA 2. Under the hypothesis of (1),

(8) lim 4®(v;wl[bnx - (an, — a,)])dP = ®(x), allx.

n—oo

ProoF. If Z is a standard normal random variable independent of , (8) may
be recast as

. VUpe ap, — ay,
9) lim P“’{—Z + —< x} dP = ®(x), all x.
n—oo b, b,
Set
v a, . —a T —a a, —a
an — ﬁz + nw n , Unw — nnw nw + nw n
bn bn bn bn

Theorem 1 ensures that
lim [P{U,, <x}dP=(x), alz,
n—oo vQ
and so to verify (8), it suffices to prove that as n = o
(10) [1P{Z,, < x} = P(U,, < x}|dP = o(1).
Q

Define A, = {w: v,, < £2b,}. Now,

[ 1P(Z,, < x} = P*{U,, < x}|dP
A,

(¥ —Qa
< | PY|=2Z| > /4 dP + [ pel| 2R el s g4l gp
= Ln { b En }d ‘/‘;n { bn 8” }
a - Qa
+ | pel|Be__m_ 1/4\ Jp
Ln { bn * S 8” }

© _ © nne — Qpg

< jAnP (12| > e/} dP + 2/AnP { b, > 811/4} dpP

Tn Qro — ay
+ - X
b

n

ne — @ne
b,

+ f P < 26/4) dP
Q

<o(1) + 2f &, %02, /b2 dP + ®(x + 2el/*) — ®(x — 2¢/*)
An

<o(1) +2 j /2 dP = o(1).
An
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On the other hand, via the Berry—Esseen theorem, setting x,, = (b,x — a,,
+a )/ nw’

[ 1P*(2,, < x} - P*(U,, < x}|dP
An

Tnnw ~ CQpy
= [ [Pz <x,,) - P e < aP
Aj, Une
nElgnlw - E'snlwl3
< dP
/c D’?;w
2¢,b
< "2 dP < 2% = 0(1),
A5 Upy
proving (10) and hence the lemma. O
COROLLARY 1. Under (1),
-a, o b2 »
lim /E exp lt(—b——) - b2 0 dP=e "2, allrealt.
n—oco 'n

LeEMMA 3.  Under the hypothesis of (1), {v,,/b,, n = 1} and {(a,, — a,)/b,
n > 1} are tight sequences.

ProoOF. Apropos of tightness of {v, , n = 1}, the stronger result
(11) lim P{w: v, ab } =0, fora>1,

n— oo

nw—

will be proved. To this end, note that on B, = {w: v,, > ab,}
Elgnlw - E§n1w|3 2enbn 28

_— = 1
nl/Z(v,%w/n)g/2 T 4 = a o(1)-
Thus, if A, = B{w: a,, > a,}, via Theorem 1 and the Berry—Esseen theorem,
for y >0
1-®(y) > limsup/ P(T,,.,— a,, > b,y} dP

n-oow ‘A4,

b, E - FE 3
> limsup/ [1 - Q(Z—'—l)] dP — limsup/ o = Bl dP
A,

n— oo Unew n-oo YA, n1/2(0’2m/n)3/2

> llmsupf [1-@(y/a)] dP = [1 — ®(y/a)]limsup P{A,},

n—oo n— oo

implying as y — oo that lim,_,  P{A,} = 0 for « > 1. Analogously, commencing
with ®(—y), it follows that P{B,[w: a,,6 < a,]} =0(1) as n - oo and (11)
follows.
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To verify the second portion of the theorem, let D,(C) = {: |a,, — a,| >
Cb,} and suppose there were positive sequences n k 100, C, 100, and a pos1t1ve
number § such that P{D,(C,)} > 8, k> 1. If Z is as in Lemma 2, it follows
therefrom for x > 0 that

20(x) — 1= lim /P“’{lv,mZ +a,,—a,| <b,x}dP
n—o0 JYQ

Z+a,,—a,|<b,x}dP

Vnpw nyw nkl ny

sl—8+limsupf P‘“{|

k—ow *D,,

<1-8+2limsup [ P*{aZ <x - C,) dP
k— o0 D"kB’fk

. x =G,

<1-46+ 2limsup® =1-38
k— o a )

via (11) and yielding a contradiction as x — co. Thus, {(a,,, — a,)/b,, n > 1} is

a tight sequence. O )

Let {X*, n> 1} be the symmetrized version of the interchangeable process
{X,, n = 1}. That is, if {X{", n > 1} is an exchangeable process with the same
ﬁnite-dlmensmnal dlstnbutlons as {X,, n>1} and is defined on {Q,, %, P)
where (Q;, #, P), i=1,2, are coples of the original probability space
then X* = X(l) —X(z), n>1, is defined on (@, #, F;) where O =@, X Q,,
F=F, X F, is the product ¢-algebra and P, = P X P is the product measure.
Moreover if 9=9¢,i=1,2 and P is the regular conditional distribution
given ¥, (such that for each w; € ,, the coordinate random variables £2, n > 1,
of (R®, B®, P“) areii.d.), then Py = P“1 X P“2 is a regular condltlonal distri-
bution given ¥ = ¢, X ¥, and £2 = {91 — €92, n > 1, is the symmetrized version
of the original i.i.d. random variables.

Defining S;* = £*_, X *, (1) ensures

(12) 2(8*/b,) > N(0,2).
Moreover, setting

— 1 2
X = XPInxo < o6 = XPIxe) <.,

E % 1<kx<n,
where ¢, is as previously deﬁned, it follows via (5) that

P{Sx + S} < Pz{ U [IX® > e,b,] U U [1Ix®) > e,,b,,]}
j=1 j=1

< 2P{ LnJ [Ixm) > snb,,]} =o(1),

J=1
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which, in conjunction with (12) guarantees
(13) Z£(S¥,/b,) = N(0,2).
For i = 1,2 define

(14) ET, 2 —E[T, ,. - ?
ak,n,w, k,n,w;? vk,n, w; [ k,n,w, ak,n,w,] ’
— 2 — 42
an,mi - an,n,mi’ Dn,wi = Onn, w0

Since, for each w;, {£5l[ ¢ <c,5,1» B = 1} areiid,, for any a > 0

(15) U%an],n,wi — [an] Sa a[an],n,wi _ [an] oy
vﬁ’wi n ’ Qp, o, n

Furthermore, for any distinct, positive numbers «;, a,, a3 and any sequence
N, of the positive integers, there is a further subsequence n, — oo for which

(16) b[ajnk]/bnk - qja}/z’ .] = 1:2’ 3’
as k — oo where ¢; € [0, 0], j =1,2,3.

LEMMA 4. Under (1), the random vectors

2 2 1/2
{(anwl - anm2 (vnml + vnwg) ) n> 1}

b ’ b

n n

are tight relative to the product measure P,.
ProoF. Via Lemma 3, for any e > 0, C > C, and all n > 1,
P2<(anw1 - anw2)2 + (Dgwl + 0302) > 802b)%}

nw,

< P(@pa, = ) > 4C%82) + By (02, + 02,,) > 4C2b?}
<2P((a,, —a,)" > 262} + 2P(o2, > 2C?2) <. 0

Just as (2) of Theorem 1 implied Lemma 2, so its counterpart (13), or more
precisely,

(13,) "?(S[’Zn], n/b[an]) - N(O’ 2)’

guarantees for any a > 0 that

b[an]x - (a[an], W Qrany, wz)
)1/2

17)  lim o

n— o0 JQ xQ,

ol

2 2
(”[anl, o, T Vlan, v,
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or equivalently

2 2 1/2
(v[‘!”]» Wy + D[an]y ‘02)

YA
bran)

lim P

n—o JQ XQ,

17’)

Aanl, 0, ~ Aand, w, ( x )
+ <x)dP,=®| —=|,
B an] 2 V2

where Z is a standard normal random variable independent of w.
In view of Lemma 4, there is a subsequence such that the random vectors

1/2
2 2 _
(an"‘"l + an»‘%) ank»“’l ankv"’2
(18) b ’ b _)’g(R"’l""f C"’lv ‘02)'
ng Ny

Then as already noted, there is a further subsequence (also denoted by n,) such
that (16) and (15) hold for a,, a,, a;. Hence, via (177), (18), (16) and .(15)

x
(19) fﬂP"’{wa%Z +a/%C, . < qjx} dP, = Q(ﬁ),
for j =1,2,3 and all real x where (R, C) is a fictitious random vector, indepen-
dent of the standard normal variable Z.
Moreover, in view of (11) of Lemma 3, the distribution, say F, of R cannot
assign positive mass to {R > 2}. Consequently, expressing (19) in terms of
moment generating functions,

(20) exp[qft“’/aj] = /(;2exp[t2r2/2aj]Mr(t) dF(r),

where M (t) = E{e°|R = r}.

Let 1 = ¢, < a, < az. Then A/a; + (1 — A)/ag = 1/a, for some A in (0,1)
and as a; — 00, S0 A = a,/a,. Hence, via (20), denoting the moment generating
function of C by M(¢),

exp[g}t*/a ]

[Lzexp[t2r2/2a1]M,(t) dF(r)]}‘[.[02exp[t2r2/2a3]M,(t) dF(r) o

Sy | [feplert 2] ) ()| (1]

exp|”/a, | (Mc(2)) ™,

whence, since q = g(a),

(21) Mq(t) = exp[t2 [%”, for a > 1.

Hence, for some constant o,, depending on {n,}, «; and ,, necessarily
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q%(a) =1+ (2/2)(a — 1) for @ > 1 implying

(22) Mq(t) = exp[t2o(,2/2]
and
2 _
@m.faﬁﬂﬂmdmundmﬂ=wmbfﬁ- ! %ﬂ)} a1
0 2 a

Differentiating (23) with respect to a, cancelling factors of ¢2/a?, and setting
t = 0 for £ = 1 or differentiating and cancelling again (before setting ¢ = 0) for
the case k& = 2,

fzrz"dF(r) =(2- ooz)k, k=1,2,
0

so that the distribution of R? is degenerate at (2 — o2) for some oZ in [0,2]
while according to (22), the distribution of C is N(0, o2).
Thus, setting
02 2

o T Vo no, nw‘
(24) R2=Ri,w= ~ 2 - 2’ C = Cn,w= : 27
b2 b,

every subsequence {N,} of positive integers has a further subsequence {r,} such
that for some oZ in [0,2]

(25) 2(R2,) > 8,_, 2(C,)~ N(0,02),

and so in view of Lemma 3, for some subsequence n,

ank,wl_ank 002
(26)  2(02, /b)) > 8y £ —5—=| > N0, |.

Ny

Next, it will be shown that ¢, is almost surely independent of w,, w,, and of
the subsequence.
Suppose that R, —p, ry. According to (25),0 < r, < V2 and moreover

r
" [a(1 - r2r2) + 122

If r, = V2, then r, = V2 whence R, —p, V2. On the other hand, if r, < V2, it
will be shown that r; =0 and so is 1ndependent of the subsequence. Suppose
rather that 0 < r, < 2. Since Ri4n,12p, 7. and 1, > 0 as a > co, we may
define integers k() such that

P{|R; ;= il > 1/j} < 1/j, j=1,

whence, setting m; = jk(j), necessarily R,, —p 0.
In view of (27), hm sup R, > r;/2 with probablhty one, implying

R,
(27) R[an,,] - q(ak) - 1/2 =Ty (Say)'

fi= lnf{n >m;: R, > 2r1}

is a bonafide random variable, j > 1. As earlier, the subsequence {[}f;]} has a
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further subsequence [%fij] with
Ry —p, T
Since f;/m;—> o and R, < 3r; for m; <n <f{;, necessarily r* < 3r,. Conse-
quently,
r*

R, 1
Ll P [9(1 - e y2) + re 2]

* < 1
<r*<jin,

contradicting the definition of f. Hence, r, =0 and R, —p 0. It follows that
the only permissible values of o2 in (25), (26) are o2 = 2 and 0.

Note via (27) that when r, =0, g(a) = Va implying b(,,; ~ g./a b, = ab,
so that b,/n is slowly varying. Alternatively, if r, =2, g(a) =1,
implying b(,,; ~ Va b,, whence b,/ Vn is slowly varying.

Thus the value of ¢, is independent (a.s.) of (w;, w,) and we have established
the necessity portion of

THEOREM 2. If {X,, n > 1} is a sequence of exchangeable random variables
with

n\i=1

(28) .sf(bl( ix,.—a,,)) - N(0,1),

for some constants a,, b, where 0 < b, - oo, then there exists a positive
sequence ¢, |0 such that

(29) npw{lgll > snbn} ~p 0.
Moreover, either b,/n'/? is slowly varying with

ap o~ Qy

b

n

(30) t)n,m/bn -p 1’ -p 0

or b,/n is slowly varying and

a a,
(31) 0n. /b = p 0, .S,P(”""T) - N(0,1).

n

Conversely, if there exist sequences a,,0 < b, = oo, ¢, |0, such that (29) and
either (30) or (31) hold, then (28) obtains.

Proor. It suffices to verify sufficiency and in view of (29) it is enough to
establish (28) with XX, replaced by S, , as defined in (3).
If (31) holds, recalling the notation of (6), (7) and setting

E,=[w: PYT, . .~ a,. >¢b} >8], 8>0,
P{E,} < P{v? ,> 8¢2b%} = 0(1),
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as n — o0, whence

Snn_an pe Tn,n,w_an dP
P —z—<x —f b—<x

n n

Tn,n,w T Une

>e}dP+8

a,,—a
sP{M <x+e} + P{E,} + 8,
implying

Snn_ a,
limsupP{ ———— <x) < ®(x +¢) + 8.
n—oo b

n

In similar fashion

Snn_ a,
lim sup P: — 2F <1-®(x—¢)+39,
n—oo

n

yielding

Snn_ an
limian{— < x} > ®(x —¢) — 6.

n— oo bn

The desired conclusion now follows from continuity of ® and the arbitrariness of
¢ and 6.
Alternatively, if (30) holds, setting

D,={w:(1-8)b,<v, ,<b(1+0),la,,—a,l=<8b}, 6>0,
clearly, P(Df} = o(1) as n = c0. Now
S. —a T —a b a,, —a
P{ nn n <x} — wa{ n,n,w nw < _Ll:x _ ( nw n) “} dP
Q bn

bn an Dn W

po Tume = 240} 1y pp
< ® Ny < c
<, — (D5)

Dn W

pof Tume = 248} W p
< © » 1ty < c
< [ - 5 (Ds},
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implying S,,.,—a x+38
ﬁﬁsgpP{% <x} < <I)(1 — 8)
Analogously,
S,,—a, x—39
iminf X —— <x} > (II(
n—o bn 1+46

and the conclusion follows as § —» 0. O

Note that sufficiency of (29), (30) may be recast as
nPw{lgll > 8nbn} ~p 0

1
(32) b_ [nEw&lI[lellsenbn] - an] _)P 0’
52 5 Var (602 0,0) 1
In contradistinction to the i.i.d. case, (28) does not require a finite mean.

ExampPLE 1. Let {Y,Y,, n>1} be iid. random variables with Y as in
Theorem 4 of [6]. Then E|Y| = oo and there exist slowly varying, positive
constants b,/n 1o for which 1/5,X7" |Y; »p — 1. Thus, if X, = 0Y,, n>1
where w is a standard normal variable independent of {Y,,, n > 1}, clearly {X,,

n > 1} is exchangeable with ((1/5,)X%_,X;) = N(0,1) but E{|x||w} = oo for all
w # 0.

By slightly altering an example suggested by the referee, it is even possible for
X to lack all moments despite the fact that its partial sums can be normalized to
converge to a standard normal, as we now illustrate:

ExAMPLE 2. Let {Y;} be exchangeable random variables obtained by a 2™
weighting on the distribution F,, which are symmetric and put mass ; at the
points m™ and —m™. Then

n
lim P(n‘l/2 Y Y.< x)

[o¢] n
lim Y 2""P,-,~“(n'1/2 Y Yin)

o0
= Y 27m®(xm™™),
m=1
a mixture of normals. Now let Z,, Z,, ..., be ii.d. symmetric random variables,

independent of (Y}, such that for some b, with n='/%b, - o0, £7_,Z,/b, =,
N(0,1). Finally, put X; =Y, + Z;. Then {X } are exchangeable, E|X 1% = o0 for
all « >0, and X7_, /b _1Zj/b —p Osothat X7, X,;/b, >, N(O 1).

It is possible for a sequence of exchangeable random variables to belong to the
domain of attraction of a normal distribution yet conditionally on w (for almost
all w) not belong to the domain of attraction of any law:
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ExampLE 3. Let {a,}, {q,} be positive sequences such that

0
1/2 -2
an+l/n/an_)°o’ Ean <1’
n=1

- 0
an]-7 Eqn=°°7 qu_)oy Eqr2z<°°

n=1 j=n n=1

and define
&= lﬂg‘.l(jwhwﬁl] + Igpmor) Ivi=ap:
where {Y;} are ii.d. random variables with
P(Y,= ta) =a}, j=1, P(%,=0}-1- ¥ 1/a,
j=1

while {w;} are independent random variables, independent of {Y;}, satisfying
P{wj=1}=qj=1—P{wj=O}, Jj=1.

If X,, n>1, is an exchangeable sequence which, conditionally on « =
(wy, @y, .. .,), is distributed as £, n > 1, then setting

b, = sup{b: nE(YZ A b%) > b%},

(b, 'L, X;) = N(0,1) whereas the distribution of £“ is not in the domain of
attraction of any law for almost all w. Of course, the only possible candidate is a
stable law.

To verify this, note at the outset that for all £ > 1

n?* -1 E [ n¥-1
Z q;= E Z q; = o(1),
Jj=n i=1| j—p?"

whence there is a sequence &, — oo with e*» slowly varying and

n¥"-1 n—-1
Y g;=o0(1) or Y g;=o0().
j=n j=[n'/*]

Define

B,= N {0=0), A,={o,=1).

J=[n¥*]

ProrosITION 1. P{A,B,,io0.} =1.

ProoF. Since X¥.,P{A,} = X%_.q,= o, P{A,, io} =1 and so
P{U’~,A}>1—-1/n for some integer j, >n, n>1. In view of P(B,} =

J=n
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l_lj"_nl/h,,(l - qj) ~ exp{— Z"Vk,,qj} - 1, setting 7, = sup{j: «; =1 for
n<j<j.)

{UAB} >P{A,B, )= Z‘,P{'r =Jj, B} = :fP{'rﬁf}P{Bj}

J= Jj=n

>(1+ 0(1))p{ L'JA,.} —1+0(1)

so that P(A,B,,i0.} =1.0

n—n’

PROPOSITION 2. For almost all v, the distribution of £° is not in the domain
of attraction of any (stable) law whereas the distribution of Y is in this domain.

ProoF. For fixed w (in a set of probability one), there is an increasing
random sequence j, such that A; B; occurs, n > 1. Since w; =1 and w; =0,
Wk <0<,

2 = 2
EtTip <-1/ma) = BT cap -1

Jl/k”' Jn_l
o| X @iy + Z a{Iy)-a,
i=1 Jn Jn
J:/kj" jn
= Z i+ Z 1 ~jn’
i=1 ‘,"1‘/’%‘,l
U= YmaiP{e > (o= 1/mad) G- DafP(¥I=ay)
E ¢ I [§% < (p—1/n)a} ] h Jn ’
whereas
(J, + l/n)af"P“’{g2 > (j, + l/n)a]?"} _ Jnal/al o
E 8T < er/mal,) 2Jn ’
implying the initial portion of the proposition. Apropos of the latter part, for
a,_ <t<a,

2P(|Y|> ¢t}  2t%*/al 2
< <

- 0. O

Define an increasing sequence of integers m, — oo so that
a,<b, <a,,.

PROPOSITION 3.

mn
-1
bm,, Z XiI[X,-zan"na?"l/kn]] -p0
i=1
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and

mn
-1
bmn E YiI[lyilsa[nl/”"]] —~p0.
i=1

ProOF. Denoting the former by U, and the latter by V,,

nl/kn
— 2 - .
'EUn2 = EbmfmnEu(sw) I[|Y|sa["l/"n]] < bm,,2mn Z l
i=1
n2/k,, n2/k,, n2/k,, (1)
< < = =0
E(Y*ABL )~ EYflyycay  n

and

2
EY*Lyy <o) [n2/%n]
2 —3
EY Iy <a,

E‘/n2 = b"_tfmnEY2I[|Y|Sa[n1/k"]] < = 0(1). O

PROPOSITION 4. #(b,'E7Y;) - N(0,1) and there is a sequence 8,0 for
which m,P(|Y| > §,b, } = o(1) asn > 0.

Proor. The first assertion is immediate via Proposition 2 while

P{]Y| > ¢t} < 2¢72 for all large ¢ ensures
2 2

<
82E(Y2 A b, )" SEYIyy<e,

2m
m,P(|Y| > 8b,, } <

82b3tn = d 0,

yielding the second. O
PROPOSITION 5. Z(b; 'L ,X;) » N(0,1).

Proor.

mn
P{ U [XiI[|Xi|2a[,,1/kn]] #* Y;I[|Y¢|2a[nl/kn]]]}
i=1

mn
< P{B,fU U ¥ > s,,bmn]} < P(B¢} + m,P{|Y| > 8,5, }
i=1

= o(1),

whence via Propositions 3 and 4
mll
.?(b,;: Y X,.) - N(0,1).
i=1

However, for every subsequence {n’} of the positive integers there exists a
further subsequence m;, such that if a; < b,, < a;,, then b,, > a,,,. Hence,
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from the above

.z’(b,;,nl Yy X,.) - N(0,1).

i=1
Consequently,

n
z(b,;l Yy X,.) - N(0,1). o
i=1
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