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An analysis of Wiener functionals is studied as a kind of Schwartz
distribution theory on Wiener space. For this, we introduce, besides ordinary

L,-spaces of Wiener functionals, Sobolev-type spaces of (generalized) Wiener

functionals. Any Schwartz distribution on R? is pulled back to a generalized
Wiener functional by a d-dimensional Wiener map which is smooth and
nondegenerate in the sense of Malliavin.

As applications, we construct a heat kernel (i.e., the fundamental solution
of a heat equation) by a generalized expectation of the Dirac delta function
pulled back by an Itd map, i.e., a Wiener map obtained by solving Itd’s
stochastic differential equations. Short-time asymptotics of heat kernels are
studied through the asymptotics, in terms of Sobolev norms, of the gener-
alized Wiener functional under the expectation.

1. Introduction. The purpose of the present paper is to give an easily
accessible exposition of Malliavin’s calculus, infinite dimensional differential
calculus on Wiener space and its applications. Since Wiener measure was intro-
duced in 1923, many interesting and important probability models have been
realized on Wiener space as Wiener functionals, typical examples of which are
diffusion models corresponding to heat equations on manifolds. These diffusions
are realized, as we know well, by solutions of Itd’s stochastic differential
equations. Thus It6’s calculus produces the most important class of Wiener
functionals, sometimes called Itd functionals. However, these Itd functionals, as
functionals of paths, are not in a class of functionals to which the classical
calculus of variations or Fréchet differential calculus on Banach spaces can be
applied. It is an important discovery of Malliavin ([15] and [16]) that, under
reasonable conditions, these noncontinuous functionals can be differentiated as
many times as we want when the differentiation is understood properly. More-
over, he showed that these derivatives can actually be used to produce fruitful
results. Examples of such successful applications, due mainly to Malliavin,
Kusuoka, Stroock and Bismut, are found, among others, in the problems of
regularity, estimates and asymptotics of heat equations, cf., e.g., [5], [10], [14],
[16] and [17].

In this paper, we try to give a systematic approach to the Malliavin calculus
by using the notion of generalized Wiener functionals. In other words, we would
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2 S. WATANABE

treat the Malliavin calculus as a kind of Schwartz distribution theory on Wiener
space. A merit of this approach will be that intuitive or heuristic expressions
(often used previously in formal computations of Wiener functional expectations)
can be given a precise mathematical meaning so that reasoning and computa-
tions will be clearer and more direct. For example, if we want to study the
density p(x) (with respect to Lebesgue measure) of the law of a d-dimensional
Wiener functional F(w), a formal expression for p(x) given by a Wiener
functional expectation would be p(x) = E[8,(F(w))], where §, is the Dirac delta
function at x € R®. Of course, §,( F(w)) is not a Wiener functional in the sense of
a random variable on the Wiener space. Nevertheless, under certain assumptions
of regularity and nondegeneracy on the functional F(w) we can realize 8 (F(w))
as an element in a Sobolev-type space of (generalized) Wiener functionals to
which the expectation operator E(-) is naturally extended, so that the above
formal expression has a correct mathematical sense. We can study various
properties of p(x), in particular regularity properties, by analyzing this expres-
sion. In addition, in the case when the functional F depends on a parameter &
(say 0 <& <1) so that F = F(e,w), we can also study the asymptotics of
p(e, x) = E[8,(F(e, x))] as £ 0 through the asymptotics of §,(F(e, w)) described
in terms of the above Sobolev spaces. This will be our way of studying the
short-time asymptotics of heat kernels given below. This approach is actually
well suited for the Itd functionals because the Itd calculus can be used quite
effectively in evaluating Sobolev norms of these functionals.

Thus, the main application discussed in this paper will be the short-time
asymptotics of heat kernels. Needless to say, this problem, closely related to
several questions in analysis, geometry and mathematical physics, has been
studied by many authors and there exists a huge amount of literature. One
standard approach is, of course, through the methods of partial differential
equations, cf., e.g., [4] and [18]. A probabilistic approach has been given, in, e.g.,
Azencott [3] and Molchanov [20], by the use of pinned diffusion processes and
pinned Gaussian processes. In this approach, however, the heat kernel is used in
an essential way to define a pinned diffusion and so, a knowledge of some
analytical properties of the heat kernel is inevitable and the study is usually
restricted only to the nondegenerate case, i.e., to the elliptic case. An application
of the Malliavin calculus to this problem was first discussed by Bismut [5]. His
method is based on the splitting of Wiener space and the use of the implicit
function theorem. This approach by Bismut has been much refined and ex-
panded by Kusuoka [12]: Kusuoka introduced the notion of generalized Mallia-
vin calculus and studied the various applications of this powerful method in the
asymptotic problems of Wiener functional expectations.

In this paper, we treat this problem by our method of generalized Wiener
functionals explained above. Namely, we first construct the heat kernel by a
generalized Wiener functional expectation in the form p(t, x, y) =
E[8(X(¢, x,w))] and then study the asymptotic expansion of the functional
8,(X(¢, x, w)) in the Sobolev spaces. This method is extremely simple in the case
of the heat kernel on the diagonal p(t, x, x). Also, we will obtain the asymptotic
expansion of p(t, x, y) off the diagonal, i.e., x # y, under the assumption (H.2) of
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Bismut [5] which is weaker than the ellipticity assumption. We cannot give
applications to problems in geometry and mathematical physics here. For some
topics, we refer the reader to Bismut [6] and Ikeda and Watanabe [11].

The organization of this paper is as follows. In Section 2, we review the
fundamentals of Malliavin calculus, particularly the Sobolev spaces formed from
Wiener functionals and the differential calculus defined on them. The pull-back
of Schwartz distributions under Wiener maps will be discussed in this context
and this notion will play a fundamental role. In Section 3, these ideas will be
applied to Itd functionals in order to obtain asymptotic results for heat kernels.

2. The Malliavin calculus in terms of generalized Wiener functionals.
In this section, we develop the Malliavin calculus along the lines of [10], [24] and
[27].

2.1. Sobolev spaces of Wiener functionals. Let (W, P) be the r-dimensional
Wiener space: Wy is the space of all continuous paths w: [0, 00) ¢t = w(t) € R,
such that w(0) =0 with the topology of uniform convergence on bounded
intervals in [0,00) and P is the standard Wiener measure defined on the
P-completion of the Borel field over Wy. Wy (denoted simply by W when there
is no confusion) is clearly a real Fréchet space. Let H be the Hilbert subspace of
W consisting of w € W which are absolutely continuous with respect to ¢ and
have square-integrable derivatives. Endow H with tbe norm |w|% =
I&|(dw/dt)(¢)|? dt. This H is often called the Cameron—Martin subspace of W.
By the Riesz theorem we can identify the dual H’ with H and thereby obtain
W’'c H' = HG W, where ¢ denotes the continuous inclusion. Given a real
separable Hilbert space E with the norm | |z, the L -space, 1 <p < o, of
E-valued Wiener functionals is denoted by L, (E) [i.e., L,(E) is a real Banach
space of all P-measurable E-valued functions on W such that |F|5=
JwiF(w)|%P(dw) < oo with the usual identification F =G if and only if
F(w) = G(w), P-aa. w]. If E = R, we use L, in place of L (R).

A function F: W— E is called an E-valued polynomial if it is a linear
combination of functions {(w)™e, m >0, l€ W’ and e € E. F is said to be of
order at most n if in the preceding, each m < n. The totality of E-valued
polynomials is denoted by #(E) and the totality of E-valued polymials of order
at most n by Z,(E). It is well known that #(E) c L(E) for all p and this
inclusion is dense. The real Hilbert space L,(E) is decomposed into a sum of
orthogonal subspaces of Wiener’s homogeneous chaos:

(2.1) Ly(E)=C(E)® C(E) e --- @C(E)® -,
where C(E) = {constant E-valued functions} and

C(E)=2(E)"" n[C(E)® - C, (E)]*, n=12,....

The projection onto C,(E) is denoted by J,. Thus if F = LJ,F, F € L,(E) and
if F € #(E), then this decomposition is finite sum and J,F € #(E) for all n.
Given a real sequence ¢ = (¢(n)), n =0,1,..., the linear operator T, on #(E)
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into itself is defined by,
(2.2) T,F= Y ¢(n)J,F, FeP(E).

If ¢(n)= —n, n=0,1,..., the corresponding operator T,, denoted by L, is
called the Ornstein— Uhlenbeck operator or the number operator Given s € R,
we have that (I — L)*: #(E) > #(E) is given by T, with ¢(n) = (1 + n)°,
n=0,1,.

Now, we 1ntroduce a famlly of norms || ||, ., s €R, p € (1, ), on #(E) by

(2.3) IFll,,s =|(I-L)*F|,, Fe2P(E),
where || ||, is the L,-norm of L (E).

These norms have the following properties, cf. [24] and [27] for proofs:
(24)  \IFll, s <I|IFll, ¢ forevery Fe P(E)ifp <p’ ands < s’'.

(Compatibility). For every p, p’ € (1,0) and s,s’ € R, if
(2.5) F,e®#(E), n=1,2,.. ,satzsfy||F||ps—+0asn—>ooand
’ I1F, — E,ll s,—>0asn,m—>oo, then |F, =0 as
n - .
(Duality). For every p,q € (1, 0) such that 1/p + 1/q = 1,
s €R and G € #(E),

where the sup is taken over F € #(E) such that ||F||, , <
and ( , ) is the inner product of E.

Let DJ(E) be the Banach space obtained by completing #(E) with respect to
the norm || ||, , for p € (1, 0) and s € R. By the above properties of the norms,
we have

(2.7) DS (E) e D(E) ifp<p’ands<s’,
and, under an obvious identification,
(2.8) DJ(E) =D, E) if p,q € (1,0) suchthatl/p+1/q =1

allpr, s

(2.6) sup

and s € R.
Set
(2.9) D=(E) = ﬂm N Dy(E)
and
(2.10) D~(E)=U U D;*E).

§>01<p<oo

Then D*(E) 1s a complete countably normed space and D~ °(E) is its dual.
Since D°(E ) = L,(E), elements in Dj(E) for s > 0 are Wiener functionals in the
usual sense; but 1f s < 0, some elements of Dy(E) are not classical Wiener
functionals and we will call them generalized erner functionals. It will be
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convenient to also introduce the following spaces;

(2.11) D=(E)= N U DE)
§>01<p<oo

and

(2.12) b-=(E)=U N D,%E).
§>01<p<oo

The spaces #(E), D;(E),D°°(E),]~)°°(E),..., are denoted simply by #,D;,
D*,D>,..., if E =R.

REMARK 2.1. Sobolev spaces of Wiener functionals have been introduced by,
among other, Malliavin [17], Shigekawa [22] and Kusuoka and Stroock [13].
Although their definitions, including ours, are apparently different from each
other, Sugita [25] showed that they are, nonetheless, equivalent.

Given real separable Hilbert spaces E, and E,, let E; ® E, be their tensor
product, i.e., E; ® E, is the real Hilbert spaces consisting of all bilinegr forms V
on E, X E, with finite Hilbert—-Schmidt norm

1/2
2
Vilas = {_Z‘V(h?% hP) } :
tJ

where the summation is taken over some (= any) orthonormal bases h{" and h{)
of E, and E,, respectively. V can also be identified with a linear operator L:
E, - E, of the Hilbert-Schmidt type by the relation V(k, h’) = (Lh, h')g,
For x€ E, and y€E,, x®y€ E, ® E, is defined by [x ® y}(h, h') =
(%, h)g{y, h’)g,. Meyer [19] obtained the following results (cf. also [24] and
[27]):

For every p,q € (1, ) such that 1/p+1/q=1/r <1 and
k =0,1,..., there exists a positive constant C,, 4, 1 Such that

”F® G"r,k < Cp,q,k”F”p,k“G”q,k
for all F € #(E,) and G € #(E,).

From this, the map (F,G) € #(E,) X #(E,) > F® G € #(E, ® E,) is ex-
tended to a continuous map DX(E,) X DX(E,) —» D}(E, X E,). In particular,
D* is an algebra: If F,G € D%, then F- G € D®. More generally, if FeD>®
and G € D*(E), then F-G € D*(E). Also, if F € D* and G € D*(E) or
F € D* and G € D®(E), then F- G € D®(E). From (2.13) and (2.6), we can
easily deduce the following:

For every p,q € (1,0) such that 1/p + 1/q =1/r <1 and

(2.13)

k =0,1,..., there exists a positive constant Gy, 4,1 Such that
2.14 ,
(2.14) IF - Gll,, 1 < Cf, g IF Il Gl

forall F,G € .

Hence F - ® € D, * is well defined if F € D} and ® € D, * Thus, F- ® € D~
is well defined if F € D* and ® € D™*® and it is obvious that F- ® is the
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unique element in D~* such that D- «(F-® G)ps =p-= (P, F- G)p~ for
every G € D*. Similarly F - ® € D™ is defined if F € D*and ® € D>, and
furthermore, F-deD >~ if FED® and ® € D~*. More generally, F. <I> (S
D~ °(E) is well defined if F € D® (D®) and ® € D™ °(E) [resp. D- *(E)] or
F € D®(E) [D°°(E)] and ® € D~ [resp. D~>]. Furthermore, F - ® € D~*(E)
if FEeD® and ® € D"*(E) or F€ D*(E) and ® € D~~.
We define the H-derivative D: #(E) — #(H ® E) by

, heH, ecE, Flw)e?(E)

t=0

DF(w)[h,e] = %(F(w +th),e),

and

k
D*: .@(E)H.@(H@H@ ®H®E)

successively by D* = D(D*~1). The following 1mportant result is due to Meyer
[19] (cf. [24] and [27]): D: #(E) — P(H ® E) is uniquely extended to a linear
operator D" ®(E) » D~ °(H ® E) which is continuous in the sense that its
restriction: DS*(E) — Dj(H ® E)is continuous for every p € (1,0)and s € R.
The dual operator D* of D is defined as a linear operator D*: D™ *(H ® E) —
D~ ®(E) which is continuous in the sense that its restriction: Ds“(H ® E)—
D;(E) is continuous for every p € (1, o) and s € R. The operator L is extended
umquely to a linear operator D~ °°(E) — D~ ®(E), continuous in the sense that
its restriction: D**(E) — D3(E) is continuous for every p € (1,0) and s € R
and it holds that

(2.15) L= —D*D.

This expression for L shows that it is a second-order differential operator. For
chain rules of D, D* and L, cf. [10], [24], and [27].

2.2. Pull-back of Schwartz distributions under a Wiener map and the smooth-
ness of conditional expectations. Let F: W — R? be a d-dimensional Wiener
functional. It is said to be smooth (in the sense of Malliavin) if F € D*(R?), i.e.,
F = (F, F?,..., F) with F' € D*. In this case

(216) o“(w) = (DF(w), DF¥(w)), €D*®, i,j=12,...,d.

Note that DFi € D*(H ® R) and we identify H ® R = H’ with H as before.
The Wiener functional o = (6%/) with values in nonnegative definite symmetric
d X d-matrices is called the Malliavin covariance of F. F is said to be nondegen-
erate (in the sense of Malliavin) if

(2.17) For almost all w(P), deto(w) >0 and [deto(w)]™'e
N1 <p<olp

In this case, y = (y¥) = ¢! satisfies Y € D*, i, j = 1,2,..., d.

Suppose that we are given F € D*(R?) satisfying the nondegeneracy condi-
tion (2.17). Then we can show that every Schwartz distribution T(x) on R? can
be lifted or pulled-back to a generalized Wiener functional T o F [denoted also
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by T(F)]in D~* under the Wiener map: w € W — F(w) € R% To discuss such
notions, we introduce the following family of real Banach spaces of functions and
generalized functions on R% Let #(R?) be the real Schwartz space of rapidly
decreasing C®-functions on R? and set

I6lle =1 + 22— 8)*6]_,  seP®), k=0,41,2,...,

where || ||, is the supremum norm and A =X ,(d/dx")% Let 7, be the
completion of #(R?) by the norm || ||5;. Then we have

SRY)c - cFaT=CRY) T ,q -+ cP'(RY),

where C(R?) is the Banach space of all real continuous functions on R? tending
to 0 at infinity endowed with the supremum norm and &’(R?) is the Schwartz
space of real tempered distributions on R? Furthermore, #(R?) = N%_,T5,
and £'(R?) = UP_,T 4.

THEOREM 2.1 ([10] and [27]). Let F € D®(R?) be given and_satisfy the
nondegeneracy condition (2.17). Then for every p € (1,0) and k= 0,1,2,...,
there exists a positive constant C = C, , such that

(2.18) 6o Fll, sz < Cligll_sx forall ¢ € #(RY).

[ Note that ¢ o F € D®.] Hence the map ¢ € (R?) — ¢ o F € D® can be ex-
tended uniquely to a linear map
Tes'(RY) > ToFeD ™,

such that its restriction T € J_,, » ToF € D, 2k s continuous for every p €
(1,00) and k = 0,1,2,... . In particular, Te F € D=* =UZ_N, ., <, D, * for
every T€ S ’(Rd). ~

The proof of this theorem is based on integration by parts on the Wiener
space. A typical formula is as follows (cf. [27], page 55 or [10], page 18):

(219) /W%(F(w»c;(wwww) = [ #(F(w))®,(w; G)P(dw),

where

d d
0,(w;G) = - ¥ {— 5 G(w)y*(w)y(w)( De"(w), DFi(w)),

j=1 k=1

(2.20) 3 . y .
+y”(w)<DG(w), DF’(w))H + y”(w)G(w)LFf(w)}

if $ € #(R?) and G € D>.
T o F, denoted also by T(F), is called the composition of T € &#'(R%) and F,
or the lifting or pull-back of T € #’(R%) under the Wiener map F: W — R

Since T'o F € D~*, it can act on any test functional in D*, which is much larger
than D®. It is now easy to extend the formulas (2.19) and (2.20) to the case
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PES '(B_d) and G € D>; only now, integrals are replaced by the coupling
between D~ and D*.

REMARK 2.2. If F(w) = F(w) depends on a parameter a € I, I being an
interval in R", and if ¢*/(a) = (DF’, DF’) u satisfies that {det o(a)™!, a € I} is
bounded in L, for every p € (1, ), then it is easy to deduce that the continuity
(dlfferentlablhty) of a € I » F, € D*(R?) implies the continuity (dlfferentlabll-
ity) of a €I~ T(F) € D= in the following sense: a — T(F)e D > is

continuous at a = a, if § > 0 and s > 0 exist such that T(F,) €N, ., ., D,*
for @ — ay| < 6 and if T(F,) - T(F, )inD,* as @ > a, forall p € (1, 00). It is
easy to see, in the differentiable case, that the following holds:

oT oF*

DT = B o (m) 2

i=1 ox ‘

Using this notion of the pull-back, the smoothness of the probability laws of
Wiener functionals can be discussed as follows. Suppose that F: W = R satisfy
the same assumptions as in Theorem 2.1. Noting that §,, the Dirac delta
function at x € R% is in J_,,, for m > m,, where m, = [d/2] + 1, we see at
once from Theorem 2.1 that, for £ =0,1,..., R?3 x — §(F) € D, 272k jg
continuously differentiable 2k-times. Hence for every G € U1< p<wD2”‘°+2"
R?5 x - (8(F),G) = E[8(F) - G] is C?* and therefore it is C* if G € D>.
In particular, pp(x) = (8(F),1) = E[§,(F)]is a C*-function on R? [Hereafter,
we use the following notational convention: The coupling (®, F) = (F - @, 1)
of, say, ® € D,° and F € D;, where s>0and 1/p+1/¢<1,or ® €D~
and F € D®or <I) eD > and Fe D> will be denoted by E[® - F] = E[F - ®].
In particular, we denote (®,1) for ® € D~ * by E(®). This notation is compati-
ble with the usual one if ® or F' - ® is an integrable random variable.]

Clearly, pp(x) is the density of probability law of F with respect to the
Lebesgue measure on R?, as is easily seen from

[ pe(x)o(x) dx = [ 6(x)(8,(F),1) d

- < I d¢(x)sx(F)dx,1>

=(¢°F,1y=E[¢°F], ¢ecL(R?).

In this way we have deduced that the law of F has a C*-density if F € D*(R?)
satisfies the nondegeneracy condition (2.7). Also, it is easy to see that
E[6(F)- G] is a version of E[G|F = x]pg(x). Thus on a set where pj is
positive, the conditional expectation of G € D> given F has a smooth version.

REMARK 2.3. In the case F = F, depending on a parameter as in Remark 2.2,
the continuity and differentiability of py(x) in a can be obtained from Remark
2.2.
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2.3. Asymptotic expansions of Wiener functionals. We consider a family
F(e, w) of Wiener functionals depending on a parameter ¢ € (0,1]. We can speak
of its asymptotics as ¢ | 0 in terms of Sobolev spaces, e.g., we say F(e, w) = O(&*)
as ¢ 0in D; if F(e, w) € D; for all &£ € (0,1] and

F(e,w
MY L CU W
el0 €

where k is some real constant. Based on this notion, we give the following
definitions.

Let F(e,w), e € (0,1], be a family of elements in D*(E) and f,, f,,... €
D*(E). We say that F(e, w) has the asymptotic expansion

(2.21) F(e,w) ~fy+¢ef,+ -+ inD®(E)asel0
if, for every p € (1,0), s >0and £ =1,2,...,
F(e,w) = (fo+efy + --- +e*7Y,_;) = O(¢*) inDI(E)asel0.

In the case of F(e,w) € D®(E), ¢ € (0,1], and f,, f,,... € DX(E), we say
that F(e, w) has the asymptotic expansion

(2.22) F(e,w) ~fo+ef,+ -+ inD®(E)asel0

if, for every £ =1,2,... and s> 0, we can find p = D, s € (1,0) such that
F(e,w) € Dy(E) for all e €(0,1], fos f1s-++»fr—1 € DJ(E) and

F(e,w) — (fo+efy+ -+ +e¥ Y, ) = O(¢*) in Di(E)ase|0.

Similarly, if ®(¢,w) € D™ *(E), ¢ € (0,1] and ®,, ®,,... € D" *(E), we say
that ®(e, w) has the asymptotic expansion

(2.23) O(e,w) ~Dy+ed, +--- inD ®(E)asel0

if, for every k= 1,2,..., we can find p = p, € (1, 0) and s = s, > 0 such that
®(e,w) € D, *(E) for all & € (0,1], ®y,...,P,_, € D, %(E) and

(e, w) — (D + e@, + -+ +e*71®,_,) = O(¢*) in D, *%(E)asel0.
Flnally, in the case of ®(e,w)e D 2(E), cc (O 1] and @, ..
D~ *(E), we say that ®(e, w) has the asymptotic expansion
(2.24) O(e,w) ~Dy+ e, + -+ inD ®(E)asel0
if, for every k=1,2,..., we can find s=s,>0 such that ®(e,w) €
Qlé’ff&]gf’ (E) for all e € (0,1], @g,...,D;_; €N << ,D, (E) and, for all
(e, w) — (D) + e@, + -+ +&*71®,_) = O(¢*) in D, %(E)asel0.
If (2.23) holds, we obviously have
(2.25) E(®(e,w)) ~ E(®,) + eE(®,) + --- asel0
in the ordinary numerical sense, i.e., for every & = 1,2,...,
E(®(e,w)) — (E(®y) + eE(®,) + -+ +e*'E(D,_,)) = O(¢*), asel0.
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The following theorem is easily proved if one uses the continuity of multipli-
cations in Sobolev spaces as expressed in the form of inequalities (2.13) and
(2.14).

THEOREM 2.2. (i) If G(e, w) € D*® and F(e, w) € D®(E)[D*(E)], ¢ € (0,1],
have the asymptotic expansions

(2.26) G(e,w) ~g,+eg,+ -+ inD®asel0,
with g; € D* and
(227) F(e,w) ~fo+efy+ -+ inD®(E) [resp. D*(E)] asel0,

with f, € D®(E) [resp. D>(E)], then G(e, w)F(e, w) has the asymptotic expan-
sion

(2.28) G(e,w)F(e,w) ~ hy+eh, + --- in D®(E) [resp. D*(E)] as €0
and h; € D®(E) [resp. D>(E)] are determined by the formal multiplication:
(2.29) ho=gofo, h,=gf, + &1 o> hy,=8ofa+ &1+ & fos--- -

(ii) If G(e, w) € D* (D®) and ®(e, w) € D~*(E) [resp. D~ *(E)], ¢ € (0,1],
have the asymptotic expansions

(2.30) G(e,w)~g,+eg, + -+ inD®[resp.D*] asel0,
with g; € D* (resp. D*) and
(2.31) ®(e,w) ~ Py +e®, + --- in D °(E) [resp. D"*(E)] as €0,

with ®, € D~*(E) [resp. D~*(E)], then G(e,w)®(e,w) has the asymptotic
expansion

(2.32) G(e,w)®(e,w) ~ ¥y +e¥,+--- inD ®(E)aselO,
and ¥, € D~°(E) are obtained by the formal multiplication:

Y, = 8o Dy, Y, =8P +& 9,

2.33
(2.33) V=80 P+ 8 -0 +8Dp,....

Suppose we are given a family F(e, w), ¢ € (0,1], of elements in D®(R?). This
family is said to be uniformly nondegenerate if for each & € (0,1], F(e, w) is
nondegenerate in the sense of (2.17) and furthermore,

(2.34) lim sup |[det o(e)] _lllp <o forall p € (1,x),
el0
where o(¢) = o(¢, w) is the Malliavin covariance of F(e, w). If, furthermore,
F(e, w) has the asymptotic expansion
(2.35) F(e,w) ~ fy+ ¢f, + --- inD®(R%) as e]0,

with f; € D®, then, setting FO,w) = fo» F(0O,w) is also nondegenerate with
[det 0(0)] ||, = lim, o[l[det a(e)] ™| ,-
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Finally, if we denote o(e) ! = y(&) = (Y"(¢)), then y¥(¢) € D®, ¢ € [0,1] and
it has the asymptotic expansion
Y9(e) ~ y(0) + ey’ + 2y + --- inD® aselO0,
with v/ € D®, i, j=1,2,...,d, k= 1,2,
THEOREM 2.3. Let F(e,w) € D®(R?), ¢ € (0,1], satisfy the above assump-
tions, i.e., it is uniformly nondegenerate and has the asymptotic expansion

(2.35). Then, for every T € &’(R%), T(F(e, w)) € D~ (defined for ¢ € [0,1] by
Theorem 2.1) has the asymptotic expansion in D~ (and a fortiori in D~ ©):

(2.36) T(F(e,w)) ~ @y + e, + --- inD 2asel0,
and ®,,®,,... € D~* are determined by the formal Taylor expansion

1
T( fo + [€f1 +e’fy + ]) = ZEDDT( fo)[8f1 + eyt o ]n

(2.37) n
=@, +ed, + -,
where n = (n,,..., n,) is a multi-index, n!=n,! --- ny!, a®=aM --- al for

a € R*and D™ = (é’/axl)"1 . (a/axd)"d Inparticular, denoting ' = 3/9x",

d
o, = T( fo), o, = ; f1i3iT( fo),

S8

0= ) 1 ‘T(fo)+ Z fif{ 99°T(fo),

i=1 2! i, j=1
(2.38)
E f3 °T( f,) *or Z fifs 397T( f,)

'ljl

1 2 o
tar Z fllfljflkalajakT(fo),n--

8Ly k=1

Proor. First, we show that, for every given positive integer %2, we can find
s€R and 9,,®,,...,9,_, €N, ,. D such that T(F(e, w)) € Ni<p<wDy
for all e € [0,1] [note that FO,w) = f,] and

(2.39) T(F(e,w)) = @)+ e®, + --- +&*7'®,_, + O(¢*) inDSasl0

for all 1 < p < 0. For this we note that we can find a positive integer m and a
bounded function ¢(x) on R? which is k-times continuously differentiable with
bounded derivatives up to kth order such that T'= (1 + |x|2 — A)™¢. Then, for
every J € D%, we have, by integration by parts [cf. (2.19) and (2.20)], that

(T(F(e,w)), J) = E[¢(F(e, w))I(J)],
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where [ (J) € D> is of the form

2m
I(J)= X (P(e,w), DY) i
i=0 H® ---®H
i
with P(e, w) € D*(H ® - -+ ® H), which are polynomials in F(e, w), its deriva-
tives and y(e) = o(¢) . By the assumption on ¢, we have

s(Few) = T —D(f)[Few) - ]" - Vile,w)
Inj<k-1
and, for every p’ € (1, o), we can find ¢, > 0 such that
[Vi(e,w) |, < c,e* forall e € [0,1].

Let g’ € (1, o) such that 1/p’ + 1/q’ = 1 and choose ¢ such that g > ¢’ > 1.
Then c, > 0 exists such that

12LT) |y < eallTllg.om forall e € [0,1] and J € D=.
Hence,
|E(Vi(e, w)I ()| <[|[Vi(e, w) [, 120 [
< 161/l g, 2mE®

for all € € [0,1] and J € D*. Also

Zk l‘h—D%(fo)[F(f w) = fo] "L(J)
(2.40)

£ 1 n i .
L T (prellRew ~6l"Rew, DY)

H® --- ®H
and since [ F(e, w) — f,]"P(¢, w) has the asymptotic expansion
[F(e,w) = fo] "Pe,w) ~ e, ; o(w) + &™*e,, ; ((w) + -
i
in D°°(H ® .- ®H),
we have

(2.40) = Zy(w) + eZ(w) + --- +*71Z,_(w) + Uy(e, w),

where

2w =X T (G0e(ienin DY)

=0 |n|+v=1 He .. . oH

1=0,1,...,k— 1.
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Also, we can find ¢; > 0 such that
|E(Uk(£’ w))l =< c3£k”J”q,2m
for all e € [0,1] and J € D*. Let
2m ; 1
0= % T (0| 50(ie, ..
i=0|n|+v=1 n:

1=0,1,...,k—1.

It is easy to see that ®, €N, _,. D, ?™ and thus, combining the above, we
obtain

k-1
(T(F(e,w)), J) = X Dy, Iy < (165 + ¢3)e" g 2m
i=0
for all ¢ € [0,1] and J € D*. Thus
k=1
T(F(e,w)) — Y &0, < (cjcy + c3)e",
i=0 p,—2m

where 1/p + 1/q = 1. It is clear in the above argument that p € (1, ) can be
chosen arbitrarily and hence (2.39) is obtained.
It remains only to show that ®; can be determined by (2.37). Since

%-3% ¥ (D*)"[%D”«p(fo)en,i,y]

i=0 |n|+v=1
2m ; 1 m

-5 5 0oy 1o - 8T (e,
i=0 |n|+v=1 n:

we see that T € &#/(R?) » ®, € D~ is continuous in the sense that, for any
positive integer n we can find s > 0, p € (1,0) and K > 0 such that

1®ll, -5 < KNIT]I-2p-

On the other hand, it is clear that @, is uniquely determined from T and must be
given by the expansion (2.37) if T € #(R?). Thus, it must also be given by (2.37)
for general T € &’(R?). This completes the proof. O

Finally, we give some results for the asymptotic expansions in the space D*.
THEOREM 24. Let G(¢,w) € D®, ¢ € (0,1], have the asymptotic expansion
(2.41) G(e,w) ~g,+eg, + -+ inD®asel0,
with g; € D®. Assume further that there exists p, 1 < p < o, such that
(2.42) sup E [exp{ pG(e, w)}] < oo.
€
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Then exp{G (¢, w)} € D> and it has the asymptotic expansion
(2.43) exp{G(e,w)} ~ exp{go}(1 + ey, + 2y, + - -+ ) inD*ase|0,

where exp{g,} - v, € D* and Y; € D® are determined by the following formal
expansion in powers of &:

0

1
lL+ey, +e2y,+ -0 = Y, ?(egl+£2g2+ )n

n=0

Thus, v, =81, Y, =8 + &5, Ya=8s + 2818, + &85,... .

PRrOOF. It is easy to see from (2.42) that exp{G(e,w)} € D*® for ¢ € [0, 1];
we understand that G(0,w) = g,. Next, we note the following elementary
estimates:

n-1 5k | xln
n!

e*= ) — +R,(x) and |R,(x)|<e*V°—-.
k=0 k!

In particular, R, (x) < (e* + 1)|x|"/n!. Then

exp{G(e,w)} = eXP{go}exP[8g1 +egyt o ]

n—1

k
=exp{g}| L F(egl +ée%g, + .- ) + 1,(e, w)
k=0 k!

and |(exp g,)r, (¢, w)| < exp G(&, w)A (¢, w) with || A (e, w)l, = O(e™) as €| 0 for

every p > 1. Clearly, similar estimates can also be obtained for derivatives
D*(exp{G(e, w)}) and the assertion is obvious from this. O

3. The case of It6 functionals. In this section, we apply the results of the
previous section to Itd functionals, i.e., Wiener functionals obtained by solving
stochastic differential equations (SDE): This will provide us with probabilistic
methods with which to study heat kernels, especially their regularity and
asymptotics.

Let Vy(x) = (Vi(x)), =0, 1,...,r, be a system of R%valued functions
defined on R* x € R? - V,(x) € R% We suppose that V(x) are C*-functions
with bounded derivatives of all orders. Let V, be the vector field defined by
V, =X Vix)3/dx', a=0,1,...,r. Set

(3.1) A%(x) = éw(x)vz(w

and define the second-order differential operator A by

(3.2) A=} Y V2+ 7,
a=1
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Note that the main (second-order) term of A coincides with

d 2
3 AY —.
’ i,JZ=1 =) dx" dx’

Let (W = W, P) be, as before, the r-dimensional Wiener space and consider
the following SDE on R

r

dX,= Y VX,)odw(t) + V(X)) dt,

(3.3) a=1
X,=x € R?,
or, in the component form of X, = (XJ},..., X?),

dXi= ¥ V(X))o dw(t) + Vi(X,) dt
(3.3") a=1

Xi=xi, i=1,2,...,d.
Here w = (w*(t)) is a generic element of W, which is clearly a realization of an
r-dimensional Wiener process under the measure P and o indicates the stochas-
tic differential in the Stratonovich sense, cf. [9]. It is well known ([9]) that the

unique solution X, = X(¢, x,w) to the above equation (3.3) exists for every
x € R? such that

(i) t - X(t, x,w) is a sample path of A-diffusion process starting at x,
(ii) with probability one, (¢, x) = X(¢, x, w) is continuous and x — X(¢, x, w)
is a diffeomorphism of R%

Let Y, = (Y/(¢, x, w)) be defined by Y/(t, x,w) = (4 X'/dx’)(t, x, w). Then Y,
is determined as the unique solution of the following equation in the matrix
notation: denoting 9V (x) = ((d/9x/)Vix)), «a = 0,1,...,r,

(3.4 dY,= Y. 9V, (X,)Y,c dw?(t) + aV,(X,) Y, dt,
o a=1

Y, = I: the identity matrix.

(3.3) and (3.4), combined together, define the SDE for the process r, = (X,, Y,) on
R? X GL(d,R). The following results are well known (cf. [9], [10] and [27]).

THEOREM 3.1. Let ¢t > 0 and x € R” be fixed. Then X(t, x,w) is smooth in
the sense that
(35) X(t,x,w)eD>(R?), i.e.,X(t,x,w)eD> i=1,2,...,d.
Furthermore, the Malliavin covariance o//(w) = (DX(¢, x, w), DX’(t, x, w))y
is given by

(36) o= X [ (R VL) .
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Based on the formula (3.6), we can study the nondegeneracy, in the sense of
(2.17), of X(¢, x, w). Consider the following condition:

(H~1) dlm "?{[ ak7 k 1,[ 7[ ay? ao] ](x): O =< k < k07
where ay, € {1,2,...,r} and «; € {0,1,...,r} if
1 <i < ky} = d for some k.

Here,
d

(L La10) = £ {0) 55 (143 = Liw) 55 (24()

Jj=1

if L, = (Li(x)) and L, = (Li(x)) and £ denotes the linear hull in R

THEOREM 3.2 (Kusuoka and Stroock [14]). If (H.1) is satisfied at x € R,
then for every t > 0, X(t, x,w) € D*(R?) satisfies the nondegeneracy condition
(2.17). More precisely, there exists a positive integer n depending only on k in
(H.1) and, for each1 < p < o0, a positive constant c = c¢(p, x) such that

(3.7) "(det ot)_lup <ect™™ forallt> 0.

If (H.1) is satisfied everywhere in a domain D of R?, then the estimate (3.7)
holds uniformly in x € K for any bounded set K € D.

This theorem is a consequence of precise estimates of Kusuoka and Stroock
[14]. Also this follows from a key-lemma as stated in [10] and [27] combined with
a scaling property of the solution X(¢, x, w): For & > 0, {X(e%, x, w), ¢t > 0} is
equivalent in law to {X*(¢, x,w), ¢t > 0}, where X/ is the solution to SDE (3.3)
in which V, is replaced by &V, for a = 1,2,..., r and V; by £V,

Thus, if (H.1) is satisfied at x € R? then for any Schwartz distribution T,
T(X(t, x,w)) € D™ is defined for every ¢ > 0. In particular, §(X(¢, x, w)) is
defined for every y and p(¢, x, y) = E[§(X(¢, x, w)], which is a C-function in
v, coincides with the fundamental solution of the heat equation d/dt = A. More
generally, if c(x) is a real C*-function on R? such that exp [fc(X(s, x, w)) ds €
D [it is sufficient to assume, for example, that c(x) and its derivatives are of
polynomial growth and c¢(x) < K for some constant K > 0], then

p(t,x,y)=E [exp(fotc(X(s, x,w)) ds)8y(X(t, x, w))]

is the fundamental solution of the heat equation d/dt= A + c.

Now assume that V,, a =0,1,...,r, are bounded on R% Let ¢(£) be a
C>-function on R? such that ¢(¢) =1, |£{ <3 and ¢(£) =0, |£| > 2. Let
y € R? and define Y(z2) = ¢((z — y)/|x —y|) if x #y and ¢(2) =1 if x = y.
Then ¢ - §, = §, and hence

p(t,x,y)=E [tl/(X(t, x,w))8,(X(¢, x, w))] .

By an integration by parts, this is easily seen to be a finite sum
Y. E(a,(X(t, x, w))F(w)), where a,(x) is the form of a finite sum a,(x) =
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b( x)DBlez(x) with bounded continuous functions b(x), D is the differential
operator in the usual multi-index notation and ﬁnally, F(w) € D* is a poly-
nomial in the components of X(¢, x,w), their derivatives and det o, (w)~?! [cf.
(2.19) and (2.20)]. The following estimate is well known, cf. [9], page 342: There
exist positive constants a, > 1, a,, a, such that

x — a,lx — y|?
P(|X(t,x,w) -x|> | 3 yl) salexp[__fl_t_yl]

provided 0 < ¢ < a,|x — y|. Hence

(IX(t ©w) — x>

[ ] [ a2|x ok ]
< a,exp Y ,

and combining this with (3.7), we can obtain the following estimate:

Suppose that V,, a =0,1,...,r, are bounded and that (H.1) is satisfied
everywhere in a domain D of R® Then, for every compact set K € D and T > 0,
we can determine positive constants ¢, and c, such that

Cylx — y|2
[4

forallt€ (0,T], x € Kandy € R%

Here » > 0 is a constant depending only on d and max k(x) in K, where k(x)
1s k0 in (H.1) at x. Similar estimates can also be obtained for derivatives
DFp(t, x, y) = E[(—1)¥{(DP3,)(X(t, x, w))] with different » and c,, c,, cf. [14]
for more precise statements.
Now we shall study the short-time asymptotics of the fundamental solution
p(t, x, y). For this, we introduce a parameter ¢ € (0,1] in SDE (3.3) as follows:

Ix—yl)

(&1
t < —exp|—
(3.8) p(t, x,y) o exp[

dX,= ¢} V(X,)odw(t) + €Vy(X,) dt,
(3.9) =

Xy=x.
We denote the solution of this equation by X*(t, x,w). It is easy to see that
{X(%, x, w), t > 0} is equivalent in law to { X (¢, x, w), ¢ > 0}. Hence, if (H.1)
is satisfied at x,
p(e,x,y) = E[Sy(Xl(ez, x, w))] = E[8y(X‘°(1, x, w))],

and, for this reason, we study the family X1, x, w) € D*(R?), ¢ € (0,1]. First
of all, we introduce the following notation: for i = (i, ..., ,) € {0,1,2,..., r}™,
we set a(i) = #{»: i, = 0} and |li|| = m + a(i). Also, let

i t i h i tm—1 i
S(t,w)=f0odwl(tl)/0 odwz(t2)~--/0 o dw'n(t,,)
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be a multiple stochastic integral in the Stratonovich sense for i = (iy,..., i,,),
where we set w%(t) = t.

THEOREM 3.3. Let x € R? be fixed. Then X1, x,w) € D*(R?) has the
asymptotic expansion

(3.10) X(1,x,w) ~f,+ef+--- inD°(R*) asel0,
and f, € D*(R?), n=0,1,..., are given by
(38.11) fo=x
and
(312) fo= X (Vo oV )(V)(x)S'A,w), n=12,....
i, lil=n
In particular,
(3.13) flw) = X Vo(x)w?(1).
a=1

The expansion (3.10) is uniform in x € K for any bounded set K in R

The proof is easily provided by successive applications of the Itd formula:
X1, x,w) —x

e X [ViXe)odi, + e ['V(X;) ds

a=1

e é Vy(£)w(1) + e Zl fo [Vi(XE) = V)] o dug + & fo 'Vo(X2) ds

=ef, + & L —1‘/ {f V,)(X5)e dw‘2(u)} o dw™(s)
e [y ds e 3 [ f:%(wl)(xs)du}odwil(u))

=¢f, + &

V() + Y % xzz(wl)(x)s@»wu))

i=1iy=1

(z S L{LToV)XD = %)) dw(w) o duo(5)

=1 1,2-1

+ ['1va(X2) = Vi) ds

re £ {00000 - ] daf o) -+

i=1
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Continuing this, it is easy to see that
X1, x,w)=fo+ef, + -+ +e"f, + O(e")
in L? for every p € (1, «), and since D*X (i, x, w)[h,,..., h,] are determined
successively by SDE ([9] and [27]), it is easy to show that
D*X(1, x,w) = f&® + ef® + - +e"f® + O(e”*)
k

e e—,
in L(H® --- ®H) for every p € (1, 0). O

X1, x,w) is not uniformly nondegenerate in the sense of (2.34) because
fo=x which is completely degenerate. However, if we consider F(e,w) =
(X1, x,w) — x)/¢, ¢ > 0, then we have the following:

THEOREM 3.4. The family F(e,w) = (X1, x, w) — x)/¢, & > 0, is uniformly
nondegenerate in the sense of (2.34) if and only if (AY(x)) defined by (3.1) is
nondegenerate, i.e., det(A%(x)) > 0.

ProOOF. Since F(e,w) ~ f, + ef, + - -+, where the f; are those in (3.12) and
f, that in (3.13) whose Malliavin covariance coincides with A¥(x), A¥(x) must
be nondegenerate in order that F(e, w) is uniformly nondegenerate.

Conversely, suppose that det(A*(x)) > 0. Denoting A(x) = (A%(x)) and
o(&) = (6(¢)), where a(¢) is the Malliavin covariance of F(¢, w), we have

1 — -
o(e) = [1v(¥) " A(X) [v:(%) ] s,
and, since ¢V,, a = 1,2,..., r and &V}, are obviously bounded in ¢ € (0,1], it is
easy to see that P[7 < 1/n] < cexp(—c,n®), n =1,2,..., where c;, i = 1,2,3,
are positive constants independent of ¢ and n, 7 = min{s: (Y5) A(X5){(Y5) ! <
3A(x)} (A; <A, if and only if A, — A, is nonnegative definite), and that
sup,|/det(Yy) Y|, < oo for all p > 1. Now
det o(e) > (det ¥7)"det [*""(¥7) " A(XS) (Yy) ds
0

1
> -é—d(det(Yf))zdet A(x)(1 A7)
and it is easy to conclude from this that
sup ||det o(e)_lup <o forall p € (1,»). O
e€(0,1]

Suppose that det(A“(x)) > 0. Then by Theorem 2.3, T(F(e, w)) has the
asymptotic expansion in D~ %. Since
8.(X*(1, x,w)) = 8,(x + eF(e,w)) = e~ %o (F(e,w)),
we have the following:

THEOREM 3.5. Suppose that det(A"(x)) > 0. Then 8(X“(1, x,w)) has the
following asymptotic expansion in D~ as € 0:

(3.14) 8.(X(1,x,w)) ~ e~ Y By + e®, + 2By + -+ )
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and ®, € D~ can be obtained explicitly by Theorem 2.3:

1 o .
(3.15) Op(w) = X o %o f1) F2 12 - £,
j,n :
where, f, = (f}) is given by (3.12), and the summation extends over all j =
(Jys--r J) €{1,2,...,d} and n = (n,,...,n),n;>2, 1=0,1,..., such that
n,+ny+ -+ +n,— l=k. Also, 33 = (d/3x")(3/0x%?) --- (3/dx") and |j| =
Lif j=(J15---5 Jp)- In particular, ®, = 8 f,).

From this, we see that E(®,(w)) =0 if & is odd since, then, ®,(—w) =
—®,(w) and the map w — —w preserves the measure P.

COROLLARY. Suppose that det(A¥(x)) > 0. Then p(t, x, x) has the asymp-
totic expansion as t | 0:

(3.16) p(t,x,x) ~t7 4% (co+ct+ --+)
and c; is given by
(3.17) Ci=E((I)2i), i=0,1,...,

where ®, is given by (3.15). In particular, c, = [(27)%/*det A(x)]™.

If det(A*(x)) > 0, then the inverse (A, ;(x)) of (A*(x)) induces a Riemannian
structure and coefficients c; in (3.16) can be described in terms of the Riemann
curvature tensor and its covariant derivatives. The problem of computing these
coefficients was discussed by McKean and Singer [18]. We can also apply our
result to this problem: We introduce the normal coordinate system around x and
compute c¢; by the above method. Then the computation is reduced to that of

x| I15%(1,w) o*3,(u(1)

v=1

=(-p" a:{E( ﬁ8i~(1, w)|w(1) = x)(27r)_d/2e‘|x|2/2}

x=0

We can carry out the computation for small %2 and [ and thereby obtain c, ¢,
and c, explicitly. The computation is quite complicated for larger 2 and [ but by
analyzing the expectation, we can show that this gives a linear combination, with
universal coefficients, of certain products of Kronecker’s 8’s, cf. Uemura [26].
This fact is essentially a consequence of a well-known fact that a moment of a
system of centered Gaussian random variables is a sum of products of pairwise
second moments. In this way, we can also rediscover a result of [18] that c; is a
linear combination with universal coefficients of certain monomials in compo-
nents of curvature tensor and its covariant derivatives. The type of these
monomials can be specified and the universal coefficients can be determined by
explicit computation for simple manifolds. In [18], this result is obtained by
Weyl’s invariant theory together with some geometric considerations. Cf. also

[4].
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If det(A¥(x)) = 0, then the asymptotic expansion of §,(X*(1, x, w)) is gener-
ally not easy to obtain. However, there are some cases in which we can obtain
such expansions. Suppose, for example, that there exists a diffeomorphism
£ € R? > 0(¢) € R? such that 0(x) = 0, derivatives are all polynomial growth
and, for somek;,€ N, i=1,2,...,d,

€ 0
—k
(3.18) e 0(X*(1, x,w)) = F(e,w)
O B_kd
has the asymptotic expansion
F(e,w) ~ fo+ ef, + --- in D®(RY) as |0,

with f; € D>R?), and furthermore, F(e,w) is uniformly nondegenerate. Then,
setting k =k, + ky + -+ - +kg,

a6

det( 8_§)(x)
and by Theorem 2.3,
8o(F(e,w)) ~ ®, + e®, + --- inD *asel0.
Hence, 6,(X*(1, x, w)) has the following expansion:

det il

et| 7z | )
In the case that det A(x) > 0, the above assumption is satisfied by taking
0(§) =& —x and &k, =1 for all i.

Another typical case that the above assumption is satisfied is when V;, = 0 and
vector fields V,,...,V, are free of order s at x (cf. [8] and [21]) and furthermore,
they, together with their commutators of length s, span R? at x. In this case, 6:
R? —» R is given, in a neighborhood of x, by

0([epr§Bu,L[1]] ) = (u1)1em

where L, I € B, denotes the family of commutators of length < s such that
Ly, I€ B forms a basis for T.(R?). Here we follow the notation of [8]:
I=(a;,...,a;) is a sequence of indices a € {1,2,...,r} and L=
(adV, cadV, ---cadV, WV, (adVy(V;) = V\V, - V,V)).

In particular, #B =d. k; =k, I € B, if I = (a;,..., a;). In this case, a free
nilpotent Lie group G of step s exists with the Lie algebra generated by r
left-invariant vector fields Y}, Y,,..., Y, such that if g, is the solution of the
following SDE on G:

Sx(Xe(l’ x,w)) = e SO(F(“:’ w))

(3.19) 8,(X°(1,x,w)) ~e % (Dg+e®, + ---) inD =asel0.

x

dg, = Z Y:x(gt)o dw*(t),
a=1

8o = e (identity)

(3.20)
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and if the R%valued process (g]);c 5 is defined by

exp( Z gtIY[I]) = 8
I€B
where Y|, is the commutator of Y},..., Y, correspondmg to I, then the first term
fo in the expansion of F(e, w) comc1des vv1th &hH;ep

Finally, we shall discuss the short-time asymptotics of p(¢, x, y) off the
diagonal, i.e., x # y. This problem was discussed by Bismut [5] as an application
of Wiener functional analysis; the splitting of the Wiener space and the use of an
implicit function theorem. Here we will treat this problem by our method
introduced above.

Let V(x) = (Vi(x)), a = 0,1,..., r, be as above. In the following, we assume,
for simplicity,

(H.1’) the condition (H.1) strengthened as follows:
dim L[V, [V,, ,[....,[V,, V, ].. . J(x); O0<k<k,
a;€ {1,...,r}} =d forsome k.
Let h = (h%(t)),-, € H, an element in the Cameron-Martin subspace of W =
Wy and consider the following SDE on R? for each ¢ € (0,1]:

dX,=e Y V(X,)o dw(t) + e*Vy(X,) dt

a=1

+ X V(X)he(2) dt,
a=1

where h%(t) = (dh®/dt)(t). We denote this solution by X®”(¢, x,w). Thus
X&h(t, x,w) = Xt,x,w + h/e), where Xt x,w) is the solution to (3.9).
If V,=0, we may also consider, at least formally, that X&’(¢, x,w) =
X(t, x, ew + h), where X(t, x, w) is the solution to (3.3). It is easy to see that
X&M1, x, w) € D*R?) for every ¢ € (0,1], A € H and x € R% Furthermore, we
can easily obtain its asymptotic expansion. In the following, the time interval of
w € Wand h € H arerestricted to [0, 1]: In particular, ||A||% = [2|dh/dt|*(s) ds.

First of all, we shall introduce some notation. For & € H, consider the
following dynamical system on Rd

(3.21)

622 % - v,

‘Eo_x’

and denote the solution £, by £* %(¢). The corresponding variational equation is
given, in d X d-matrix notation, by

=, - % V(e mh(o),

E(O) -1,
where dV,(x) = ((dV'/3dx/)(x)). We denote the solution =, by E* *(¢).

(3.23)
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THEOREM 3.6. For fixed x € R and h € H, X**(1, x,w) has the asymp-
totic expansion

(3.24) Xoh1,x,w) ~ f{® + ef®+ .- in D*(R?) as €0,
and ;P € D®(R?) is obtained successively by
(3.25) fP = g2 1(1),
(3.26) f = m0(1) [[2%H(s) V(67 K(s)) dwt (s),
P = 22 (1) ['224(s) T[4 92V, (£ (s))we M(s) @ e A(s)he(s) ds
(3.27) +AV,(£54(s))n X(5) o dw*(s)
+Vo(£52(s)) ds] - -,
where
(3.28) wH(e) = B (D) ['22H(s) V(£ (s)) duw(s).

[ Note that w* *(t) is a R%valued continuous Gaussian process.] The asymptotic
expansion (3.24) is uniform in (x, h) on any bounded set in R® X H.

In the above, we omitted the summation sign ¥, and used the notation

32‘/:;'
#.3) - | e

. F] 2vi
IV, -meq] = —— | n/qk.
[02V, - n ® 1] ,%( ax,axk)n n
We omit the proof of this theorem because it is rather routine. See the proof of
Lemma 3.4 below in which some of necessary computations will be made.
Next, we study the conditions for uniform nondegeneracy of 6”(¢) = (6% #(¢))
defined by

o*(e) =

<D(Xe’ w) - 7))
4

(Xs’h(l’ x,W) - fO(h))
),

= e 2(DX**(1, x,w), DX**(1, x,w)) .

LEmMMA 3.1. If x € R® and h € H n C%([0,1]) satisfies

(329)  inf é} {(l, Vi(x))? + <z, Bél[ﬁﬂ(o)%(x),".,(x)]>} >0,

then o"(e) is uniformly nondegenerate in the sense that

lim sup "det oh(s)_lup <oo forall p e (1,0).
el0



24 S. WATANABE

ProOF. First we note that &, > 0 can be chosen so that for all 0 < ¢ < ¢,

(3.30) 1 inf Zr: {(l, Vi(x))? + <l, BZi‘,l [R#(0)V, + £2Vo,Va](x)> } > 0.

es? ! 41

Let Y;*”* be the solution to
dY, = e dV, (X7 ")Y, o dw?(t) + 2 dVy( X ")V, dt
+V,( X7 ") Y,he(2) dt,
Y, =1
Then
o) = L [T V)] (e v xen)] as

It is easy to see that sup,(Y>*)7!|, < oo for all p € (1,0). By the same
standard reasoning as in [10] or [27], it is sufficient to find, for each n = 1,2,...,
a stopping time 7 < n~! such that

1
(3.31) P[T < ;] < c,exp(—c,n®)

[here and in the following, ¢, c,,... and a,, a,,... are positive constants
independent of n, ¢ € (0, ¢,] and I € S?~!] and, for all / € S ! and ¢ € (0, ¢,],

(3.32) P[ [ E (@en vxe), i as < n] < coexp(—eyn®),

for some c;, cg, 7, cg. But by (3.30), we can find 7 < n™! satisfying (3.31) such
that

> ((7) "V x0R), 0

01 a=1

2

(3.33) .
+ <(Y;"')“[ X hP(s)Vp + 82%,14]()(:"’), l>' ds > con™!
B=1

on {r=n"1},
Lo ol VA XP™) — V(x)| < 1and ||I - Y¥2)|| < % for ¢ € [0, r]. Since

(¥ ) Vixe ) = Vi) + 3 () [V, V] (X2 )0(s) ds
e [10) " T VI (K)o (o)

+e [(79) [V, V.)(X27) ds,
0
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we can apply the key lemma of [10] or [27] to conclude that, if & < e,

r

o[£ (n&h)*m(x:h),z}zds <,

a=1

[ Zl < (Y:"')‘l[ 2. hP(s)V, + e%VaJ(X:") l> ds > (2;)

B=1

0 o=

< agexp(—asn®) for some a,, a,, a;, a,.

Combining this with (3.33), we can conclude that, except on a set of probability
< c,exp(—cyn®) + azexp(—azn®),

[ £ (e vixenop)

0\a=1
is no less than 1/n% or ¢,/(2n). Hence (3.32) is established. O
Bismut introduced in [5] the following assumption:
(H2) forevery A€R’, A+#0,
dim °?{‘ll(x)"- b Vr(x)9 [Vl’ Y](x)v AR [Vn Y](x)} = d
where Y = X7_ NV,

CoroLLARY. If (H.2) is satisfied at x, then o(e) is umformly nondegenerate
provided that h € C?([0,1]) and A(0) + 0.

Let x # y € R be given and assume that (H.2) is satisfied at x. Set
(3.34) K} = {h e H; t~*1) = y}.

Under the assumption (H.1’) everywhere, K is not empty Let % be an element
in K} which minimizes the norm ||A||g: |||z = min A € K2||A||;. As is easily
seen, such an h always exists. By the Lagrange multiplier method, we can show
that A € R? exists uniquely such that

Be(s) = (X, B2 K(s) V(8 K(s)) )

a=1,...,r, aa.se€ [0,1].

From this it is easy to conclude that ¢ — A(t) is smooth and (3.35) holds for all
s €[0,1]

(3.35)

LEMMA 32. h(0) # 0.

ProOOF. We have
257(5) 'V, (£ K(s) = Vi) + BE L7 w) ™ [Va, V] (6 F(w)) RA(w)
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Hence, if 7%0) = <7\, Exj‘(l)Va(x)) = 0 for every a = 1,2,..., r, then
Bee) = T [(R =R Aw) [V V] (63 w) R w) ) da
B=1
and hence it is easy to deduce from this that
|7L(s)| < constfs|7t(u)|du.
0

This implies that Z(s) =0 and hence A(t) =0 but, since x # y, this is an
obvious contradiction. O

Thus, from the above corollary, we have

THEOREM 3.7. If (H.2) is satisfied at x, then
Fle,w) = (XF(1, x,0) — y)/e € D=(R?)
is uniformly nondegenerate in the sense of (2.34).

Next, we introduce the following assumption.
(H.3) h € K? which minimizes the H-norm in K? is unique.

Choose a C*-function ¢(x) on R! such that 0 < ¢(x) < 1, ¢(x) =0 if |x| > 1
and ¢(x) = 1if |x| < 3. Set, for § > 0 and ¢ > 0,

63 xlew) = o3 [1XC6m0) -0 &)

where X (s, x, w) is the solution to SDE (3.9). It is easy to see that x (¢, w) € D*
and

et 2] =03 L1256, 50) - ) as)
is also in D for every 6 > 0 and & > 0. We know that
[1x7(s, 2,w) = £(s)[" ds = O(e?)
in D* as £ 0 and it is easy to deduce from this that, for each § > 0,
(3.37) xs(e,w + %) =1+0(e ")
in D® as £/ 0 for every n =1,2,....

LEMMA 3.3. Suppose that (H.3) is satisfied. Then, for every 6 >0, ¢ >0
exists such that the following estimate holds:
0 < E((1 - xs(e, w))8,(X°(1, x,w)))

3.38
(8.38) = O(exp{— (—217)("7;"%, + c)}) asel0.
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Proor. We have, for every 8§’ > 0,
0 < E((1 - xs(e, w))8,(X°(1, x,w)))
| X1, x,w) -y’

(1—x8(e,w>)¢( - )sy(xe(l,x,w»)

and, by an integration by parts on the Wiener space, it is easy to see that this is
a finite sum of the form

IXE(]-’ x»w) - y|2
Y E|Fy(e, w)‘i’(l)( 82 )

-E

1 -
<= )5 [1XG6, ) - sxyh(s>|“’ds)q<xeu,x,w>)),
0
where F,(&, w) is a polynomial in components of X*(1, x, w),
1 € x,h 2
g‘[}lx (s,x,w)—é (s)l ds,
their derivatives and y(e) = o(e)™!, o(e) being the Malliavin covariance of

X<, x,w), and Ci(x) is a bounded continuous function on R% By (3.7), we have
E(|F(s, w)|P)"? = O(¢7!) for all p > 1 with some I > 0 and hence

E((l - Xs(e’w))dy(xe(l’x’w)))
. 9 1/q
< K/a’P(j:IXE(s, x,w) — £ h(s)| ds = g, | X1, x,w) — y| < 8’) ,

where 1/p + 1/q = 1. Therefore,

limist:lp (2¢?)log E((1 — x5(e, w))8,(X°(1, %, w)))

(3.39) < limsup (2¢?)log P(f1|X‘(s, x,w) — £5(s) [ dx
el0 0

=]

= 5’ IXE(I,x,w) -yl < Sl)y

since ¢ may be chosen arbitrarily close to 1.

We assume for a moment that V;, = 0 to make the following argument simpler.
Then, as remarked above, we may consider roughly X(s, x, w) = X(s, x, ew),
where X(s, x, w) is the solution to SDE (3.3) and X(s, x, h) = £€**(s)if h € H.
If it were true that (s,w) € [0,1] X W - X(s, x,w) € R? is continuous with
respect to the uniform topology on W, a standard large deviation result for
Wiener measure could be applied to yield that

(3.40) The right-hand side of (3.39) < —inf||A||%,
where the infimum is taken over A € H such that

- )
(4) [k - e R sz 5, e -] s
0
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Of course, this is not true. However, we can fortunately justify (3.40), including
the general case of V, # 0, by virtue of the approximation theorem for solutions
of SDE by continuous functionals due to Azencott and Stroock [cf. Stroock [23],
Lemma (4.8)]. Finally we note that 8’ > 0 exists such that the above inf||A|
satisfies inf|| || ;; > ||| 4. For, if otherwise, we may choose, for 8’ = 1/n, h, € H
satlsfymg (3.41) and lim sup|| & .||z < ||h|| - We can choose a subsequence of {hn}
converging to h € H weakly. Then | Al < ||A|| H and £%*1) = y because, as is
easily shown in general, if h, —» h,, weakly in H then £* hk(s) - £5ha(s)
uniformly in s € [0,1]. This 1mpl1es that h € K? and, by (H.3), A = h. But this
contradicts [2|¢**(s) — £ *(s)|"ds = 8/2. Now the proof of (3.38) is com-
pleted. O

Set
Sz(s’ w) = f2(7l) + efa(T') 4+ ..

3.42 1 . -
(8.42) = (X", x,w) —y — ef®).

o]

LEMMA 3.4. For every M > 0, § > 0 can be chosen such that

(3.43) sup E(exp{M(X,sﬁ(s,w) - f2(71)>}IU})IX,,Z(S’Lw)_sx,ﬁ(s)lzdsss}) < o0.
e€(0,1]

PRrROOF. In this proof, we write X/, £, and A for X* ks, x, w), £ k(s) and A,
for simplicity. Also, we note that the following estimates can be obtained
uniformly in & € (0,1]. Setting Vy(x) = 1X7_,V(V.)(%),

X; — &= ¢ [V X2) dup + & [Vy(X2) ds + ['[V(X2) = Vil£)] ho(s) ds
0 0 0
(we omit the summation sign). Hence, setting 7% = (X} — §,)/¢, we have
=[x duog + e ['V(X2) ds + ["aVi(s) mh(s) d,
0 0 0
where AV (s) = [+ IV, (€, + w(X? — &,)) du. Let n, be determined by
t t .
ne= [Vi(&,) dwz+ [(9Vi(£) nh(s) ds.
0 0

Then this 7, is the same given by (3.28) with A = h. Define a d X d-matrix
valued process Z¢(t) by

dE: = dV(¢)Eth*(t) dt, E¢=1L
Then 7 is given by

e t e~ [ a 3

'='tj(;('=‘s) 1[Va(Xs) dws + s%(Xs) du]

Note that =¢ is bounded since d V() is bounded. From this, it is easy to deduce
that, for every & > 0, there exists p, > 0 such that

(3.44) E(eXP{Po 01\54?31 |”I§|2}I[/},|x,:—s,,|2 dux s]) < .
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Indeed, [$|X:— £,/ du < 8 implies that (| X¢|? du < C for some C > 0. Noting
that every component of [{(E¢) 'V (X¢) dw? is a Brownian motion time changed:
B(¢,) with ¢, < C’[{|X¢|*ds < C” for 0 < ¢ < 1, (3.44) is easily obtained.

Now

t t ~
mo—me= [{VAX) = V(&)] dwog + e [Vi(X;) ds
t .
+ [[aV&) e — m ) he(s) ds
+3 [ 92Vi(s)n; @ (X: - £, )he(s) ds,
0
where
1 u
02Vi(s) =2 [ du [ 9V(& + o( XS~ &,)) dv.
0 0
Hence, if =, is defined by (3.23) with & = A, then
— t__ € a 7 & 7
f=me = B ZO{ (VXL — Vi) dog + e Vi(X2) - Vie,)] ds

+eVo(£,) ds + 30°V(s) i ® (X; — §,)h"(s) ds}.

From this, it is easy to conclude [from (3.44) and the fact that a component of
JEESWV(XE) — V(&) dw? is a Brownian motion time changed: B(y,) with
¥, < C[HXE — &,|% ds] that, for every p > 0, we can find §, > 0 such that

(3.46) E[exp{p Ol\s’lgllni - 77:|2}I[15|X;—s,,|2 dusso]] < .
Let 67 = (0% — n,)/¢ and 6, be determined by
6, [‘oV(&)m dws+ [Vo(g,) ds + [9V(£,)0,hs ds
0 0 0

t .
+1[[9*V(&)n, @ m ds.

]
(3.45)

Then,
[ ¢ & a 1 ¢ 2Y7¢€ € & a
0! - at = j(; 3";(53)(”13 - ns) dws + Ej(; d Va(S)'I]s ® (Xs - gs) dws

+ LX) = V(&) ds + ['aVi(e)(6: - 6,)h ds

+%ft[32V:(S)n§ ® n% — 32V, (£,)m, ® m,] hs ds.
0
Hence

(85 — 8, %) = <tslx, [z (V&) (nt = m,) dus

-

+30%Vi(s) nt ® (X — &) dwy)

+ [Vo(Xg) — Volé,)] ds

+ 1[02Va(s) ns ® m5 — 92V(£,) m, ® ns]ﬁ§d3}>
=L+ L+ +]I,
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If we can show that, for every p > 0, §, > 0 exists such that
(3.47) E(exp(pI)I yx;—s.paussy) < ©,  i=1,2,3,4,
this implies that, for every p > 0, 8§, > 0 exists such that

(3.48) E(eXP(P<0f - 01’7‘>)I[f6|X;—£u|2du582]) < o0,

and then the proof of (3.43) will be complete since 87 — 8, = S”(e, w) — f,.
Therefore, it remains only to show (3.47). As for I, setting p =*E,A,

fle— € a
E(eXP{P<M, _/(; A AC) (773 - "ls) dw, >}I[f3|X;—$u|2du581])

-E

exp{p<u, fOIEs" V(&) (n5 — ) dws“>
—p22f01<n, =1 0V, (n5 —n,)) dS}
2 1 =1 € 2
Xexp{p E_/(; (M’ ESTOV(£) (ns - "73)> ds}I[f(‘,|X;—$u|2du581]

<E

exp{2p<u, fOIE;‘ dv,(§,) (ns — my) dw:>

(2p
2

y 1/2
Zfol(u, EST V(&) (s - ns)>2d5})
1 | 2 172
XE(GXP{2P22/0 <M’ E; 1 aV(&) (nf - "ls)> dS}I[félX,’,—&,,lzdussl])

1/2
1
S E(eXp{COnSt. pzj(; |"7§ - ns|2 dS}I[f(l)lxz_suF dusb‘l]) < o0

for some 8, by (3.46).
The estimates for i = 2, 3,4 are more easily obtained and details are omitted.
O

Finally, we introduce the following condition:
(H.4) .
(3.49) E(exp(X, f2(7’)>|f1(7') = O) < 0.

REMARK 3.1. Since f1(7') = 7, is a nondegenerate Gaussian random variable
and f,® = 6, is a nice quadratic functional of a Gaussian process (1,, w,), (3.49)
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is equivalent to
there exists p, 1 < p < o0, such that

(3.49") E(exp[p@’ )] [P = 0) <o
or

there exists p, 1 < p < o, such that
(3.497)

E(exp[p(i, f2(7')>]I[|,lo;)|<8]) <o foranyd >0, cf.[4].

LEMMA 3.5. Suppose that (H.3) and (H.4) are satisfied. Then there exist p,
1 < p, < o0, and & > 0 such that

(3.50) OiuglE[exP{p1<7" S™(e,w)) M e, x, )& Hopf do <o)
3.50 £=

><I[|f,"'>+es7i(e, w)|<81]] < oo foranyd, > 0.

PrOOF. We use the same notation as in the proof of Lemma 34 First, we
remark that the conditional expectation in (3.49’) coincides with the uncondi-
tional expectation

(3.51) E(exp[p(X, £5)]) < o0,
where f, is obtained from f2(7‘) by replacing 1, and w, by n,— A,(t)n;
and w, — Ay(t)n,, respectively. Here A,(t) and A,(t) are given by A,(t) =
E[7,® n,]E[7n, ® n,]7 " and Ay(¢) = E[w, ® n,]E[n, ® n,]™". Thus,

fr= fz(z) +R
and R is given in the form R = R,(n,w)n; + Ry(n)n,, where R(n,w) €
R? ® R, every component of which is a linear combination of components
of E [¢E;' 3%V (¢) n, ® A1(3)i1: ds, E [oE; " dV(E,) n,Ax(s) ds and
EJAESTAV(E,) A(s) dw®; Ry(m,) € R ® RY, every component of which is a
linear combination of components of 7,. Next, we note that it is easy to deduce
from (3.46) that, for every M > 0, there exists 8’ > 0 such that

(3.52) sup E(exp|Min, — n5| Max (| + )] Iz, au<ar) < o0
0<ex<1 0<s<1

Indeed, choosing p > 0 such that
2
B{exp|p Max. (i + w)’] < oo
0<s<1
and noting that
e P 2 M2 €12
M, — 5| Max (in,| + |w,|) < 5 Max (jn,| + |w,])” + ——In, — n§l%,
0<s<1 2 0<s<1 2p

(3.52) follows from (3.46).
By (3.52), it is clear that, for given M > 0, §”” > 0 can be chosen so that

(3.53) supE(exp[MO\, R — R pyxs—e.p du<8"]) < o0,
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where
R, = R\(n,w)ns + Ry(ny)ms.

Now (3.51) combined with (3.43) and (3.53) implies that, for any p’, 1 < p’ < p,
we can choose 8§ > 0 such that

S‘ipE(e"P[p'G"Sz(s’w) + Re)]IUéIX;—s,,qu<61) < oo.
The assertion of the lemma follows immediately from this since
E(exp[ N(A, B )] Ijpg<s,) < 00
for every N > 0 and 8, > 0.0

LEMMA 3.6. Suppose that (H.3) and (H.4) are satisfied. Then there exists
8 > 0 such that, for every 8, > 0,

- h 1, - _ .
F(e,w) = exp((k,S"(e,w)))xs(s,w + :)¢(§| fP + eSh(e, w)l2 e b~
1
for all € € (0,1] and, foreveryk =1,2,...,
- - 1 .
(3.54) F(e,w) = exp((}, fz(h)>)¢(§2‘|f1(h)|2)(1 +ory o Hety) + Fy(e, w),
1

where F,(e, w) satisfies

(3.55) Fy(e,w)T(f®) = O(e**') inD > asel0
for any T € &’(R?) having its support in {|x| < 8,/2}. Furthermore, y; € D®,
i=1,2,..., are obtained by the formal expansion
| _ _ n
—(e( A, fP) + (N, fP) + .-
(3.56) ,Eon!( (A 167) + X0, 17) )

=1+ey, +ely,+ .

Proor. The proof is similar to that of Theorem 2.4 once we take into
account Lemma 3.5, (3.37) and the following fact:

o(872 ™ + eS™(e, w)[')
k
= o(872UFM12) + X ¢™(872fM|?)G, (e, w) + O(e**?) inD>
m=1

for some G™ € D> and ¢'™)(8; 2|f{P|2)T(f{?) = 0 for m > 1if T is supported
in {x <$8,/2}. O

All the above preparations completed, we are now going to discuss the
short-time asymptotic expansion of the fundamental solution p(¢, x, y). We
assume (H.1’) everywhere (this is to guarantee that K} # ¢) and (H.2), (H.3)
and (H.4) for x, y € R% x # y. Let h be the unique H-norm minimizing element
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in K. Choose § > 0 as in Lemma 3.6. Then, we have
p(e? x, y) = E[Sy(Xe(l, x, w))]

(3.57) =E [Sy(Xe(l, x,w))xs(e, w)] +E [Sy(Xe(l, x,w))(1 — xs(e, w))]
— I, +1,
and, by (3.38),

1, _
(3.58) I, = O(exp(— 5;(||h||§, + c))) as ¢ | 0 for some ¢ > 0.

By the Cameron—Martin theorem,

(359) I, = E[exp( "gl'” ~(&, w),,)s (x=%1, x, w))xs(e w+ 7’)]
where
o= 3 [0 (o) ().
Noting (3.26) and (3.35), we have -
(3.60) (R,w)p =\, 1Py,

{ , ) being the inner product in R Hence,
17113 1, .5
I = exp( 5 E exp(— ;(A, ff"’))

. - h
X8,(y + ef® + e2S%(e, w))xs(e, w + ;)]

= exp(— W )E[exp(— -1—(7\, f h))) (ef{P + ¢2%8%(e,w))

h
Xxs(s,w + —)]
€

(361) = s-dexp( ”:llH)E[ex (— —(x, f<h>)) P + eSh(e, w))
ufoe )
= e‘dexp(— ”Z'f’ )E [exp((i, S(e, w)>)x8(s, w+ g)

X 8( 1P + &SP (e, w))]

=£—dexp( "22”) (F(e, w)8o( £ + eSH(e, w))).
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By Lemma 3.6, we know that F(e, w) satisfies (3.54) and (3.55) for every k. Also,
we know by Theorem 3.7 that f® + eS*(e, w) = (X1, x, w) — y)/e is uni-
formly nondegenerate and hence, by Theorem 2.3,

(3.62) 8( 1P + eSP(e,w)) ~ By + ed, + --- inD P asel0
and ®, € D> are determined explicitly in terms of f® (see the proof of
Lemma 3.4 for how these f® are obtained successively). Hence
- o h - -
exp((}, S(e, w)>)x8(e, w + ;)80( B 4 eS(e, w))

~¥,+e¥; +--- inD ®asel0,

and this expansion is obtained explicitly by formally multiplying the following
(3.64) and (3.62):

(3.64) exp((X, fP))(1 + ey, + e?y, + -+ ) with v, determined by (3.56).

Therefore, we have obtained the following theorem:

(3.63)

THEOREM 3.8. Under the assumptions (H.1’) everywhere and (H.2), (H.3),
(H.4) for x, y € R?, x + y, the fundamental solution p(t, x, y) of 3/dt = A has
the asymptotic expansion

72

(3.65) p(t,x,y)~ exp(— U?”tﬁ)t“”/“’(c0 +ect+---) astl]0
with

(3066) Ci = E(‘I’Zl).

[We can show as in Theorem 3.5 that E(¥;) = 0 for odd i.] In particular,
(3.67) co=E [exp( (7\, f2(7')>)80( fl(T'))] .

REMARK 3.2. It is easy to obtain the asymptotic expansion E[J(e, w)
8(X*(1, x,w)] if J(e,w) € D® and J(e, w + h/¢) has the asymptotic expansion
in D* as £} 0. In this case, (3.63) is multiplied by J(e,w + h/¢) which has the
asymptotic expansion in D~* by Theorem 2.2.

In the elliptic case, i.e., dim Z(V,,V,,..., V;} = d everywhere, (A¥(x))in (3.1)
is strictly positive deﬁmte and its inverse (A;;(x)) induces a Riemannian
structure. In this case, £ % is the minimal geodes1c connecting x and y and (H.4)
just corresponds to the condition that x and y are not conjugate along £**. Cf.
[5] and [20].

REMARK 3.3. The above method can be extended to the case of
E(exp{G(e, w)/e?}J(e, w)8 (X (1, x, w))) if G(e, w) is a nice Itd functional such
that

h
G(e,w+ ?)~I‘0(h)+el“l(h,w)+~~, he H, inD®aselO0.

In this case, 7 is replaced by the minimizing element in K7 of ||A||%,/2 — T,(h).
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ExaAMPLE 3.1 (The Heisenberg group). Let d=3,r=2andV,,i=10,1,2, be
given by (x = (x,, x,, x3) € R?)
d d d

Vo=0, Vi=—rm420— V= -
3

ax,

Since [V}, V,] = —43/0dx3, (H.1’) and (H.2) are satisfied everywhere. Let 0 =
(0,0,0) be the origin of R® and we consider the asymptotic properties of
p(t,0,x), x # 0, as t 0. First of all, we introduce the following notation: For
w(t) = (wy(t), wy(t)) € Wy and h(t) = (hy(2), hy(t)) € H,

(3.68) (hw)u= ¥ ['h(t) duue),

i=1

Bt (2) = (hat), ~hy(2),
1()(2) = ['Ri(s) ds, ['hals) ds).

(3.70) S(t,w) = [ ‘wy(s) dwy(s) — wy(s) duw(s)

(Lévy’s stochastic area integral).
If x2 + x? # 0, h € K minimizing the H-norm is unique and given by

h(t) = a(1 — cos(20t)) + Bsin(20t),

(3.69)

(3.71) By(t) = asin(20t) — B(1 — cos(2ot)) if o # 0
and
(3.72) h(t)=at, hy(t) =Bt ifo=0.

a, B € R and |g| < 7 are uniquely determined by the condition
(3.73) h(1) =x, hy(1)==x, and 2(h,I(R*)), = x,.

In particular, o = 0 if and only if x; = 0.
Now X=*1, w) = (X%, w))_, are given by

Xeh(1,w) = x, + ew,(1),

Xph(1,w) = x4 + ewy(1),

X?f’ﬁ(l’ w) = x5+ 8[4(1(71J'), w)H + 2(x1w2(1) - x2w1(1))]
+2629(1, w).

(3.74)

Hence

(3.75)  fi® = (w,(1), w,(1),4(I(h*), w) y + 2xwy(1) = xow (1))
and

(3.76) <P = (0,0,28(1, w)).

It is easy to see

(8.77) (A, ™) =0-8(1,w).
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It is well known that
E(exp{ (X, £P) }|wi(1) = 0, wy(1) = o) = o/sino < oo,
since |o| < 7 and, a fortiori,
E(exp{(x, fz(z)>}lf1(h) = 0) < 0.
Hence (H.4) is also satisfied and
E(exp{(X, 7) }8y( 1)) = (27)**(det )

xE(exp{(7, £,P)}|1® = o),

where C is the covariance matrix (= the Malliavin covariance) of f®. This
expectation can be computed by a standard technique to obtain

p(s,0,) = @re?) ey - 262) (st + ) - )

(3.78)

2

Cf. Bismut [5], Azencott [2] and Gaveau [7].

Next, consider the case x = (0,0, x;) with x; # 0 and assume x; > 0 for
simplicity. In this case, (H.3) is no longer satisfied and the set of A € K§
minimizing the H-norm is a one-dimensional submanifold {4’ § € [0,27)} of H
given by

: 1/2

o sino 12
— | (x2+22)72
sino — ocos o

hé(t) = rsin8(1 — cos27t) + rcos @ sin 2,

(3.79)

hi(t) = rsin@sin2xt — rcos 8(1 — cos2xt),
where
(3.80) r={(am) )"

Hence, we cannot apply our result obtained above. We can, however, proceed as
follows. First, we note the following general formula:

[8(¢5in6 — ncos 8)[é cos 6 + nsin 6| df = 1
0

if £, 7 € R, (§,m) # (0,0) and §, is the Dirac delta function on R!. From this, we
have

p(€%,0,(0,0, x;)) = E[8(0,0, plewy(1), ewy(1),2625(1, w))]
- fO”E (80,0, (Ewa(1), ew(1), 2638(1, w))

><80(e(h0"’/2,w)H)|s(h",w)H|] de.
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If we apply the Cameron—Martin theorem to the translation w — w + h%/e, the
above is equal to

[rom - L }E[exp{_ ) |

2¢
X 8(0’0’x3)(ew1(1), ewy(1), x5 + F(hb’, w)y + 2628(1, w)

X 8o({h*="2, B?) , + (KO-, w)p)
X[ I1B%)% + e(R°, w)H|] do.

Noting that (k% h?), = 472r%os(6 — 0’), the above is equal to
4'”'27'2 T (ho, w)H
exp{ - —(232) }j(; E [exp{ I }
2¢ 0 9
><8(0,0,0) 3“’1(1)» 8“’2(1)» ;‘(h , w)H + 2¢ S(l, w))

X 8(e(h7~"%, w) ) | 4m?r? + e( R, w)al] do

7X
= 8_427737‘20}(]){— 3 }

(2¢%)
X j:E [exp{‘n'S(l, w)}8(0,0,0,0)( wy(1), wy(1), (A, w)y
+enS(1, w), (A2, w) y)

X[1+ e(4n?r?) " (h?, w) || db

X
~ 8‘42w3r2exp{— —(2‘;) }

X j:E [exp{wS(l, w)}8(0,0,0,0)(w1(1)’ wy(1), (B, w) g, (RO~72, w)H)] dé.

This (generalized) expectation can be easily computed to obtain
_ TXg
(8,0, x) ~ (8¢2) ‘exp{— @};

cf. Gaveau [7] and Azencott [2].

We note that the above generalized expectations are well defined: Generally,
the coupling of a positive generalized Wiener functional and a Wiener functional,
which has a continuous version on W and satisfies a certain growth condition, is
well defined.
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REMARK 3.4. Our probabilistic methods for short-time asymptotics of heat
kernels can also be applied to heat equations for geometrical objects. In particu-
lar, it provides a probabilistic approach to discuss heat equations on differential
forms which are related to several important problems in geometry and mathe-
matical physics. For such topics, cf. Bismut [6] and Ikeda and Watanabe [11].
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