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LOWER TAIL PROBABILITY ESTIMATES FOR
SUBORDINATORS AND NONDECREASING
RANDOM WALKS!

BY NARESH C. JAIN AND WiILLIAM E. PRuITT

University of Minnesota

Let X), X,,... be nonnegative ii.d. random variables and S, = X; +
«++ +X,; EX, = p < o0 and a is the infimum of the support of the distribu-
tion of X;. For a < x,, < p we obtain the asymptotic behavior of log P{S, <
nx,} as n — oo. Under the additional assumption of stochastic compactness
a stronger result is obtained which gives the asymptotic behavior of P{S, <
nx,} itself. Analogues of these results are given for subordinators when
t—> wort—0.

1. Introduction. Let {X,} be a sequence of independent, identically distrib-
uted, nonnegative nondegenerate random variables with a common distribution
function F. Let .

S,=X,+ - +X

s n>1; §,=0.

Our objective here is to find large deviation estimates for the lower tail of S,
under no additional assumptions. These estimates are in the literature for
P(S, < nx}, x fixed, in which case the probability approaches zero exponentially
fast. Our method will allow us to estimate this probability even when x increases
so that the probability goes to zero much more slowly—for example like n~! or
(log n)~ L. This is, of course, what is needed in many applications.

Such estimates are particularly important since nonnegative i.i.d. random
variables often arise as times between events for quite general processes. For
example, X, could be the time between the nth and the (n + 1)st return to a
state x by a recurrent random walk on the integer lattice; in this context we
have been able to use these estimates in [10] to get quite detailed and precise
information for the growth of the local time, and its maximal increments, for a
recurrent random walk. Results on the growth of the maximal increments of the
local time of a random walk were known only for a random walk with zero mean
and finite second moment [3]; the estimates of the present paper have allowed us
to go beyond the domain of attraction case and to give more complete results
even for the simple random walk via a unified and essentially simpler approach
to the problem.

To describe the results we need some notation. For u > 0, let

Cux ¢'(u)
(1.1) o(u) =Ee "%,  g(u) = - @)’ R(u) = —log p(u) — ug(u).
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The functions ¢, g, and R are continuous on (0, o0) and other relevant proper-
ties may be found in Lemma 2.1 in the next section. We define

(1.2) a =inf{x > 0: P{X, <x} >0}, p=EX,

where pu < o0. For a < x,, < p define A, by g(A,) = x,, (g is strictly decreasing).
We will show in the next section that P{S, < nx,} — 0 iff nR(A,) = oo as
n — . If nR(A,) = oo, then we determine the rate at which P{S, < nx,} — 0.
A weak result (given in Section 2) is the following: If X, has an atom at a or for
some 8 > 0, a + 8 < x, < p, then

(1.3) —log P{S, < nx,} ~nR(A,), n- oo,

provided nR(A,) — o. If X, has no atom at @ and x, — a, then a corollary of
(1.3) gives

(1.4) lim -l—log P(S, < nx,} = —o0;

n—oco N
this should be quite adequate for most applications, but we will show in Example
2.1 that (1.3) is not necessarily valid if x,, - @ and X, has no atom at a.

To apply these results in the domain of attraction case it is helpful to know
the behavior of R and g in terms of a, the exponent of stability, and F; this is
done in Proposition 2.1.

We refer to (1.3) as the weak result since it only gives the asymptotic behavior
of the log of the probability. If we assume further that X, satisfies Feller’s
condition for stochastic compactness (this is still quite general; the definition is
in Section 3) then we obtain a strong result, namely we define a sequence {p,} in
terms of ¢ and show that

P(S, < nx,} ~ p,e~"F,

provided that for some § >0, a + 8 <x, < u. Thus we have the correct
asymptotic behavior of P{S, < nx,} whenever it goes to zero except in the
extreme case when x, can approach a. This strong result is in Section 4. In order
to prove it we need a local limit theorem for triangular arrays. This is proved in
Section 3; it should also be of independent interest.

In Section 5 we give the analogues of these results in the case of subordinators
(increasing Lévy processes) when ¢ — oo or t = 0.

We would like to mention here a paper of Bahadur and Ranga Rao [1] where
an asymptotic expansion for the above probability is obtained when x, = x < p.
Their result includes our strong result in this special case of x,, = x. Also, in the
very special case that ¢(—¢) < oo for some ¢ > 0, our results are included in
Hoglund’s [9].

Before closing this section we mention some notation that will be used.

For real sequences {a,} and {b,} we will write a,, ~ b, to mean a,b, ' — 1 as
n — oo, and a, = b, to mean that there exist positive constants c¢; and ¢, such
that c,a, < b, < cya, for n > some n,. The same notation will be used for
functions a(u) and b(u) except that in this case © may tend to 0 as well. We
write a(u) = b(u) for u > 0 to mean c,a(u) < b(u) < cya(u) for all u > 0.
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For a random variable X we write Var X = EX2 — (EX)? if EX2 < oo.
Positive constants will be denoted by c¢,C with or without suﬂixes Their
meaning may change from one context to another.

Weak convergence of a sequence of random variables {Y,} (or the correspond-
ing distributions) to a probability distribution will simply mean the weak
convergence of the corresponding probability measures (no mass escaping).

2. The weak result. In this section we will prove the general asymptotic
result for the log of the probability that S, is unusually small. The behavior of R
in the domain of attraction case is given in Proposition 2.1. Following that
we will give an example to show that the result may fail if x,, is allowed to ap-
proach a.

We start by giving useful properties of the functions g and R, defined in (1.1),
in the following lemma.

LEMMA 2.1. The functions 8 and R defined in (1.1) are continuous on (0, o),
8 is strictly decreasing, and R is strictly increasing. In fact,
(2.1) g(u)=-V(u), R(u)=uV(u),
where
o (u)9"(u) - (¢(x))*

(p(u))* '

The limiting behavior of g and R is given by
23) g(0)=p, sglo)=a, R0)=0, R(x)=-logg,
where
(24) q = P(X, = a}
and a is defined in (1.2). If ¢ = 0, then R(0) =

(2.2) V(u) =

REMARK 2.1. It is useful to recognize V(u) as the variance of the random
variable Z,(u) whose distribution is given by

(2.5) H,(x) = P{Z,(u) < z) = e~ dF ().

1
p(u) f[o, %]
The dependence of H and Z, on u will be suppressed when there is no danger of
confusion.

Proor. It follows from Schwarz’s inequality that V > 0 (since X, is nonde-
generate) so that g is strictly decreasing and R is strictly increasing by (2.1).
The limits in (2.3) are easy to check except that R(c0) can be a little tricky when
q = 0; for this,

R(u) = [*(a(v) = g(w) a1 [“(&(0) ~ a) do
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by monotone convergence and
fou(g(v) —a)do = —log(u) — au = —log(p(u)e®) » —logg. O

Next we need to know the asymptotic behavior of R(x) and an estimate for
V(u) as u — 0. This is given in

LEMMA 22. If EX? < oo, thenasu — 0

R(u) ~ tu?VarX, and V(u) ~ VarX,.
If EX? = o, then R(u) ~ R,(u) as u — 0, where
Ry(u) =1 - o(u) + ug/(u)
and
u’V(u) = O(R(u)), u-0.
If Z,(u) has distribution given in (2.5), then
V(u) ~ EZ3(u), u—0, when EX?= o0
and for u < C < oo,
V(u) = EZ¥(u), u—0, evenwhenEX} < co.

PROOF. The case when EX? < o is a straightforward expansion of R out to
terms of order u2. Thus assume EX? = co. We use the inequalities

1 1
—logp =log— < ——1, —logp> —(p—1)=1-9
P P
to obtain .
1-—o9(u) + uy R
NPPEELORT.ORE O}
(2.6) v

R(u) 21— o(u) + ug(u) — (1 — ¢(u))ug(u)

= Ry(u) — (1 — o(u))ug(u).
Since ¢(u) — 1 as u — 0, the upper bound is adequate. Next observe that

1-¢(u)=EQ1 -e*X) <E(uX, A1),
ug(u) ~ —ug'(u) = EuXe ** < E(uX, A 1),
so that for small u
(2.7) (1 - 9(u))ug(u) < 2{E(uX, A 1)),
Since v"%1 — e~*(1 + v))| we have
1-22"Y)(v®A1l)<1-e"(1+0v)<0v®Al, 020,

so that
(2.8) R,(u) = E(u?X2 A 1).
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Now our assumption that EX? = oo implies that
(29) {E(uX1{uX, <1})))}*= o{ E(u?X2{uX, <1})}, u-0

(see page 11 of [11]), which together with (2.6), (2.7), and (2.8) completes the
proof that R(u) ~ R,(u). Since

(2.10) W) < o(u)

< E(u?X2 A1) = R\(u) ~ R(u),
we have u?V(u) = O(R(u)) as u — 0. Finally, when EX2 = oo we have V(u) ~
EZ}(u) as a consequence of (2.9); if EX2 < oo, then V(u) —» Var X, as u — 0, so

that V(u) has a positive minimum on [0,C], whereas EZ2(u) has a finite
maximum so the last assertion of the lemma follows. O

Eu?X2e "% ~ Eu?X 2~ 4%

The following lemma contains the key estimates for the proof of Theorem 2.1.

LEMMA 23. Leta <x, < p and g(A,) = x,,. Then
(1) P(S, < nx,} < exp(—nR(}A,)).

Furthermore, given 0 <n < R(), there exists ¢ = ¢(n) > 0 such that if for
some € > 0 and n

(2.11) (14 €)R(A,) <n<R(x),
then for such ¢ and n we have
(1+¢€)c

(i)  P(S,<nx,} > (1 " enR(A,)

)exp{ —(1+ 2¢)nR(A,)}.

Proor. The upper bound is easy. By Chebyshev’s inequality
P(S, < nx,} < Eexp(—A,S, + nA,x,) = (@(A,)er*)" = e"nRA,

For the lower bound, let ¢ > 0 and n be fixed for which (2.11) holds. There exists
¥, > A, such that

(2.12) R(y,) = (1 + e)R(A,).

We use the transformed distributions introduced by Cramér [2]. Let {Z,} be an
i.i.d. sequence of random variables with distribution H, = H given by (2.5). We

have suppressed the dependence of H on n which will cause no confusion. We let
= g(v,) and note that

(2.13) EZ,=z,, VarZ =V(y,).
Denoting

={(y1--» ) %,20,i=1,...,n}
and

={yeRL: y + - +y, < nx,},
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we have

P(S, < nx,} = [ dF(y) - dF(3,)

(2.14) = (p())" [ emont = 0 dH(3,) -+ dH(3,)

= e—nR(v,oE{evn(zl# T AIrE (7 4 - +Z, < nx,) )
We need a lower bound for the expectation. We let
(2.15) w, =2, — &%, R(A,), I, = [nw,, nx,]
and get

P(S, < nx,} > e "Bernln=2)P(Z 4 ... +Z €1

= e "RONAT2OP(Z + ... +Z € I,}.
By the generalized mean value theorem,

£y 2= 80,) - 81 = S0 E g

(2.17)

Vi R(A
_ V) oy RO
£.V(£,) Yn
where A, < £, < v,. Recalling (2.15) and (2.17) we have
enR(\,)
P{Z + - +Z, ¢} <P{|Z + - +Z,— nz,|> ——,
Yn

so by Chebyshev’s inequality (recall (2.13))

nV(y,) Y V(7,)
2.1 P(Z +---+Z &1 = .
( 8) { 1 n & n} = n2€2R2(An),Yn—2 a2nR2()\n)

Let u, satisfy R(u,) = n. By Lemma 2.2 there exists ¢ > 0 such that

u?V(u) < cR(u) foru<u,,
which by (2.11) means that

1aV(¥,) < eR(y,) = c(1 + )R(},),
and using this in (2.18) we get

P(Z +---+Z,¢1,} <
&n

which together with (2.16) gives the desired lower bound. O
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We will now prove the main result of this section.

THEOREM 2.1. Leta < x, < p and let X, be the unique solution of g(\,) =
x,. Then

P{S,<nx,} -0 iff nR(A,) - .

Furthermore, if nR(\,,) — oo and either for some 8§ > 0, a + 8 < x,, < p for all
norq=P{X =a} >0, then

(2.19) —log P{S, < nx,} ~ nR(\,).

REMARK 2.2. When x, —> g, A, = 0, so R may be replaced by R, in (2.19)
when EX? = oo by Lemma 2.2.

Proor. If nR(A,) — oo, then by the upper bound in Lemma 2.3 we have
P(S, < nx,} - 0. Now assume that nR(\,) < C < o along a subsequence, in
which case we will show that P{S, < nx,} > ¢ > 0 for large n in that subse-
quence. First observe that there is no loss of generality if we assume

(2.20) nR(\,) =C

along the subsequence in question because we can always pick A, larger
to satisfy (2.20) and the corresponding x, will be smaller than before; if we
can show P(S <nx,} >c>0 with the smaller x,, that will certainly
suffice. Thus we assume (2.20) along a subsequence. Since R(A,) — 0 along
this subsequence, we can apply the lower bound in Lemma 2.3 with & large so
c(1 + €)/&°C < 1 to conclude that

P(S, < nx,} > jexp(—(1 + 2¢)C)

for n sufficiently large. This proves the first assertion.

Now assume that nR(A,) —» oo and x, > a + 8. Then A, must be bounded
above and sup, R(A,) < R(c0). Thus there exists ¢, > 0 such that for 0 < ¢ < ¢,
the condition (2.11) holds for some 7 and all n. Thus by Lemma 2.3,

c(1+e)
enR(N,) )

which proves (2.19) in this case. If ¢ > 0 and A, remains bounded along a
subsequence, then x, > a + 8 for some 8 > 0 along that subsequence and this
case has already been considered. So we need to consider the case g > 0 and
A, — oo along a subsequence and show that along that subsequence (2.19) holds.
We have

nR(\,) < —log P{S, < nx,} < (1 + 2¢)nR(\,) — log(l -

P(S,<nx,} > P(X;=a,1<j<n}=q"

so —log P(S, < nx,} < —nlog q ~ nR(X,), and since the lower bound is always
valid by Lemma 2.3 this proves the theorem. O

If x, > a and g = 0, then the following corollary of Theorem 2.1 should be
adequate for most applications. However, Example 2.1 shows that (2.19) may fail
if x,, can approach a and q = 0.



82 N. C.JAIN AND W. E. PRUITT
COROLLARY 2.1. If x, - a and q = 0, then we have

1
lim ;logP{Sn <nx,} = —o0.

n—oo

Proor. For § > 0 and x, < a + & we get by Theorem 2.1,
1 1
- ;logP{Sn <nx,} > - ;logP{S,, <n(a+8)} ~R(N),

where g(A) = a + 6. When ¢ = 0, R(A\) = o0 as § = 0 by Lemma 2.1 and the
corollary is proved. O

To apply the theorem when X, is in the domain of attraction of a stable law
H of index a, 0 < a < 1, supported on [0, o), we need to know the behavior of R
and g near 0; note that g = oo in this case and in most applications x, — oo
(A, — 0) is the important case. If X, is as above, then there exists a slowly
varying function L (near infinity) such that (G =1 — F)

x°L(x)
(2.21) G(x) T —a)

(see [5], page 448). The next proposition gives the behavior of R and g in this
situation.

ProposITION 2.1. If X, is in the domain of attraction of a stable law H of
index a, 0 < a < 1, then H is supported on [0, ), and with L as in (2.21) we
have

R(A) ~ (1 — )NL(1/A) ~ T(2 — a)G(1/A), A =0,
and
g(A) ~ al IL(1/A) ~ aT'(1 — a)G(1 /M)A, A—-0.
ProoF. Clearly EX? = o0, so by Lemma 2.2
R(A) ~ R, (M) =1-¢(N) + A¢'(N), A - 0.
We have
1-9(A) = [T(1 - e™) dF(x) = [ eMG(x) dx = A[ex duy(x)
0 0 0
and
AN = [Aze M dF(x) = A [T e dU(x),
0 0
where by (2.21) and Theorem 1 ([5], page 281) as ¢ — oo,

(1) = [(6(x) s ~ oo,
at'~*L(t)

Uy(t) = [O‘xdp(x) = —tG(¢) + [O‘G(x)dx T o
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Now by Theorem 2 ([5], page 445) we get as A — 0,
1—@(A) ~NL(1/))
and
Ag(A) ~ —A@(A) ~ a\L(1/N),

from which the conclusions of the proposition follow immediately. O

ExaMmPLE 2.1. Let X, have mass
pi = exp(—exp(k?)) at b, =exp(—exp(k)), k=1,2,...,
with the remaining mass at 1. We consider
A = b, (108( P/Prs1) — 1)

In estimating @(A,,) it is easy to see that the main contributions will come from
k = n and n + 1. The following estimates are all straightforward:

9(N,) = e+ pypie Mt +0(py 1) = Para(e” + 1+ 0(1)),
=@ (X,) = Ppi1€"b, + Pri1buir + 0(Prs1bn) = byppia(e” + 0(2)),
g(A,) = b,(1 — e7"(1 + o(1))),
R(\,) = —log p,1 — 1~ (108( p/Dys1) — 1) (1 — e7™(1 + 0(1))) + o(1)
= —log p, + € "10g(P,/Py+1)(1 + 0(1)) + 0(1)
=e” + e (e — e”)(1 + 0(1)) + 0(1)
- e—ne(n+l)2‘

The critical thing is that x, = g(A,) < b,. Since b,_, > nb,, S, < nx, implies
that all summands are at most b, and at least one is smaller. Thus

P(S, < nx,} < Cnp, . 1(p,)" ",

and so
—log P{(S,<nx,} > —(n—1)log p, — log p,,, —logn — logC
=(n—-1)e” + eV’ —logn — log C
~ (1,
Thus

—log P(S, < nx,}(nR(A,)) " - .

3. The local limit theorem. In proving the strong result we will need a
local limit theorem for triangular arrays. We have not found one in the literature
which allows the distribution to change from row to row. Although we will only
use this result in the case of normal convergence, the more general result requires
no more work.
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We start by describing the stochastic compactness condition of Feller. For any
random variable X define

o) G(x) =P{|X|>x), K(x)=x2E(X%{X|<x}),
' Q(x) = G(x) + K(x) = E{(x"X)* A 1),

for x > 0. @ is continuous and strictly decreasing once the support of |X| is
reached. The analytic form of the stochastic compactness assumption is

(3.2) lim sup G(x)

— < 00.
X =00 K(x)

Since G(x)/K(x) actually converges to a finite limit when X is in the domain of
attraction of any stable law, this condition is more general.

We will also need some facts about symmetrization. Consider a sequence of
distributions F, with associated functions G,, K,,, @, as defined in (3.1). The
associated functions for the symmetrized distributions will be .denoted by
FE? G, K3, and Q3. The following lemma uses the ideas of [7] where analogous
facts are proved for a single distribution.

LEMMA 3.1. Suppose that F,, —» F, weakly with F,,, F, nondegenerate and the
E, are uniformly stochastically compact, i.e.,

. G,(x)
(3.3) hir:sol:p s1r1lp E.(x) < o0.

Then the F,} are also uniformly stochastically compact and there exist positive
constants C, ¢ such that

(3.4) Qi(x) < Q,(x) < CQ:(x) foralln,x.

Proor. With the obvious notation,
G:(x) = P{|Xn1 - Xn2| > x} < P{|Xn1| > %x} + P{|Xn2| > %x} = 2Gn(%x)
and
Grf(x) 2 P{|Xn1| < x}P{|Xn2| > 2x} = (1 - Gn(x))Gn(zx)

Because of the convergence we can find x, such that G,(x) < 3 for all n and all
x > x,. Thus we have

1G,(2x) < Gi(x) < 2G,(3x) forall x > x,.
Next
x°Q;(x) = fo 2yGy(y)dy < 2f0 2¥G,(3y) dy

x/2

=8["7"22G,(2) dz < 8x?Q,(x),
0
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so we have the lower bound in (3.4). Similarly, for x > x,,

42°Q (2x) = fo 29yG (y) dy = 4 fo "92G,(22) dz < 4x2 + 8 [2263(2) dz

< 43 + 82%Q3(x) < (Qi(x,)) " 4x’Qi(x) + 827Q3(x),
where we have used the fact that x2Q3(x)1. Again because of the convergence,
the sequence (Qj(x,)) ' is bounded so that this gives the upper bound in (3.4)
for x > x,. For x < x,, it is trivial:
@u(x) <1 < (Qi(x0)) ' @a(x).
By (3.3) we know there is an x, and C, such that
G,(x) < C,K,(x) forallx>x,,all n.

Then by Lemma 2.4 of [11] there is a A > 0 such tilat 2@ (x)| for x > x,.
Choose b small enough that */2 < ¢C~, the constants in (3.4). Take x > b~ x,
and let

G:(x)
n= m s
where we have suppressed the dependence on x for simplicity. Now if bx < y < x,
G(7) 2 Gi(x) = a,K3(x) 2 a,x72y°K(y) 2 o, b°K(y).

Then if §, = 2/(1 + a,b?) we have y*Q3%(y)?1 on [bx, x] by Lemma 2.4 of [11].
Therefore

bQn(bx) < @;(x) < ¢7'Q,(x) < ¢7'07Q,(bx) < Cc™'b*Q3(bx),

and so

[

b < Ce™'b* < b2

by our choice of b. Thus 8, > A/2, or
Ga(x)
K(x)

This is the uniform stochastic compactness for F?, O

=a,<(d4A"'-1)b"% forallx > b ;.

Before we state the local limit theorem we should say a word about a lattice
distribution and the associated period. By a lattice distribution we shall mean
one that is discrete and assumes values in the integer lattice Z. A lattice
distribution Fj is called full lattice (aperiodic in the terminology of Spitzer [14])
if the group generated by the atoms of F, is Z. The assumption that a lattice
distribution is full lattice is harmless because it amounts to a rescaling of the
atoms of F;,. A lattice distribution is said to have period p if p is the (maximum)
span of the distribution lattice. We also note that p is the period of F, iff
[fo()] <1 for 0 < 8 <2x/p and |fy(27/p)| = 1, where f, is the characteristic
function of F;; see [14] for details. We now state the local limit theorem.
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THEOREM 3.1. For fixed n, {X,,}, k=1,2,...,n, are to be i.i.d. with
distribution F,, characteristic function f,, and associated functions G,, K,, @,
as defined in (3.1). Define a, by Q,(a,) = n"'. We assume that there exist
probability distributions F,,, nondegenerate, and H such that

n
X, - F, weakly, a;') X,,—b, —> H weakly,
E=1

and that the F, are uniformly stochastically compact, i.e., satisfy (3.3). We also
assume that if F, is lattice then it is full lattice and moreover, that F, and F,
have the same periodicity. Then H must have a density h. If a;,'x, (k) — b, = x
uniformly in k and F, is nonlattice, then for fixed n > 0 as n > oo,

@ P{LX,, € (x,(F) = 1, ,(k) + 1]} > 2uh(x)

uniformly in k; in case F, is lattice and x (k) is a possible value of ¥; X,,;, then
asn — oo, .

[ L, = 5,(k)} = ph(x)

uniformly in k, where p is the period of F,. There is also a uniform upper bound
is both cases:

anP{Zane (y—"l,y"‘n]} <C
J

for n fixed.

Before giving the proof, we need a lemma:

LEMMA 3.2. Under the assumptions of Theorem 3.1, if F, is nonlattice, then
given p > 0 there exist C, c, A > 0 such that

(3.5) Ifn(va;l)ln < Cexp(—c|v]}), |o|<pa,, n=1.
If F, is lattice then (3.5) is valid for p = w/p.

Proor. By (3.3) we have x, and M such that
G,(x) < MK, (x), x>x,n>1.

Then by Lemma 2.4 of [11] there is a A > 0 such that x*Q (x)| for x > x,. Now
if p is fixed we can find ¢ such that

21Q,(x) = &*Q,(y) forp'<x<y;

to see this, if p~! < x < y < x, we have

2Q,(x) = 2Q,(¥) = (px,) 5@ ),
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so that ¢ = (px,) " suffices. Then for 1 < v < pa,,
(3.6) nQ,(a,071) = env*Q,(a,) = cv*.

Next we observe that by Lemma 3.1 for |u| < u,
2(1 - fu(w)]) 2 1 = () = [(1 - cosux) dF3(x)

2o  ul?dFy(x) = e,K3(jul™)
lux|<1
> c,Q5(|ul™") = ¢,@Q,(Iul™Y),
so that

(3.7) | f(#)] <1 = cQ,(jul™") for |u| < u,.

In the nonlattice case, (3.7) may be extended to |u| < p, with ¢ depending on p,
since f, — f, uniformly on compacts, @, - @ uniformly (since @ is continuous
and decreasing), and since | f(«)| is never 1. In the lattice case this is still valid
for p = m/p since |f(u)| <1 for 0 < |u| < 27/p. To finish the proof, (3.5) is
clearly valid for |v| < 1, and for 1 < |v| < pa, we have by (3.7)

| fa(vez)[" < (1 = cQulanlol ™))" < exp(—cn@u(a,lo| ™))
< exp(—¢cilo]*),
where we have used (3.6) at the final step. This proves the lemma. O

ProoF oF THEOREM 3.1. We start with the lattice case. Suppose that y, is a
possible value of £ X, and

|y, — b, — x| <e

for large n. Now f*(u)exp(—iuy,) is the characteristic function of £X,, — y,;
since this random variable takes its values in pZ, the characteristic function has
period 27 /p. Also note that a, = o since @, - @ uniformly. Thus

1 =
= = — —iuy, fn
anP{ ZXnk yn} ap o2a J_ e fn (u) du

= _p_ /P —iuy, fn
= o f_ﬂ/pe f(u) du
D

T /P _ipa=! -
= _/ w5 gTivey y,,fnn(van l) do
27 —mna,/p

— _I’_ 0 /P iv. - —ivd,

P (ra, oo ; -
o [T (eioten b — p)miengn(pa ) e do.
™ —7na,/p

Now by Lemma 3.2 the first term converges to ph(x) by dominated convergence;
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note that the lemma also implies the existence of 4. The second term is bounded
by

P fwst exp(—cv*) dv,
7 Jo

which can be made small by choice of . The uniform upper bound comes from
applying the bound in Lemma 3.2 to the next to last expression above. This
completes the proof in the lattice case.

For the nonlattice case we introduce the functions

sin u 1—cosx
k(u) = _ r(u)=Q—-u)*, s(x)= 2— 7

By the inversion formula,

)
Jp = 2_1'. s(p(xn - y))anP{IEXnk - yl < 7’} dy

a,,fexp(—iuxn)r(up“)k(un)fn"(u) du

Jexp(—io(azs, ~ 5,))r(v0z o~ {0z 1) vz o

Note that the integrand in the last expression vanishes for |v| > pa, due to the r
factor. Thus we may use Lemma 3.2 as above to see that this last expression
converges to 2wh(x) uniformly in the sequence {x,} when p is fixed. Fix § > 0
and let I = {y: |y — x,| < 81}. Then we obtain

Jn = %anP{IEXnk - xnl = (1 - s)ﬂ}j;S(P(xn - y)) dy

and

,o_[ls(p(xn—y))dy=‘{| s(z)dz=27r—f s(z)dzz2vr—%.

z|<pdn
Now replace n by (1 — §) !5 and we have for large n,

anP{IZX,,k - xn| < "’I} < (1 +¢)2nh(x)29(1 - 8)_1(277 _ 8(1“3—”8) )—1.

By taking § small and then p large we obtain the desired upper bound. Note
that since A is bounded a similar argument gives an upper bound

a,,P{|):X,,k -y|= n} <C,
which is uniform in y. This allows us to estimate </, above:

Jn = Z_tl.anp{lzxnk - xnl

<(1+ 8)n}f18(p(xn -)dy+ %CfFS(p(xn —))dy

29 . 4
< %anP{lzXnk —x,| < (1+8)n) + C5
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The argument is completed as above although this time the error term must be
made small compared to A(x); of course, a lower bound is not needed if
h(x) = 0. This completes the proof. O

4. The strong result. The exact asymptotic behavior of P{S, < nx,)} is now
fairly easy to obtain in the stochastically compact case. This is the content of
Theorem 4.1. First we need a lemma which will provide more information about
V, {a,}, and {A,}.

LeEMMA 4.1. Assume that X, is stochastically compact, i.e., F satisfies (3.2).
Let Z, have distribution H, = H defined in (2.5). Let G,, K,,Q, (see (3.1))
correspond to Z,,. Then the Z, are uniformly stochastically compact, i.e., satisfy
(3.3), and for 0 <u < C < o0 and X\, < C < o we have the following:

(a) u*V(u) = R(u) = Ry(u) = Q(u™").

(b) If nQ,(a,)=1 and nQ(a,) =1, then \,a, > o iff nR(\,) > o iff
A.a, = oo.

(©) If nR(\,) = oo, then o2 = nV(X,), where nQ,(a,) = 1.

(d) If nR(N,) — o, then

nE\z, - EZ,|’

n-o (nVarZ,)? -

PRroOOF. For the uniform stochastic compactness, note that
G,(x) E(e »%1{X, > x}) e M*G(x)  G(x)
= < = .
K, (x) x72E(X2 MX¥1{X, <x}) e ™K(x) K(x)

(a) Since these functions are all positive and continuous we only need to
consider u — 0. The behavior when EX? < o is easy—see Lemma 2.2. We also
showed R(u) ~ Ry(u) = Q(u™") > cu®V(u) when EX? = oo in Lemma 2.2—see
(2.8) also. The remaining inequality depends on stochastic compactness:

" (lu) Jutx?eu= dF(x) - (;ﬁ Juxe dF(x))2

> e K (u-1) — c(f(ux A1) dF(x))2
~e 'K(u™) > cQ(u?)

u*V(u) =

by (2.9).
(b) First note that

(41) 2°Q,(x) = E{Z% Ax%} < EZ2 = V(A,) = \,;2Q(A,!) forall x,

where we used Lemma 2.2 at the third step and (a) at the last step; for x > ;!
we have

2'Qu(x) 2 E(271{Z, < x})

42
(4.2) > E(Z21({2, < A;'}) = e A;2K (A1) = eA;2Q(A7Y),
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using stochastic compactness of X, at the last step. In particular, evaluating at
AL
(4.3) Q.(A:") = @(A;Y) = R(A,).

Next, since x2Q,(x)1 and x*Q,(x)| for large x as in the proof of Lemma 3.1, we
have for large n

(4.4) nQ,(ea,) <e™2nQ,(a,) =¢72, nQ,(ea,) > e *nQ,(a,) =&
Now if nR(A,) = oo, then nQ,(A,') = o by (4.3) and so A,;' < ea, by (4.4). On
the other hand, if nR(A,) is bounded (for a subsequence) then so is nQ,(\;")
and then A,'! > ea, for small enough & by (4.4). The proof for a, is the same
with @, replaced by Q.
(c) Since nR(\,) = o, A,a, = o by (b) so a, > A;;*. Then by (4.2),
a2n! = o2Q,(a,) = ALPQ(N;Y) = V(A,).
Similarly, by (4.1)
ain~! = arQ,(a,) < CAQ(N;') = V(A,).
(d) First we have
1

?(A,)

1
= -Aqz -
A\,EZ, Jhnze™ dF(2) < o) S O

Then with C, > C,,
E|Z, - EZ,]’ = E{|Z, - EZ,[\(|Z, - EZ,| < C;\;"} )
+E(|Z, - EZ,|"{|Z, - EZ,| > C\;'}}
< GA,'V(A,)
1
Tem i S
< CALV(A,) + CAZPG(CALY) = AL TV(A,),

where the boundedness of A,EZ, is used to get the second inequality and the
last step follows by (a). Thus

nE|Z, - EZ,|
(nV(7,))"*

M|z — EZ,|’e = dF(z)

< G(nR2V(A,)) " = (rR(A,)) T 0. o

THEOREM 4.1. Assume that X, is stochastically compact. Let \, be the
unique solution of g(\,) = x, where for some 6 >0, a+d<x,<p. If
nR(\,) — o and X, is nonlattice, then

1
V2w A,s,
where s, = (nV(A\ )% If X, is lattice, (4.5) is still valid if x, —> p but in

(45) P(S, < nx,) ~ e~ RO,
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general there is an oscillating factor:

erndn

p -n
(4.6) P{S, < nx,} ~ Fars. L= ™7 e~ "R,

where d,, is the maximum possible nonpositive value of S, — nx,,.

REMARK 4.1. (i) This result may fail if x, is allowed to approach a even if
q=PX =a}>0. (TakeP{X —0}—P{X =1} = and nx,=1)

(ii) If only a = estimate is needed in (4.5), then >\ »S, may be replaced by
(nR(A,))'/? by Lemma 4.1.

Proor. We start with (2.14) with y, = A ;:
P{Sn < nxn} - e—nR(A,,)E{e}\,,(Zl+ +Z,,—nx,.)1{Z1 4 ... +Zn < nxn}}

We will use the local limit theorem to evaluate the expectation. Here the Z, are
iid. with the distribution H, defined in (2.5). Since x,, > a + 8, A, is bounded
and by passing to a subsequence we may assume that A, = A < oo (possibly
zero). (There is no harm in restricting to a subsequence since we could start with
an arbitrary subsequence.) Thus with X, corresponding to Z,, we have

P(X, <z} = 200 )E{e Mal{X, < 2}} - —(ﬂE{ e Mi1{X, <z}}.

All the distributions have the same support so the lattice assumption is satisfied.
By (d) of Lemma 4.1 we have Lyapounov’s condition for the central limit
theorem satisfied so that

57 (XX, — nx,) - N(0,1) weakly.

By (c) of Lemma 4.1 we have a,, = s, so by passing to a further subsequence we
may assume that s, ~ ca,, and then

(XX, - nx,) = N(0,c?) weakly.

We have already checked in Lemma 4.1 that the {X,,} are uniformly stochasti-
cally compact. Thus we have the conditions of Theorem 3.1 satisfied. Let ¢ > 0
and

Ap={M(Z,+ - +Z,— nx,) €(—ke, — (k- 1)¢]}.

For k and ¢ fixed we have ke),'a,' — 0 by (b) of Lemma 4.1, so by Theorem 3.1
we have in the nonlattice case if A > 0,

1

P(A,) ~ —_—.
(k) a Gy

~es; '\t

1
A—l
€A, ‘/2_7,
This is still valid if A, — 0, even in the lattice case, since we estimate the
probability that the sum is in a long interval of length e\;! by adding the
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estimates for intervals of fixed length and using the uniformity. Now
ko

E(eMt -+ 2 |(Z) 4+ o +Z, < nx,}) 2 L e RP(Ay)
k=1

e ¢ — e—(k0+1)e

~ ——P(A
— (A

and we may choose ¢ small and %, large so that this is close to ¢ "'P(A;), which
is sufficient for the lower bound. The upper bound for these terms is similar. For
the terms with k& > k, we use the uniform upper bound from the local limit
theorem to obtain a bound of

e k(1 — e7¢) 'Cyes; A,
which will be relatively small if k¢ is large. The lattice case is similar with the
nonpositive possible values of Z, + -+ +Z, — nx, being d, — kp, k = 0,1,...,
and the probability of each being ~ p/ V2 s,. This completes the proof. O

EXAMPLE 4.1. As an application of Theorem 4.1, we will obtain an exact
asymptotic formula for the lower tail of a nonnegative stable random variable of
index a < 1. More precise results are available in the literature (see Skorohod
[13]) but they depend on contour integrations; the present method is more
probabilistic. For simplicity we choose the scale factor so that ¢(A) = e~ Then

g(\) =aXl,  R(A) = (1 - o)X
By the scaling property we have
P(X, < x} = P(n*/*X, < n'/*x} = P(S, < nn~1H e},

where we will want x — 0. Since n is arbitrary we can take n large enough so
that x, = n~!*% — co. Then

o 1/(1-a)
ol l=pn"1*Ve% gsothat A, = (—) n-e
x
and
a\e/1-a)
nR(A,) =(Q1 - a)(;) - 0
since x — 0. Finally V(A\) = a(1 — a)A*"2, so that
a\(a—2)/2(1-a)
s, ~ {na(l — a)}w(;) n~(@=2/2a
and so
o a/2(l—a)
Mo~ Ll -} 2)
Thus

P{X, < x} ~ {27a(1 — a)}—l/z(z)a/z(l—a)exp(_(l B a)(ax'l)a/(l_a)),

x - 0.



LOWER TAIL PROBABILITY ESTIMATES 93

| 5. Subordinators. As usual, we will call a process with stationary, indepen-
dent increments a Lévy process. In this section we adapt the results for sums of
independent random variables to subordinators (nondecreasing Lévy processes),
but now we consider both ¢t — oo and ¢ — 0. {X,, ¢ > 0} will denote a subordina-
tor with drift parameter b > 0 and Lévy measure ». Then » has all its mass on
(0, 00) and [{°(x A 1)dv(x) < oo; furthermore for u > 0,
Ee_uX‘ = e_t‘l’(u)’
where {(u) = bu + [$°(1 = e **)v(dx). For u real, the characteristic function of
X, is given by
Eeiuxz = et\h(u)’
where Y, (v) = ibu + [P(e™* — 1)v(dx). We still use
o(u) = Ee™4%1 = =¥,
In this case

8(u) = ~9/(u)/p(u) = ¥/(w) = b + [“xe™p(ds)
and
R(u) = ~log g(u) = ug(u) = ¥(u) ~ wp'(w) = [“(1 - e7(1 + ux))s(dk).
We clearly have
g(0)=b+ jo “xv(dx), g(w)=b, R(0)=0, R(x)=72(0,0).

As before, g| and R1.

We now describe the transformation on the process X, corresponding to the
Cramér transformation. Let b < y, < g(0) and let v, be defined by g(y,) = ,. The
transformed process (corresponding to y,) is denoted by Z,, ¢ > 0; the depen-
dence of Z, on y, is suppressed. It is a nondecreasing process with independent
increments whose infinitely divisible law has parameter b¢ and Lévy measure
te”"*p(dx). For u > —v, we have

(5.1) Ee 4z = exp{—t(bu + /(;w(l - e"‘x)e_”"v(dx))}.

With the help of (5.1) we can now prove the following relation corresponding to
(2.14): For x > 0,

(5.2) P{X, < x} = e tB(W e dP(Z, < y).
[0, x]
This relation is the same as
P(X,<x} =e W0 e dP(Z, < y),
[0, x]

and to verify this we simply take the Laplace transform of each side. We also
define the variance function for the transformed process by

(5.3) V() = —g"(u) = jo “x% "y (dx).
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It is easily seen that EZ, = ty, and Var(Z,) = tV(y,). For x > 0, let

G(x) =»(x,0), K,(x)=x"2 /(Ox]y%(dy), Q,(x) = G(x) + K,(x).

In the next lemma we summarize some useful relations between the functions R,
V, and Q,.

LEMMA 5.1. For u > 0 we have

(54) R(u) = @,(v7");

consequently,

(5.5) u?V(u) = O(R(u)).

Furthermore,

(5.6) u?V(u) = R(u), asu— 0(resp.u - ),

provided that, respectively,

(5.7) lim sup G(x) < lim sup G,(x) < .
s K(x) x—0 K, (x)

In particular, if both conditions in (5.7) hold, then

(5.8) u?V(u) = R(u) foru> 0.

REMARK 5.1. The first condition in (5.7) is equivalent to the stochastic
compactness of X,. To see this, @,(x) = @(x) by (5.4), (2.8), and Lemma 2.2 and
then the proof of Lemma 2.5 of [7] does the rest. With the proper definition of
K, this equivalence is true for a general Lévy process. (See the lemma in [12].)

ProOOF. Sincel — e %1 + u) = u? A 1 for all u > 0, we have
R(u) = [(u® A 1)p(dx) = Q,(u7Y)
for u > 0; also
u’V(u) = fwu2x2e‘“"v(dx) < fw(u2x2 A D)v(dx),
0 0
so (5.4) and (5.5) are proved. Furthermore, for u > 0
u?V(u) > f u’x% 'v(dx) = e 'K (u™?).
©,u7']

This proves (5.6) via (5.4) and the corresponding assumption in (5.7). Since both
u?V(u) and R(u) are continuous and positive on (0, c0), (5.8) follows. O

LEmMMA 5.2. If g(0) < x, < g(0) and A, is determined by g(\,) = x,, then
() P{X, < tx,} < exp(—tR(}A,)).
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Furthermore, there exists ¢ > 0 such that for all ¢ > 0 and t,
(1+e¢)e

(ll) P{Xt < txt} > (1 - m

)exp{ —(1 + 2¢)tR(A,)}.

Proor. We get (i) via Chebyshev’s inequality as in the proof of Lemma 2.3.
To prove the lower bound if (1 + £)R(A,) < R(c0), we proceed as in the proof of
Lemma 2.3 and get the obvious analogue of inequality (2.16); the only difference
here is that (5.2) must replace the equality (2.14). The analogue of (2.18) is the
inequality

YtzV( 'Yt)
e%tR%(\,)’
where R(y,) = (1 +¢€)R(A,), Z, is the transformed process corresponding to
Y. = 8(v,), w, =y, — &y, 'R(\,) and I, = [tw,, tx,]. Now c is picked to satisfy
u?V(u) < cR(u), u>0,
by (5.5). Then (5.9) gives

(5.9) P(Z,&1) <

c(1+¢e)R(A,) B (1+e¢)e
e2tR%(\,)  R(A,)’

and the rest of the argument is completed as before. If (1 + &)R(A,) = R(o0)
then we have

P(X, < tx,} > P{X,=tb} = e "®=) > exp{ — (1 + )tR(],)}. ]

The next theorem is the analogue of Theorem 2.1. The proof is an immediate
consequence of Lemma 5.2.

P(Z,¢ 1) <

THEOREM 5.1. Let g(0) < x, < g(0) and \, be determined by g(\,) = x,.
Then as t = 0 (t > ),
P{X,<tx,} >0 iff tR(\,) > o0, ast— 0(t—> o).
Furthermore, if tR(A\,) > o as t > 0 (t > ), then
—log P{X, < tx,} ~tR(XA,), ast— 0(¢t- ).

We now proceed to establish the strong result which gives the asymptotic
behavior of P(X, < tx,} itself. Let g(c0) < x, < g(0) and A, be determined by
8(A;) = x,. Let Z, be the transformed process corresponding to x,. By (5.2) we
have

(5.10) P{X, < tx,} = e B e~ dp(Z, < y},

[0, &,]
and what we need is the behavior of the integral in (5.10) as ¢ - 0 (¢ > o0). For
this we prove a local limit theorem for Z,. The next proposition gives the central
limit theorem.
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PROPOSITION 5.1. Let
Z, —
l]t : Mt b

0,

where Z, is the transformed process corresponding to x, as in (5.1), p, = tx, =
EZ,, and of = tV(A,) = Var(Z,); here V is the function given in (5.3). Whether
we are dealing with t > 0 or t — oo, assume (5.7) if liminf A, =0 (resp.
limsup A, = o) and that tR(\,) = . Then U, » N(0, 1) weakly in either case.

REMARK 5.2. If ¢t > 0 we can only have A, > oo, whereas if ¢ - oo the
possibility that liminf A, = 0 cannot be ruled out.

PROOF. As usual, we will use Lévy’s continuity theorem for characteristic
functions. For real u

) ) 117,
E(eluU,) - exp{t/w(elu)’/ot —-1- _a%'.)e—xzyy(dy)}.
0 .

t

If |y| < MA;Y, then by (5.6) we have A2V(A,) = R(X,), so

uy| |ulM |u|M |u|M
— < = = - U;
o, Ao (tkth(At))l/z (tR(}\t))l/2
therefore
. u
t/ (ewy/og -1- ___y_)e_)‘typ(dy)
©, MA;1] o;
(5.11) i %Ny (dy)
. ~—-— e Yy
207 o, 7 Y
u? u?
=——+ —— 2% u(dy).
2 2V(A,) f(m:‘,oo)
Also,
. u
t/ (e“‘y/ot —_ 1 - _}:)e_)‘tyy(dy)
(M}‘t_lsoo) ot
(5.12)
tu2
< — 2,-\y d ;
20,2 /;MA;‘,w)y ¢ V( y)

thus (56.11) and (5.12) give
2

) iy u
tfw e/ - 22 e My(dy) + —
0 o, 2

t

(5.13)

1
= 0 2 _Aty d ,
{ V(A,) f(Mx;‘,«»y i y)}
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where O depends on u which is fixed, but does not depend on ¢. We have for
M>2

S @) = X2 Koy ()
<A IM % My(A;Y, o0)
<A IM%MQ (A7) = A;2M 2% MR()A,),

where Lemma 5.1 is used at the last step, and in view of (5.7) we get the last

quantity = MZ% MV(A,) by Lemma 5.1 again. Therefore, under our assump-
tions, whether ¢ — 0 or oo,

1
e 2e~2Iy(dy) = O(M%e M
V(A,) f(MA;‘,oo)y H(dy) = O )
uniformly in ¢, so the proposition follows from (5.13). O

Next we give the local limit theorem for Z,.

THEOREM 5.2. Let Z, be the transformed process corresponding to x, and
p,= EZ,, o? = Var(Z,). Assume (5.7) if liminf A, =0 (resp. limsup A, = o0)
and that tR(A,) > oo where either t >0 or t— oo is allowed. Then the
following hold:

(i) There exists C > 0 such that for any n > 0 and x real
P(Z,e(x—aA;h 2+ A7} < %
(ii) If v is nonlattice, then for n > 0
27
(27) %0\,
uniformly in x provided o, '(x — p,) = 0 uniformly in x.

(iii) If » is lattice with supportin S = {p,2p,3p,...} for some p > 0, where
p is the maximal real with this property, then for x € S

P{Zt E(x —A;hx+ n}\t‘ll} ~

P{Z,= bt + x} ~

(27 )1/2at

uniformly in x provided o, Y(x + bt — p,) > 0 uniformly in x.

REMARK 5.3. (i) If » is lattice then »(0, c0) < oo so that
tr(0,0) > tR(A,) — o

and ¢ must go to infinity for lattice ».
(ii) If » is lattice then K, (x) = 0 for x < p so the second condition in (5.7)
must fail. Thus we are excluding the possibility that limsup A, = oo in the
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lattice case. It is easy to check that the result is not valid if x, = b + o(¢™?)
when v is lattice.

Before giving the proof, we need the analogue of Lemma 3.2.

LEMMA 5.3. Under the assumptions of Theorem 5.2, if v is nonlattice, then
given p > 0 there exists ¢ > 0 such that for t sufficiently large or small

(5.14) t/(l — cos(vo;ly))e (dy) = cv?, || < poA,.
Furthermore, there exists 8 > 0 such that for t sufficiently large or small
(5.15) tf(l — cos(vo;ly))e *w(dy) = clv]’, 1< |v| < po,.
If v is lattice, (5.15) is valid for p - 7 /D.

Proor. We let

h(t,0) = t/(l — cos(ve; y))e *(dy).
Observe that

(5.16) A(t,v) > cltvzo,‘zf \ 1]yzv(dy) = c,tv%; 2A; 2K (A;1) if o] < oA,
©, A7

]

and

(5.17) h(t,v) = cltvza,‘zf , y2u(dy) = c;tK,(o,/0|7Y), if o] = oA,
©, gJv|" ']

Furthermore, by Lemma 5.1

(5.18) 02N\ = tA2V(A,) = tR(A,),

since we have assumed as much of (5.7) as is required for this. The first case we
consider is when liminf A, = 0,limsup A, = c. Then K, (x) = @,(x) for all x
since @,(x)|, x2K (x)1 and we are assuming both conditions in (5.7). Thus K,
may be replaced by @, in (5.16), (5.17) and we have, using Lemma 5.1 and (5.18)
for fixed p > 1,

(5.19) h(t,0) = cotQ,(A71) 0, 2 %% = c0?, if |v] < oA,
h(t,0) = c,tQ,(o,0]!) = c,tQ,(A7Y)

(5.20)
> ¢0202 > ¢,0%, if oA, <|v| < po,A,,
R(t,0) 2 ¢,tQ,(oo|™!) = czt(ﬂ)sz(Az Y
(5.21) o\,

> eglol’((R(A,))' ™% = c lol®, if oA, < o],

where in (5.21) we have used tR(A,) > o and the fact that x°Q,(x)! on
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[o;/vo]™", A7 '] for some & > 0 which follows from K, = @, on this interval by
Lemma 2.4 of [11]. Thus we have completed the proof in this case. Next assume
liminf A, > 0, limsup A, = . Then by (5.7) we have

G,(x) < CK,(x), x<ax,.
Next take € < A, and observe that
G,(x) < G,(xy) < CK,(xy) < Cxg%?K (x) < C,K,(x), xo<x<el.

Since (5.19)-(5.21) only required this inequality for x < A;! they also apply in
this case. If liminf A, = 0, limsup A, < o, then we only know

G,(x) < CK/(x), x=x,,
where x, is large. Thus (5.19) still applies if A, < x{%, and (5.20) and (5.21) do if
|v] < 21 's,. To complete this case take M > A, and observe that
f(l — cosuy)e My(dy) > f(l — cosuy)e My(dy) > cu?, if |u| < pM,

since this is clear for small u by integrating out to z~! and then’it holds for
larger u since the integral does not vanish. (In the lattice case, we only need this
for |u| < p, the integral being positive on (0,2p).) Thus we have

h(t,v) > cjto; %? if |v| < pMo,, A, < M,
and so by (5.18)

A2
(5.22) h(t,0) > cz-l-tﬁv2 > cv?, ifp ;< A, < M, |v| < pMo,.
t

This proves (5.14) in this case. To finish the proof of (5.15), it only remains to
consider A, < p~ '[!, x; 0, < |0| < po, since (5.19)-(5.22) take care of the other
possibilities. Then since x°Q,(x)| on [x,, ) we have, by Lemma 5.1 and (5.18),
xlst(xl) 2 A;SQV(A;I) > ¢ A °R(A,) > et o IN? = ),
so that
h(t,v) = c,to; %% > 08~ %% > cy)v)’.

Finally, if liminf A, > 0, limsup A, < oo, then (5.22) applies and this is sufficient
for both (5.14) and (5.15). O

PROOF OF THEOREM 5.2. In the nonlattice case we let

sin u 1— cosx
k(u) = at r(w)=(1-ju)*, s(x)= 27,

and by the inversion formula
p ot}‘zt
t = 2 T’

= foo exp{ —ivo, (x — p,) }r(vp =0, ]\ ;) k(om0 N7 )exp{ty,(v)} db,

f_wws(%(x - )P(I1Z, -yl <uA;'} dy
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where
A oo .
Y (v) = / (e¥7/° — 1 — ivyo; ) e v(dy).
0
Since r(u) = 0 for |u| > 1 and

Ref(v) = —¢[(1 = cos(vay))e ow(ay),

(5.14) gives the necessary bound for the integrand in the second expression for /..
Thus J, is bounded and by Proposition 5.1 and (5.18) the integrand approaches
e~*"/2 pointwise uniformly for x such that ¢, (x — u,) = 0 uniformly so that
by dominated convergence J, = (27)*/% uniformly in x. Now the first expression
for J, is bounded as in the proof of Theorem 3.1 to complete the proof of (i) and
(ii). For the lattice case we have for x € S,

OtP{Zt — bt + x} _ _Pi_j*vrog/l’ e—io(x+bt—u,)/o,et$,(v) dv,
2 —mo,/p

and (5.15) and Proposition 5.1 complete the proof. O

The strong theorem for subordinators now follows easily from the local limit
theorem for Z, via (5.10).

THEOREM 5.3. Let b<x,<p=EX,, and A\, be the unique solution of
8(A,) =x,. Assume (5.7) if liminfA,=0 (resp. limsupA,= ) and that
tR(A,) = oo where t may tend to zero or infinity. Then if v is nonlattice

(5.23) P(X, < tx,) ~

1 e_tR(At)
V27 o\, ’
where o = tV(\,). If v is lattice, (5.23) is still valid if x, > p but in general
there is an oscillating factor:

p extdt

oo, (1— e )¢

where d, is the largest nonpositive possible value of X, — tx,.

(5.24) P{X, < tx,} ~ ~EROD)

REMARK 54. (i) If only a = estimate is needed in (5.23), note that by (5.18)
o\, may be replaced by (tR(A,))"/2. (ii) As with the local limit theorem (5.24)
fails when » is lattice and x, = b + o(¢7 ).

REFERENCES

[1] BAHADUR, R. R. and RaNcA Rao, R. (1960). On deviations of the sample mean. Ann. Math.
Statist. 31 1015-1027.

[2] CRAMER, H. (1937). On a new limit theorem in the theory of probability. Colloquium on the
Theory of Probability. Hermann, Paris.

[3] CsAki, E. and FOLDES, A. (1983). How big are the increments of the local time of a recurrent
random walk? Z. Wahrsch. verw. Gebiete 65 307-322.



LOWER TAIL PROBABILITY ESTIMATES 101

[4] FELLER, W. (1967). On regular variation and local limit theorems. Proc. Fifth Berkeley Symp.
Math. Statist. Probab. 2, Part 1, 373-388. Univ. of California Press, Berkeley.
[5] FELLER, W. (1971). Ar Introduction to Probability Theory and Its Applications 2, 2nd ed.
Wiley, New York.
[6] GNEDENKO, B. V. and KoLMOGOROV, A. N. (1954). Limit Distributions for Sums of Indepen-
dent Random Variables. Addison-Wesley, Reading, Mass.
[7] GRIFFIN, P. (1983). Probability estimates for the small deviations of d-dimensional random
walk. Ann. Probab. 11 939-952.
[8] GRIFFIN, P., JAIN N. C. and Prurrt, W. E. (1984). Approximate local limit theorems for laws
outside domains of attraction. Ann. Probab. 12 45-63.
[9] H6cLuND, T. (1979). A unified formulation of the central limit theorem for small and large
deviations from the mean. Z. Wahrsch. verw. Gebiete 49 105-117.
[10] JaIN, N. C. and Pruitrt, W. E. (1987). Maximal increments of local time of a random walk.
Ann. Probab. 15. To appear. )
[11] PruiTt, W. E. (1981). General one-sided laws of the iterated logarithm. Ann. Probab. 9 1-48.
[12] Prurrt, W. E. (1983). The class of limit laws for stochastically compact normed sums. Ann.
Probab. 11 962-969.
[13] SkoroHOD, A. V. (1954). Asymptotic formulas for stable distribution laws. Selected Transla-
tions in Mathematical Statistics and Probability 1 157-161 (1961). (Original in Russian.)
[14] SPITZER, F. (1976). Principles of Random Walk, 2nd ed. Springer, New York.

SCHOOL OF MATHEMATICS
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MINNESOTA 55455



