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MULTIDIMENSIONAL REFLECTED BROWNIAN MOTIONS
HAVING EXPONENTIAL STATIONARY DISTRIBUTIONS!

By J. M. HARRISON AND R. J. WILLIAMS
Stanford University and University of California, San Diego

We are concerned with the stationary distribution of reflected Brownian
motion (RBM) in a d-dimensional domain G. Such a process behaves like
Brownian motion with a constant drift vector p in G and is instantaneously
reflected at the boundary, with the direction of reflection given by a non-
tangential vector field v on dG. We consider first the case where G is smooth
and bounded and v varies smoothly over dG. It is shown that the RBM has
a stationary density of the exponential form C(u)exp{y(p)-x} for each
p € R? if and only if v satisfies a certain skew symmetry condition. An
explicit formula is given for y(p) in terms of v and p.

Motivated by applications in queueing theory, we next consider the case
where G is a convex polyhedral domain and o is constant on each face of the
boundary. Postponing for now the treatment of certain foundational ques-
tions, we work directly with a basic adjoint relation (BAR) that appears to
characterize stationary distributions for a wide class of RBM’s in polyhedral
domains. This analytic relation is motivated by formal analogy with the
smooth case and will be rigorously justified in later work. As in the smooth
case, it is found that (BAR) has a solution of exponential form for each
u € R? if and only if v satisfies a certain skew symmetry condition. More-
over, under a mild nondegeneracy condition, it is shown that an exponential
solutic;n exists for one p € R? if and only if such a solution exists for every
p € R,

1. Introduction. This paper is concerned with the stationary distributions
of certain d-dimensional diffusion processes. These processes are called regulated
Brownian motions in [3], but here we revert to the name reflected Brownian
motion (abbreviated as RBM), which has been used in most previous work [4-6,
8, 10, 11, 16-18, 20-22]. Roughly speaking, an RBM behaves like Brownian
motion with constant drift vector p in a d-dimensional domain and is instanta-
neously reflected at the boundary of the domain, with the direction of reflection
given by a nontangential vector field on the boundary. Two classes of RBM’s are
considered here. First we consider those in smooth bounded domains with
smooth reflection fields, for which there is a well-developed theory of existence
and uniqueness. (This will be referred to hereafter as the smooth case.) Then,
motivated by applications to queueing and storage theory [3, 12, 13, 20], we
consider RBM’s in convex polyhedral domains with constant direction of reflec-
tion on each boundary face. (This will be referred to hereafter as the polyhedral
case.) Except when (a) d=1, or (b) d=2 and p =0 [18], only sufficient
conditions for existence of RBM’s in polyhedral domains are known [6, 10, 16].
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Here discussion of the polyhedral case is restricted to the study of a certain
purely analytic problem, with consideration of probabilistic questions postponed
to a subsequent paper [23].

When d = 1, the stationary distribution for an RBM on a bounded interval
has a density of the exponential form Cexp{2px} for some C > 0. In general, no
explicit formula is known for the stationary distribution of an RBM when d > 2.
However, it is natural to ask under what conditions an analogue of the one-
dimensional formula prevails in higher dimensions. It is shown in this paper that,
given a smooth bounded domain G for an RBM and a smooth reflection vector
field v on dG, the following two statements are equivalent:

(@) for each p € RY, the stationary distribution of the RBM with drift p has
a density of the exponential form

(1.1) C(p)exp{v(n) - x},

where y(p) € R? and C(u) > 0;
(ii) the reflection field v satisfies the skew symmetry condition

(1.2) n(c*) - q(o) + g(o*) - n(s) =0, forallo,s* € 4G,

where n is the inward unit normal vector field on 3G, q is a tangential vector
field on dG, and the reflection vector field is v = n + q.

The sharpness of this result is illustrated with examples. First (see Example 5.3),
there is a reflection vector field that admits a stationary density of exponential
form for one but not all p € R% Second (see Lemma 3.1 and Examples 5.1 and
5.2), the skew symmetry property implies that the tangential component of the
reflection vector field is divergence free, but the converse implication does not
hold, unless d = 1, or d = 2 and G is connected.

Our study of the polyhedral case is motivated by the fact that RBM’s in
polyhedral domains arise as diffusion approximations for queueing network
models [12, 13, 20]. For such approximations to be useful, one must calculate
interesting quantities for the approximating diffusion processes, and stationary
distributions are the usual focus of attention in queuing theory. From experience
to date it is clear that no simple general formula exists for the stationary
distribution of an RBM in a polyhedral domain, and so it is natural to look for
special cases in which explicit calculations can be done. The simplest imaginable
type of stationary distribution is one having the exponential form (1.1), and our
original goal was to determine necessary and sufficient conditions for the sta-
tionary distribution of an RBM to have this form in the polyhedral case.

Note that (1.1) describes a product form density function, by which we mean
that p(x) is a separable function of x,,..., x,. Virtually all tractable models of
queueing networks have product form stationary distributions [9, 14], and
preliminary investigation suggests that the RBM’s obtained as limits of such
product form queueing networks all have stationary distributions of the ex-
ponential form (1.1). Much more important, however, is that the RBM ap-
proximating a queueing network model may have an exponential stationary
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distribution when the original model is intractable. Examples of this phenom-
enon are provided by Peterson [12].

In the smooth case, an RBM can be defined using the machinery of Stroock
and Varadhan [15], and a smooth probability density p is a stationary density
for the RBM if and only if it satisfies a certain integral relation [see (ii) in
Lemma 2.1]. Unfortunately, study of the polyhedral case is complicated by
thorny foundational problems. Given a d-dimensional polyhedral domain G, a
constant direction of reflection v; for each face i of the polyhedron, and a drift
vector u, there need not exist a well-defined RBM with this data. Except for the
simple cases of normal reflection and d = 1 [3, 8, 16], and the two-dimensional
case with p = 0 [4, 18], only sufficient conditions for the existence and unique-
ness of RBM’s with polyhedral data are known [6, 10]. In this paper, our
treatment of the polyhedral case is restricted to the solution of a certain purely
analytic problem, whose relationship to the original probabilistic questions of
interest will be rigorously established in subsequent work (cf. [23]). Specifically,
we seek solutions of exponential form for the following basic adjoint relation,
which is the polyhedral analogue of the integral relation that characterizes
stationary densities in the smooth case:

(BAR) [pLtdx+1[ pDfdo=0, forall f € CXG).
G 3G

Here C2(G) denotes the set of functions that are twice continuously differentia-
ble and have compact support in some domain containing G, L = A/2 + pv, D
is a differential operator on JdG satisfying D = vv on the smooth part of
boundary face i and D = 0 at the intersections of faces, dx denotes integration
with respect to Lebesgue measure on R? and do denotes integration with
respect to surface measure on dG. General conditions under which (BAR) is
necessary and sufficient for p to be a stationary density for an RBM in a
polyhedral domain are not known. However, this relation is useful as a formal
tool for obtaining candidates for stationary densities of RBM’s with polyhedral
data. Following the formal analysis of (BAR) given here, a discussion of the
related probabilistic questions of existence, uniqueness and stationary distribu-
tion of an RBM with polyhedral data, will be given in [23]. Results obtained in
this paper for the polyhedral case are summarized below.

Given a fixed polyhedral domain G in R? and a constant direction of
reflection on each face, the following two conditions are equivalent:

(i) for each constant drift vector p € R?, there is a vector y(r) € R? such
that p(x) = exp{y(p) - x} satisfies (BAR),

(ii) for any two faces of G, numbered i and j,
(1.3) ni'qj+qi'nj=0,
where n; is the inward unit normal on face i and g; is the tangential component
of the constant reflection vector v, = n; + g, for that face.

If the polyhedron is simple, which means that each vertex is contained in
precisely d of the faces, then the result can be strengthened as follows. Given a
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fixed simple polyhedron G and a constant direction of reflection on each of its
faces, the following four conditions are equivalent:

(i) as above,
(ii) as above,
(iii) the constant function p(x) = 1 satisfies (BAR) for p = 0,
(iv) for some p € R? there exists p € C%G) such that p >0 on G and
(BAR) holds.

Here C%(G) denotes the set of functions that are twice continuously differentia-
ble in some domain containing G.

Thus, in the polyhedral case, under the mild nondegeneracy assumption that
G is simple, we have the following surprising result: if there exists a smooth and
strictly positive p satisfying (BAR) for some p € R, then for each p € R? there
is a solution of exponential form for (BAR). Example 8.2 shown that if G is not
simple, then (i) need not follow from (iv). In [23], under the assumption that G is
simple and the skew symmetry condition (1.3) holds, it will be shown that for
each p € R? there is a well-defined RBM associated with G, {v;}, and p.
Moreover, if exp{y(p)-x} is integrable over G, then it will be shown that
p(x) = C(p)exp{y(p) - x} is the unique stationary density for this RBM, where
C(p) is a suitable normalization constant.

In both the smooth and polyhedral cases, y(p) is unique and it is given by the
explicit formula (4.9).

The formal statements and proofs of the above results, together with sup-
porting lemmas and examples constitute the remainder of this paper. The
smooth case is treated in Sections 2-5, and Sections 6-9 are devoted to the
polyhedral case.

2. Smooth case. To facilitate a more precise description of the main result
for the smooth case, the following notation is introduced. Further details on
terms taken from the theory of partial differential equations can be found in
Gilbarg and Trudinger [2]. Let 0 < ¢ < 1 and G be a nonempty bounded domain
in R? of class C2*%. Let n denote the inward unit normal vector field on the
boundary G of G. Let v denote a C1*¢ vector field on dG such that v-n = 1.
Then g = v — n is the tangential component of v on dG. The Laplacian
operator on R will be denoted by A and the gradient operator will be denoted
by v. Differentiation in the inward unit normal direction on dG will be denoted
by d/dn = n - v and the gradient operator in the tangent space to dG will be
denoted by Vv, =V — n(n-v). For p € R? fixed, let operators L, L*, on G
and D, D*, on dG be defined as follows:

L=3A+p-v,
L* = %A BV,

9
D=vww=—+q-vy,
v an q:Vrp

J
D*=£_Q'VT’
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Integration with respect to Lebesgue measure on R¢ will be denoted by dx and
do will be used to denote integration with respect to surface measure on 3G.
Throughout this paper, vectors will be regarded as column vectors and a prime
will be used to denote transpose.

In Sections 2-5, we view G and v as fixed and regard the drift p as a
parameter. Thus, the reflected Brownian motion with domain G, reflection
vector field v, and drift p, will be simply referred to as the RBM with drift p.
This RBM can be characterized (in law) as the solution of a submartingale
problem [15]. Indeed, the following is a canonical representation for this process.
Let € = C([0, o), G), the space of continuous functions w: [0, 0) = G. Suppose
Q is endowed with the o-algebra #= 6{w(s): 0 < s < o0} generated by the
coordinate maps, and for each ¢ € [0, ), let # =o0{w(s):0<s<t}.If Pisa
probability measure on (2, %), a function M: [0, 0) X @ — R will be called a
P-(sub)martingale if and only if (M, = M(¢, ), #,, t > 0} is a (sub)martingale on
(Q, #, P). For each (¢, w) € [0, 0) X Q, define

(2.1) X(t,0) = X,(0) = w(2).

Then for each x € G, there is unique probability measure P* on (2, %), which
has the following two properties [15].

(i) PH(X(©0)=x)=1.
(ii) For each f € C%*(G) that satisfies Df > 0 on dG, we have

F(X) - ['LH(x,) ds

is a P!-submartingale.

The uniqueness implies that { P*, x € G} is Feller continuous and has the strong
Markov property [15, page 196]. The RBM with drift p is then defined to be the
strong Markov process associated with (2.1) and the family of probability
measures {P}, x € G}.

By the boundedness of G and the smoothness assumptions on L, v, and 4G,
the RBM with drift p is positive recurrent on G and has a unique stationary
distribution [19, pages 5-6]. With further effort it can be shown that this
distribution is absolutely continuous with respect to Lebesgue measure and that
its density (the stationary density) is strictly positive on G and is the first
eigenfunction for the adjoint operator L* defined on

{feC?*(G): D*f = (Vy-q+2p-n)fon IG}.

Since we shall not need the later result here, the proof is omitted.
The next theorem is the main result for the smooth case.

THEOREM 2.1. Given a fixed bounded C2** domain G and C'*¢ reflection
vector field v on dG, the following two conditions are equivalent.

(i) For each p. € R, the stationary distribution of the RBM with drift p has

a density of the exponential form p(x) = C(p)exp{y(p) - x} where y(p) € R?
and C(p) > 0.
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(ii) The reflection vector field satisfies the skew symmetry condition:
(2.2) n(o*)-q(o) + g(6*) -n(s) =0, forallo,o* € 3G.

When these conditions hold, y(p.) is given by formula (4.9) and C(p) is given by
: -1
oW = [omtr(w) =) ds]

REMARKS.

1. Note that the condition on ¢ is independent of p. Indeed, Example 5.3 below
shows that the stationary density of the RBM with drift p can be of
exponential form for one p. without being of exponential form for all p € R,
when (2.2) is violated.

2. In (4.9), N (resp. @) is a d X d matrix whose ith row in n(o;)’ [resp. q(s;)’]
where ¢,,...,0, are d points of dG such that n(s,),..., n(o,) are linearly
independent. Although it first appears that this formula for y(p) depends on
the particular choice of N and @, in fact it does not, because condition (2.2)
implies that N~!Q is the same for all valid choices of o,,..., 6, For further
details, see the explanation following (4.9).

Several characterizations of a stationary density for an RBM are given below.
The third of these involves partial differential equations and figures prominently
in the proof of Theorem 2.1. The other two are in the form of integral relations.
The second of these is used for the purposes of analogy in Section 6, where the
polyhedral case is discussed.

LeEMMA 2.1. Fix p € R% Suppose p € C*G) is such that p > 0 on G and
Jgp dx = 1. Then p is a stationary density for the RBM with drift u if and only if
one of the following equivalent conditions holds.

(i) prLfdx =0, forallf € CXG) satisfying Df = 0 on 3G.

(ii) prfdx + %f pDfdo =0, forallf € CG).
G G
L*p=0 ingG,
(iii) .
D*p=(Vyp-q+2p-n)p ondG.

Here v - q denotes the divergence of q on the surface 3G.

REMARK. Note that since G is bounded for the smooth case, we could use
CX(G) in place of C*G) in (i) and (ii) above.

Proor. Because of the smoothness assumptions on dG and v, it follows
from Gilbarg and Trudinger [2, Theorem 6.31 ff.] that for each A € C%G) and
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A > 0, there is f € C?*%G) such that
(2.3) Lf—-Af=—h inG,
(2.4) Di =0 on 94G.

Then, by the submartingale characterization for the RBM with drift p starting
from x € G,

f(X,) - fo‘(xf - h)(X,)ds

is a PP-martingale. By applying the product formula of stochastic calculus to
exp(—At)f(X,), it follows that

eMf(X,) + ['€h(X,)ds
0
is a P!-martingale. Then, taking expectations and letting ¢ — oo yields
(2.5) f(x) = EP:[ ["en(x,) ds] = RUh(x),
0

since & and f are bounded on G. Here RY denotes the resolvent operator
associated with A and the RBM with drift p.
Now, p is a stationary density for the RBM with drift p if and only if

(2.6) faEPf[h(Xs)]p(x) dx = fahpdx, forall » € C%(G) and s > 0.

Since s > EP[h(X,)] is continuous on [0, c0) whenever & € C%G), it follows by
the uniqueness of the Laplace transform that (2.6) is equivalent to

(2.7) A/;_;Rﬁh(x)p(x) dx = fahpdx, forall A € C*(G) and A > 0.

Here the integral over G is the same as that over G. Then, by (2.3), (2.5), and the
fact that any f € C2*%(G) is a solution of (2.3) with A € C%G), it follows that
(2.7) is equivalent to

(2.8) (i’) f pLfdx =0, forall f € C2*(G) satisfying Df = 0 on G.
G
Thus (i’) is necessary and sufficient for p to be a stationary density for the RBM

with drift p. _
By Green’s identity and the divergence theorem, for f € C%G),

pLfdc= [fL*pds+ 1}/ fa—p—pﬁ—%'npf do
G G ag\ dn on

= foL*pdx + gfm{fZ—‘: +pq-Vrf—2u-npf —pr}do
(2.9)

dp
=ffL*de+éf {f(——q-VTp—(VT-q)p—2u-np)
G s\ \dn

+vr- (gpf) —pr} do.
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Here n is the inward unit normal vector field on dG. By applying the divergence
theorem on the compact manifold dG, which has no boundary, we see that the
last line of (2.9) equals

(210) [fL*pax+}f { ( = ¢V = (Vr g+ 2 n)p)—pr}do.

Thus (i) holds if and only if the following holds for all f € C2*%G) that satisfy
(24):

(2.11) foL*pdx + %‘/;Gf{D*p — (Vg qg+2i-n)pldo=0

Clearly, this holds if (iii) does. On the other hand, by letting f range over
functions in C2*%G) with compact support in G, we see that the above implies
L*p = 0in G, and then since any f € C?*%(9G) can be extended to a function in
C?*¢( @) satisfying (2.4) [cf. [2, page 130]], it follows that the above also implies

D*p=(Vy-q+2p-n)p ondG.

Thus, (i’) is equivalent to (iii). Since the first line of (2.9) equals (2.10) for all
f € C¥G), it follows that (iii) implies (ii). The observation that (ii) implies (i),
which in turn implies (i’), completes the proof. O

3. Skew symmetric vector fields. In this section, vector fields satisfying
the skew symmetry condition (2.2) are characterized. First the following pre-
liminary result is established.

LEMMA 3.1. Suppose q satisfies (2.2). Then,
(3.1) vr-q=0 ondG.
ProoF. Fix o € dG and let e,,...,e;_; be an orthonormal basis for the

tangent space to dG at o. For any C! vector field w defined on 9G, let D, w(o)
denote the covariant derlvatlve of w in the direction e; at ¢. Then for any ‘fixed

c*€dGandi€e(],.. — 1}, by differentiating (2 2) in the direction e; at ¢
we obtain
(3:2) D,g(o) - n(s*) = —g(c*) - D, n(o).

For each i € {1,...,d — 1}, let 0; € G such that n(o;) = e;. Such points o;
exist because G is bounded and 9@ is sufficiently smooth. Then, setting o * = o,
in (3.2) yields

(3.3) D,q(o) - e;= —q(o;) - D, n(o).
Now, D, n(o) lies in the tangent space to dG at ¢ and so may be written

o o= Sl
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The h;/(o) define the second fundamental form on dG and are symmetric with
respect to i and j [7, pages 20-23]. Moreover, by (2.2),

(3.5) q(o;) -e;= —q(o;) - e, fori,je{1,...,d-1},

since n(o,) = e, for k = 1,..., d — 1. Thus combining the above we have

d—-1
Z De,-Q(o) €
i=1

(vr- q)(o)

(3.6) d-1d-1

- Z Z ‘I("i) ) ejhij(o),

i=1 j=1

where the ij term in the double sum is skew symmetric with respect to the
interchange of i and j. Hence the double sum is zero. Thus (3.1) has been proved.
m}

If d = 1, then g = 0, so that (2.2) and (3.1) hold trivially. If d = 2 and 9G is
connected, it is shown in Example 5.1 that (2.2) is equivalent to ¢ being a
constant multiple of the unit tangent vector field to dG, which in turn is
equivalent to (3.1). However, if d = 2 and dG is not connected, or d > 3 (see
Example 5.2), then (3.1) does not imply (2.2) in general. Indeed, for d > 3, the
space of divergence free tangential vector fields on dG is infinite dimensional in
general, whereas the space of tangential vector fields g satisfying (2.2) has
dimension d(d — 1)/2. A proof of the latter is given below.

Let 0,,...,0, be d points on JdG such that n(o,),..., n(o,) are linearly
independent (but not necessarily orthogonal). For each i € {1,..., d}, let q(o;)
be a vector in the tangent space to dG at ¢,, i.e.,

n(o;) - 9(e;) = 0.

Let N (respectively @) denote the d X d matrix whose ith row (i € {1,...,d})
is the vector n(o;)’ [respectively g(o;)’]. (The reason for the bars in this notation
will become apparent later in Sections 6 and 7.)

LEMMA 3.2. Suppose
(3.7) NQ’' + @N’ =0,
i.e., (2.2) holds at o,,..., 0, Then there is a unique extension of q(o,),..., q(gy)
to a C'*¢ (tangential) vector field q on 3G that satisfies (2.2).

ProoF. Uniqueness is established first. Suppose ¢ is an extension of
q(0,),...,q(a,) so that (2.2) holds on all of dG. By setting o * = o; in (2.2), we
see that for each 6 € 3G \{0y,..., 0}, ¢(0) must satisfy

(3.8) n(o;) - q(0) = —q(o;) - n(s), fori=1,...,d.
This may be rewritten in terms of matrices as
(3.9) Ng(o) = —@Qn(o).
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Since n(s,),..., n(o;) form a basis for R%, N is invertible, and so (3.9) is
equivalent to
(3.10) q(o) = —N~Qn(o).

Thus, g is uniquely determined by g(s,),..., g(o;) and the normal vector field n
on JG.

For the proof of existence, suppose g is extended to dG\({o,,...,0,} by
(3.10). Observe that (3.10) also holds for o = o,,..., 64, by (3.7). Since n isa C'**
vector field on 9G, it follows from (3.10) that the same is true of g. To verify
(2.2), let 6, 0* € 3G. Then

(3.11) n(a*) - (o) = —n(o*) - (N"'Qn(0)).

By premultiplying (3.7) by N~ and postmultiplying by (N”)~! = (N~')’, we see
that

(3.12) Q(NY)Y=-N1Q.

Then, substituting — N ~'Q from this in (3.11) and using (3.10) with ¢ * in place
of o, we obtain (2.2). Since any vector field g satisfying (2.2) must be tangential
to G, the proof is complete. O

COROLLARY 3.1. There is a one-to-one correspondence between the set of
d X d matrices @ satisfying (3.7) and the set of (tangential) vector fields q
satisfying (2.2). As a vector space, this set has dimension d(d — 1)/2.

PROOF. The one-to-one correspondence follows immediately from Lemma
3.2. Now, (3.7) is equivalent to the statement “N @’ is skew symmetric.” Since N
is invertible, it follows that there is a one-to-one correspondence between the
d X d matrices @ satisfying (3.7) and the d X d skew symmetric matrices. The
vector space formed by the latter has dimension d(d — 1)/2. 0

4. Proof of Theorem 2.1.

PrROOF. By Lemma 2.1, Theorem 2.1(i) holds if and only if for each p € R?
there is y = y(p) € R? such that p = exp{y - x} satisfies Lemma 2.1(iii), i.e.,
such that the following two conditions hold:

(4.1) (@) v’ —p-v=0,
(b) (n—¢q) - y=Vr-q+2p-n ondG.
Setting p = 0 in (4.1)(a) yields y = 0. Then by substituting this in (4.1)(b) we see
that a necessary condition for Theorem 2.1(i) to hold is
(4.2) Vr-q=0 on dG.

As in Section 3, let o,,..., 0, be d points on dG such that n(o,),..., n(s,) are
linearly independent, and let N (respectively @) denote the d X d matrix whose
ith row is n(o;)’ [respectively g(o;)’]. Then for p € R¢, since N is invertible, we
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have that y € R satisfies (4.1) and (4.2) holds only if

(4.3) (I-N"'Q)y=2p.

Now, there is a solution y = y(p) of (4.3) for each p € R? if and only if
I — N~'Q is invertible, in which case {y(p) = 2(I — N~'Q) 'u: p € R?} = R“.
The result of substituting p from (4.3) in (4.1)(a) is

(4.4) y'N~'Qy = 0.

This holds for all y € R? if and only if Z_\/—'_‘ 1Q is skew symmetric. Conversely, if
N7'Q is skew symmetric, then I — N 'Q is invertible. Thus, (4.2), “N~'Q is
skew symmetric,” and y(p) is related to p by (4.3), are all necessary conditions

for Theorem 2.1(i) to hold. If these are substituted into (4.1)(b), the remaining
condition for (i) to hold becomes

q-v=n-(N"'Q)
= —(N"'Qn) -y on dG,forall y € R,

where (4.3) was used to obtain the first equality and skew symmetry was used for
the second. Since y € R is arbitrary, this is equivalent to

(4.6) g=-N"'Qn on dG.

By combining the above we see that for Theorem 2.1(i) to hold, it is necessary
and sufficient that the following three conditions hold:

(4.5)

(a) vr-g=00ndG;
(4.7) (b) N~'Q is skew symmetric;
(c) ¢g=—-N"'Qnon 3G.
By a simple calculation, (4.7)(b) is equivalent to:
(4.7) (b') N@Q’ is skew symmetric.

By Lemma 3.2 [see especially (3.7) and (3.10)], (4.7)(b’) and (c) together are
equivalent to:

(4.8) q satisfies (2.2) on all of 4G.

Moreover, (4.8) implies (4.7)(a), by Lemma 3.1. Thus, Theorem 2.1(i) holds if and
only if (4.8) holds, and in this case, y(i) € R is given for each p € R? by
(4.9) v(p) =2(1-N"Q) p.

Under the assumption that (2.2) holds, N~1Q, and hence y(p), is independent of
the particular choice of N and Q. To see this note that (2.2) implies (3.10) and
(3.12) from which it follows that

g(s) = (N'Q)'n(s), forall ¢ € 4G.
Applying this at points §,,..., 6; on dG such that n(é,),..., n(é,) are linearly
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independent, one obtains for the corresponding matrices N and §:
NQ-Ng,
as desired. O

5. Examples.

ExaMPLE 5.1. Suppose d = 2 and 3G is connected. Let 7 denote the unit
tangent vector field on dG, which points in the positive direction as dG is
traversed in the counterclockwise sense. Let

(5.1) w=gq-r.
Now, if q satisfies (2.2), then by Lemma 3.1 it must satisfy (3.1), or equivalently,
if dG is parameterized by arc-length o,

5.9 W _ 0 ondG
() Ti;_ on s

i.e, w is constant since dG is connected. Thus, the space of vector fields g
satisfying (2.2) is contained in the one-dimensional space

(5.3) W= {cr: c € R}.

On the other hand, by Corollary 3.1, the space of vector fields satisfying (2.2) is
one-dimensional when d = 2, and so it is precisely W. Thus, we have

(5.4) W = {g: (2.2) holds} = {g: V- g = 0}.
If the restriction that dG is connected were removed, the first equality in (5.4)

would still hold, but the space of divergence free tangential vector fields would
be larger.

ExXAMPLE 5.2. Suppose G is the open unit ball centered at the origin in R?.
Define a tangential vector field ¢ on the unit sphere dG as follows. Let (¢, 0)
denote spherical polar coordinates on dG such that 0 < ¢ <7 and 0 < 0 < 27.
Let f be a C* nonnegative function on [0, 7] with compact support in (0, 7)
such that f(7/2) # 0. Let e, denote the unit tangent vector in the 6-direction at
each point on dG except at the north and south poles (where ¢ = 0, 7). So e, is
tangent to the parallels of latitude. Define

_ f((p)eg, forqb * 01 ™,
9(¢,6) = {0, for ¢ = 0, 7.

Then, q is a divergence free vector field on 9G, i.e, (3.1) holds. On the other
hand,

T T
Q(“2‘,0) = f(5)90|o=0 # 0,
and for ¢ > 0 sufficiently small, f(¢) = 0, so that

q(e, g) = f(e)eglg=nyz = 0.
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Thus, for o = (7/2,0) and ¢ * = (¢, 7/2), we have
n(o*)-q(o) + g(o*) - n(e) = —f(7/2)sine + 0.
Hence, q does not satisfy (2.2).

ExaMPLE 5.3. As in Example 5.1, let d = 2, dG be connected, and T denote
the unit tangent vector field on dG. Parametrize dG by arc-length o € [0, ;).
Fix p € R? and define

S
(5.5) w(s) = —2f p-nds, forallse [0,0,).
0
Note that if g # 0, then w is not constant. By the divergence theorem,

'{)%y-ndozfaap-ndo=— Gv-udx=0.

Thus,
(5.6) g(o) = w(o)r(0), fore € [0,q,),
defines a C'*¢ vector field on dG. Moreover,
dw
Vr:q=——=—2p-n on dG,
do

so for this p and ¢, (4.1) holds with y = 0. It follows that the stationary density
for the RBM associated with this p and q is of exponential form (in fact it is
constant). However, this does not imply the stationary density is of exponential
form for the RBM associated with q given by (5.6) and all other u’s in R?, since
the latter would require w to be constant (cf. Example 5.1).

6. Polyhedral case. The data for a reflected Brownian motion (RBM) in a
polyhedral domain are as follows (primes denote transposes, vectors without
primes are column vectors, and diag(-) denotes the vector formed by the
diagonal elements of a square matrix):

(a) integers k > d > 1,

(b) a k& X d matrix N such that diag(NN’) = 1 and N contains an invertible
d X d submatrix N,

(c) a k X d matrix @ such that diag(QN’) = 0,

'(d) a vector b = (b,,..., b,) € R*, and

(e) a drift vector p € R
We denote by n/ and g/ the ith rows of the matrices N and @, respectively

(i =1,..., k); thus n; and g, are both d-dimensional column vectors. We define
the convex polyhedron

G = {x € R% Nx > b},

assuming throughout that the interior G is nonempty. It is also assurned that
this representation of G is irreducible. That is, for any matrix N and column
vector b formed by removing one of the rows of N and the corresponding row
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element of b, the set {x € R% Nx > b} is strictly larger than G. This is
equivalent to the assumption that each of the faces -
F={xeG:x-n;=b}, i=1,..,k,

has dimension d — 1 (cf. Brondsted [1, Theorem 8.2]). The reader will observe
that n; is a unit vector normal to F; that points into the interior G, whereas g; is
a vector parallel to F.. We call v; = n; + g, the direction of reflection associated
with face F; n; and g, are called the normal component and tangential
component, respectively, of v;.

~ The requirement that N contain an invertible d X d submatrix means that no
line can lie entirely within the polyhedron G. That is, the boundary of the
polyhedron must bound each dimension in at least one direction. This condition
is necessary for a function of the exponential form Cexp{(y - x} to be integrable
over G. It is automatically satisfied if G is bounded.

Intuitively speaking, by an RBM associated with these data we mean a strong
Markov process with continuous sample paths in G that (a) behaves like a
d-dimensional Brownian motion with covariance matrix I and drift vector p in
G, (b) is reflected at the boundary of G in the direction v; on the F;, and (c)
spends zero time (in the sense of Lebesgue measure) on the boundary of G.
Without further restrictions on the data, there need not exist a well-defined
process satisfying these conditions [18]. Indeed, there is no general theory of
existence and uniqueness for such RBM’s, although some sufficient conditions
are known [6, 10, 16, 18]. In the remaining sections of this paper, we study the
purely analytic problem of finding solutions of exponential form to the basic
adjoint relation (BAR) defined in Section 1. Discussion of related probabilistic
questions is postponed to a subsequent paper [23].

Recall that for

D;=v;-v onkF,
the differential operator D is defined on dG such that (a) D = D at all points on
face F, that are not also on some other face, and (b) D = 0 at the intersections of
faces. The following theorem gives a necessary and sufficient condition for the
existence of a solution of exponential form for (BAR) for each p € R?. This is the
analogue of the result (Theorem 2.1) obtained for smooth bounded domains.

THEOREM 6.1. For a fixed polyhedron G and reflection vectors v, = n; + gq;
onF,i=1,...,k, the following two conditions are equivalent.

(i) For each constant drift vector p € R?, there is a vector y(p) € R? such
that p(x) = exp{y(p) - x} satisfies (BAR).
(6.1) (i) n;-q;+q,-n;=0, foralliandj.
When these conditions hold y(p.) is unique and is given by formula (4.9).

REMARKS.

1. In words, condition (ii) says that the matrix NQ’ is skew symmetric.
2. As per Remark 2 following Theorem 2.1, the entity NQ appearing in
formula (4.9) does not depend on the particular choice of N and Q.
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If we further assume that the polyhedron is simple, as defined below, then
Theorem 6.1 can be considerably strengthened.

DEFINITION. A vertex of (—}__is a point x € dG where d or more of the faces
F; intersect. The polyhedron G is said to be simple if each vertex of G is
contained in precisely d of the faces F,, i = 1,..., k.

THEOREM 6.2. For a fixed simple polyhedron G and reflection vectors v, =
n;+q;,onF,i=1,...,k, the following four conditions are equivalent.

(i) of Theorem 6.1.
(i) of Theorem 6.1.
(iii) The constant function p(x) = 1 satisfies (BAR) for p = 0.
(iv) For some p € R® there exists p € C¥G) such that p >0 on G and
(BAR) holds.

When these conditions hold y(p) is unique and is given by formula (4.9).

It will be shown in [23] that if _Q_F is simple and (6.1) holds, then there is a
well-defined RBM associated with G, {v;} and p, and if furthermore,

(6.2) C= fGexp{v(#) "x}dx < oo,

then the RBM has a unique stationary distribution with density p(x) =
C~'exp{y(p) - x}. If G is bounded, then (6.2) automatically holds.

7. Proofs of Theorems 6.1 and 6.2. The following additional notation is
needed in the sequel. For each i, let v* = n; — q;, the adjoint direction of
reflection to v;, and define the adjoint differential operator

*=0¥-V onbk,.
Let L* = ;A — p - v, as before. For each i and j, let F;; = F, N F}, the intersec-
tion of two (possibly nondistinct) faces, and define

F'=F\UF,

J#i
so that U;F.° is the smooth part of the boundary of G. We shall use d/dn; =
n;+ v to denote differentiation in the inward unit normal direction on F°. For
the following important preliminary result, we do not actually need the assump-
tion that N contains an invertible d X d submatrix.

LEMMA 7.1. Fix p € R? and suppose p € C¥G) is such that p > 0 on G.
Then p satisfies (BAR) if and only if the following hold:
(7.1) L*p =0 inG,
(7.2) D*p=2p-n,p onF, fori=1,..., k, and
(7.3) n;-q;+q;-n;=0, wheneverF,is(d— 2)-dimensional.
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Proor. First observe that since f € C%*G), p € C*G), and the surface
measure (with respect to o) of F;; is zero for j + i, the integral over dG in
(BAR) is the same as that over U, F°. Then, since the boundary of G is piecewise
smooth and f € C%(G) has compact support in R? we can apply Green’s
theorem and the divergence theorem to conclude that p satisfies (BAR) if and
only if

. L Ip af

foL pdx+§l§1fﬁo{(fa—m ~P, T2 nipf)

7.4 3

74 +p arfi+ql Vf)}do—O,

for all f € C%(G).

By letting f range over the functions in C?(G) having compact support in G, we
see that (7.4) implies (7.1). After substituting (7.1) back into (7.4) and using the
fact that the divergence Vv - g; of the constant vector field g, is zero for each i,
we see that (7.4) implies

k
(7.5) szo{f(D,.*p—zp~n,.p)+v (g;pf)}do =0, forall f e C¥G).
i=1"Fi

Since gq; is parallel to F,°, the divergence in (7.5) is the same as the divergence
taken in the (d — 1)-dimensional manifold F°. So it follows by applying the
divergence theorem on each F,° that (7.5) is equivalent to:

k
(7.:6) igl {j;'l"f(Di*p ~2pnp)do— X f 9 nijpfdoii} =0,

VA AT
forall f € C2(G),

where for j#i such that F;; is (d — 2)-dimensional, o;; denotes (d — 2)-
dimensional surface measure on F;, and n,; denotes the unit vector that is
normal to both F;; and n;, and points into F? from F;. For all other j # i, we
define o,; and n,; to be zero. By letting f range over the functions in C*(G) such
that f|,; has compact support in F;°, we see that (7.6) implies

(7.7) D*p—2p-n;p=0 on F? foralli.

Since p € C*G) and n,, q; and p are constant vectors, (7.7) extends by
continuity to F; for all i and so implies (7.2). When (7.7) is substituted back into
(7.6), the latter reduces to

k
78) ¥ X fF (g, ni;+4q;-n;)pfdo;=0, forall e CXG).
i=11<j<i Ly

By letting f range over functions in C2(G) such that the support of f intersects
at most one of the (d — 2)-dimensional F;; (= F};), and using the assumption
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that p > 0 on G, we see that (7.8) implies
(7.9) g;*n;;— gq; n; =0, whenever F; is (d — 2)-dimensional.

Now for j # i such that F}; is (d — 2)-dimensional, since n;; is normal to F,,
must lie in the two-d1mens1ona1 space spanned by n; and n. The addltlonal
conditions that n;; is a unit vector normal to n; and that it points into F.° from
F;; determine it uniquely:

(7.10) ny = (ny = nmym) (1= (ng-m)) "
Similarly,
(7.11) ni= (no=ng-mym) (1= (n-m)?) "

By combining this with the fact that g,, - n,, = 0 for m = i, j, we see that (7.9)
is equivalent to (7.3). Thus we have shown that the conditions (7.1)~(7.3) are
necessary for p to satisfy (BAR). Reversing the arguments in the above proof
shows that these conditions (together) are also sufficient. O

Note that (7.3) is a local form of the skew symmetry condition (6.1). For the
next lemma, the reader should recall that N denotes an invertible d X d
submatrix of N; we denote by @ the corresponding d X d submatrix of Q.

LEMMA 7.2. The skew symmetry condition (6.1) holds if and only if
satisfies
(7.12) Q' = -N"@QN".
Furthermore, the vector space of @ matrices satisfying (1.12) has dimension
d(d - 1)/2.

Proor. This follows by applying the same arguments as in Lemma 3.2 and
Corollary 3.1 on the smooth part U,F.° of dG in place of dG. O

PROOF OF THEOREM 6.1. By Lemma 7.1, for fixed p € R% y = y(p) € R% is
such that p = exp(y - x) satisfies (BAR) if and only if the following three
conditions hold:

(7.13) " A —py=0,
(7.14) (ni—¢q))-y=2p-n,, fori=1,...,k, and
(7.15) n;-q;+q;-n;=0, whenever F; is (d — 2)-dimensional.

By the same reasoning as in the proof of Theorem 2.1, there is a solution
Y = y(p) € R? of (7.13)~(7.14) for each p € R? if and only if the skew symmetry
condition (6.1) holds, and in this case y(p) is given by formula (4.9). Since (6.1)
implies (7.15), Theorem 6.1 follows. O
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In preparation for the proof of Theorem 6.2, we now prove that under the
nondegeneracy assumption that G is simple, the local skew symmetry condition
(7.3) implies the skew symmetry condition (6.1). For this we introduce the
following terminology.

DEFINITION. _A face F, is said to be incident to a vertex x of G if x € F,.
Two vertices of G are to said to be adjacent if they have at least d — 1 incident
faces in common.

LEMMA 7.3. For a fixed simple polyhedron G and reflection vectors v, =
n,+q;onF,i=1,...,k, theskew symmetry condition (6.1) is equivalent to the
local skew symmetry condition (7.3).

REMARK. When G is simple, for j+ i, F,; is either empty or (d — 2)-

dimensional [1, Theorem 12.14] and for j=1i, n;-q;=0, so then (7.3) is
equivalent to:

(7.16) n;-q;+q;-n;=0, whenever F,; + @.

PRrOOF. Clearly (6.1) implies (7.3). To prove the converse, let x be a dis-
tinguished vertex of G. (Note that, by the assumption that N contains an
" invertible d X d submatrix, G must have at least one vertex). Since G is simple,
precisely d faces, F,,..., F,, say, meet at X. The normals associated with these
faces form a linearly independent set and so we may take the matrix N to be the
d X d innvertible matrix whose ith row is n/. Then @ is the d X d matrix whose
ith row is ¢q/.

Shortly we shall prove the following proposition.

PROPOSITION 7.1.  Suppose the hypotheses of Lemma 7.3 hold. If (7.3) holds
andx = x,,..., x, are s distinct vertices of G such that x, and x, ., are adjacent
forr=1,...,s — 1, then for any i such that F, is incident to at least one of the
vertices x1, ..., X,, we have

(7.17) q;= —-N"'Qn,.

Assuming this proposition holds, the proof of Lemma 7.3 can be completed as
follows. For any vertex x of G, there is a sequence X = x,...,x,=x as
described in Proposition 7.1. (When G is bounded, this follows directly from
Theorem 15.5 of Brondsted [1]. If G is unbounded, the assertion can be proved
as follows. Introduce a new face F = {x € G: x - n = c} for some unit vector n
and constant c such that {x € G: x - n > ¢} is bounded and contains all of the
vertices of G. Then apply Theorem 15.5 of [1] to the bounded polyhedron
{x € G: x - n = c}, with the distinguished face F, to obtain the existence of a
sequence X,,...,x, as described above.) The assumption that N contains an
invertible d X d submatrix implies that each face is incident to some vertex.
Hence, (7.3) implies (7.17) for all i, which is equivalent to (7.12). But by Lemma
7.2, the latter is equivalent to (6.1). Thus, Lemma 7.3 follows. O
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ProoF oF PROPOSITION 7.1. Our proof is by induction. Suppose (7.3) or
equivalently (7.16) holds and ¥ = x,,..., x, satisfy the hypotheses of the pro-
position. First suppose F; is one of the d faces incident to x. By applying (7.16)
with j =1,..., d, we see that the following must hold:

Qni + Nqi =0.

But since N is invertible, this is equivalent to (7.17). For the induction step,
suppose that 1 < r < s and for each i such that F; is incident to at least one of
the vertices x,,..., x,, (7.17) holds. Now suppose F; is a face that is incident to
x,,,, but is not incident to any of the vertices x,,..., x,. Since x, and x,, are
adjacent, they have d — 1 faces in common, F,,,..., F,4_,, say. These faces
together with F, , = F, are distinct and intersect at x,.;, so the normals
N,y -+ +» Nyqy are linearly independent. By applying (7.16) with j =
r(1),..., r(d), we obtain

(7.18) Qi Npmy= —Ni " Qrmyy m=1,...,d.

The equation for m = d is equivalent to

(7.19) q;-n;=0.

Since the n,,,, m=1,...,d, are li;iearly independent and the gq,,,, m =

1,...,d — 1, are assumed given by (7.17), it follows that ¢, is uniquely de-
termined by (7.18). On the other hand, q; given by (7.17) is a solution of these
equations. To see this, suppose that q,, = —N~'@n,, for all m. Then by Lemma
7.2, (6.1) holds, which implies (7.16) and hence (7.18). It follows that ¢, given by
(7.17) is the unique solution of (7.18). This completes the induction step and the
proposition follows. O

PROOF OF THEOREM 6.2. Assume the hypotheses of Theorem 6.2 hold. By
Lemma 7.1, (iv) implies the local skew symmetry condition (7.3). By Lemma 7.3,
condition (7.3) is equivalent to the skew symmetry condition (6.1). By Theorem
6.1, (6.1) is equivalent to (i) and when either of these conditions holds y(p) is
given by formula (4.9). In particular, for p = 0, (4.9) yields y(0) = 0. Hence (i)
implies (iii). The observation that (iii) clearly implies (iv) completes the proof. O

8. Examples.

ExXAMPLE 8.1. If d =2, G is a convex polygon and is automatically simple
because no more than two sides can meet at a vertex. Our requirement that N
have an invertible 2 X 2 submatrix means that G has at least one vertex. (The
only convex polygons that do not satisfy this condition are a half-plane and an
infinite strip.) It also follows that dG is connected and (7.3) is equivalent to (6.1),
cf. Lemma 7.3. For a geometric interpretation of skew symmetry, let dG be
oriented, and let 7; be the unit tangent vector pointing in the positive direction
on side i. (Thus ;- n; = 0.) Now for each side i = 1,..., &, define an angle of
reflection 0, € (—w/2,m/2) by the relationship g; = 7;tan§,. These angles are
pictured for a typical case in Figure 1, where the vector pointing into the interior
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F1G. 1. Angles of reflection for a typical polygon.

from side i represents v; and the positive direction on the boundary is taken to
be counterclockwise. By simple geometry, condition (7.3) is equivalent to 6, = 6,
for each pair of sides i and j that intersect. Since the boundary is connected,
this is equivalent to a requirement of constant angle of reflection over the entire
boundary. This is consistent with results obtained in [4] and [22]. In [4] the
stationary distribution for driftless RBM in a bounded polygon was obtained. In
[22] the density of the invariant measure for null recurrent RBM with zero drift
in a two-dimensional wedge was determined. In each of these cases, the density is
constant if and only if §; = 6, for all i.

ExaMPLE 8.2. The following example shows that when d > 3 the local skew
symmetry condition (7.3) can hold without the skew symmetry condition (6.1)
holding, in which case there can be solutions of exponential form for some but
not all p € R% Let d = 3 and let N be the 4 X 3 matrix with rows n/ defined by

n, = (1,0,0), n4 = (0,1,0),

(&1 ny = (0,0,1), ny=(1,1,-1)//3.

See Figure 2 for a sketch of the polyhedron G = {x € R® Nx >0} in a
neighborhood of the origin. There are four faces of G and four (d — 2)-dimensional
edges: F,; = Fy,, F,; = F,,, F,, = F,5, and F,, = F,,. Consequently, condition (c)
of Section 6 and (7.3) impose eight linear conditions on the elements of the
matrix . These conditions are satisfied if and only if there are are real numbers
a, b, ¢, and d, such that

qi=(0,a,0), q;=1(c,0,d),

(32) |
g;=(-b,-d,0), q;=(b-a,d—c,b—a+d—-c)/V3

Thus, the vector space of matrices @ such that (7.3) holds has dimension 4. On
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F16.2. Polyhedron G of Section 8 in a neighborhood of the origin. *

the other hand, by Lemma 7.2, the vector space of matrices @ satisfying the
skew symmetry condition (6.1) has dimension d(d — 1)/2 = 3 for d = 3. Indeed,
Q satisfies (6.1) if and only if g, g5, g3, ¢, are as in (8.2) with ¢ = —a.

By Theorem 6.1, the skew symmetry condition (6.1) is a necessary and
sufficient condition for (BAR) to have a solution of exponential form for each
p € R Thus, if the local skew symmetry condition (7.3) holds, but not 6.1),
then there is at least one p € R such that there is no associated solution of
exponential form for (BAR). By Lemma 7.1, for p € R? fixed, p = exp(y * x)
satisfies (BAR) if and only if (7.3) holds and

(8.3) -y =0,
(8.4) (N - Q)y = 2Np.

Since (8.3)-(8.4) clearly hold with y = 0 and p = 0, it follows that p =1 is
always a solution of (BAR) when (7.3) holds. The following examples show that
when (7.3) holds, but not (6.1), there can be infinitely many y’s (but not all of
R?) such that (8.3)~(8.4) hold for suitable p’s in R®. Since (8.3) is quadratic, not
linear in v, the collection of all such y’s need not be a vector space.

(a) If the null space of @ is nontrivial, i.e., there is 0 # y € R? such that
Qv = 0, then (8.3)-(8.4) are satisfied with such a y and p = §/2. For example,
if b=c=d=0and a + 0 in (8.2), then the null space of @ is {B(1,0, —1)"
B € R} and so for each B € R, exp(B(x, — x3)) is a solution of (BAR) with
k= (B/2)1,0,-1).
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(b) On the other hand, even if the null space of @ is trivial, there can still be
nonzero solutions y of (8.3)-(8.4). For example, if in (8.2), c=d =0and a # 0,
b+ 0, b+ a, then Q has trivial null space, but (8.3)—(8.4) hold if and only if
there is 8 € R such that either y = 8(0,1, —1)’ and p = (8/2)(b — a,1, —1)’, or
y = B(1,0, —1) and p = (8/2)(b + 1,0, b — 1)". This can be verified as follows.
Observe that if N and @ denote the 3 X 3 matrices formed by the first three
rows of N and @, respectively, then (8.3)—(8.4) are equivalent to:

(85) p=3(I-N"Q),
(8.6) vN"Qy =0,
(8.7) ny (N7Qv) =g, v

Here N is the 3 X 3 identity matrix and (8.6) is equivalent to v, = 0 or v, = 0,
since a # 0. If y, = 0, then (8.7) is equivalent to y; = —v,, and then (8.5) gives
p = (v5/2)(b — a,1, —1)". This corresponds to the first one-parameter family of
solutions above. Similarly, by considering vy, = 0, one obtains the other family of
solutions. Moreover, for this special case we have obtained all solutions y € R¢
(with associated p € R?) of (8.3)-(8.4). Note that the set of these y’s does not
form a vector space.

9. Geometric interpretation of local skew symmetry. Since we have
already discussed the cases d = 1,2, we suppose d > 3. Consider j # i such that
F; is (d — 2)-dimensional. Let H be the two-dimensional plane spanned by the
vectors n; and n; (see Figure 3). This H is orthogonal to F;;, and the vectors n;;
and n;; defined in the proof of Lemma 7.1 point away from H N F;; along
H;=HNF, and H;= H N F, respectively. Then, §;=n,;- q;n;; denotes the
projection of ¢; on H and §; = n, - g, n;; denotes the projection of g; on H. By
the proof of Lemma 7.1 [see especially (7.9)], (7.3) holds on F;; if and only if
G, n;;= —q;- n;. This is equivalent to saying that the condition (7.3) holds for
the RBM in the two-dimensional wedge {x € H: n;-x>b; and n; - x > b;}
with directions of reflection n; + §; and n; + §; (cf. the case d = 2 in Section 8).
Thus, locally, (7.3) reduces to a two-dimensional condition.

N
N

n.
|

1

Fij nij

F1c. 3. Typical cross-section of G perpendicular to a (d — 2)-dimensional edge F, e
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