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MAJORIZATION, RANDOMNESS AND DEPENDENCE FOR
MULTIVARIATE DISTRIBUTIONS!

BY HARRY JOE

University of British Columbia

The preorder relation of Hardy, Littlewood and Pélya (1929), Day (1973)
and Chong (1974, 1976) is applied to multivariate probability densities. This
preorder, which is called majorization here, can be interpreted as an ordering
of randomness. When used to compare multivariate densities with the same
marginal densities, it can be interpreted as an ordering of dependence or
conditional dependence. Results in Hickey (1983, 1984) and Joe (1985) are
generalized. A relative entropy function is proposed as a measure of depen-
dence or conditional dependence for multivariate densities with the same
marginals.

1. Introduction. Day (1973) and Chong (1974, 1976) extend the Hardy-
Littlewood-Polya (1929) preorder relation to measurable functions on a finite
measure space and obtain rearrangement theorems and inequalities. This pre-
order relation is a generalization of vector majorization [see Marshall and Olkin
(1979)]. In this paper, we will call it majorization and apply it to multivariate
probability densities on measure spaces which can have finite or infinite measure.
The majorization ordering on densities has an interpretation as an ordering of
randomness and extends ideas in Hickey (1983, 1984). When used to compare
multivariate densities with the same marginal densities, the majorization order-
ing can be interpreted as an ordering of dependence or conditional dependence.
This generalizes the matrix majorization in Joe (1985), which can be interpreted
as an ordering of dependence for contingency tables or for discrete bivariate
distributions. We will show that a relative entropy function can be used as a
measure of dependence or conditional dependence for multivariate densities with
the same marginals.

In Section 2, we state several equivalent definitions of majorization for
nonnegative integrable functions on a measure space, and generalize some results
in Hickey (1983, 1984). In Section 3, the measure is taken to be a product
measure and results are obtained for densities which are minimal with respect to
the majorization ordering over a class of densities with the same marginals.

2. Majorization for densities on a measure space. Let (X, A, p) be a
measure space. For most applications, X will be £” or a countable subset of %#°?,
and p will be Lebesgue measure or counting measure. For a nonnegative integra-
ble function A on (X, A, p), let m,(¢t) = u({x: h(x) > ¢t}), £ = 0, and h*(u) =
myY(u) = sup{t: mu(t) > u},0 < u < w(X); h* is the (left-continuous)
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1218 H. JOE

decreasing rearrangement of h. The following theorem will be used to define
majorization.

THEOREM 2.1. Let f and g be nonnegative integrable functions on (X, A, p)
such that [fdp = [gdu. The following are equivalent.

@ [[f—t]"du< [[g—t]" dp forall t > 0, where [ y]* = max(y, 0).

(b) fo(f)du < [¢(g)dp for all convex, continuous real-valued functions ¢
with domain including the ranges of f and g such that $(0) = 0 and the integrals
exist.

(© [°m(s)ds < [°my(s)ds forall t > 0.

d) f¢f*(w)du < [ig*(u)du forall 0 < t < u(X).

Proor. (b) implies (a) because ¢(u) = (u — £)* is continuous and convex
and satisfies ¢(0) = 0. We show that (a) implies (b) next. If ¢'(0 + ) > — oo, then
there is an increasing sequence of convex polygons ¢,(u) = ¢'(0 + )u +
Xra(u—t,)" with a, >0, t;,, >0, such that ¢, converges to ¢ on an
interval including the ranges of f and g. Condition (a) implies that [¢,(f)dp <
J¢,(&) dp. By the monotone convergence theorem, [¢(f)dp < [¢p(g)du. If
¢'(0 + ) = — o0, then let

_ | ¢(u), ux=n’l,
o(u) = {qb(n'l) +¢'(n"t=)(u-nt), u<nl,

n=12,....Let y,(u) = ¢,(u) — ¢,(0). ¢, is convex, §,(0) = 0 and ¢,(0 + ) =
¢'(n™' = ). [Y,(f)du exists because

JolDrdu=[ oD+ [ ¢(n7 -)fdn.

By the previous argument, 0 < [[{,(g) — ¥,( )] du. By the Lebesgue dominated
convergence theorem, [[{,(&) — ¥,(f)ldu — [[¢(g) — ¢(f)]du, using 7(g) +
7(f) as the dominating function for all n >j, where 7(u) = |¢p(u) +
|9,(0)| 1}, (%), J is a large integer and c is equal one-half the positive root of ¢
if it exists or infinity if ¢ < 0. Hence [¢(f)dp < [¢(g) dp.

() is equivalent to (c) because [xY(f)dp = — [Y(s) dm;(s) for all real-val-
ued Borel measurable functions y (such that the integrals exist); letting y(u) =
(u — t)* and using integration by parts, [[f — ¢]" du = — [2(s — t) dm(s) =
J£°m;(s) ds. See Section 1 of Chong (1974) for details.

The equivalence of (c) and (d) is Theorem 1.6 of Chong (1974). O

From now on we assume that all functions on (X, A, ) are bounded and
integrate to 1, so that they can be regarded as probability densities with respect
to p. Also all sets that are used will be measurable.

DEFINITION 2.2. Let f and g be densities on (X, A, u). We say that f is
majorized by g (denoted by f < g) if (a), (b), (c) or (d) of Theorem 2.1 holds.
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REMARK. Vector majorization is usually defined as x = (x,,...,%x,) <
Yr--er ) =y if X2 jx, =37 .y and TF x* < Tk  y* 1 <k < n, where x*
and y* are the decreasing rearrangement of x and y. This is condition (d) with
X ={1,2,...,n}, f=x, g =y and p = counting measure. Other special cases of
Definition 2.2 are majorization for infinite sequences [Markus (1964); Marshall
and Olkin (1979), page 16], continuous majorization for integrable functions on
[0, 1] [Ryff (1963, 1965)] and p-majorization [Cheng (1977); Marshall and Olkin
(1979), Section 14A].

As in Hickey (1983, 1984), the majorization ordering can be interpreted as an
ordering of randomness or uncertainty with f being “more random” than g if
f < g. Let A be a subset of X with finite measure. Then, in the class of densities
with support contained in A, the “most random” density is the uniform density
on A.

THEOREM 2.3. If f(x) = (1/pn(A))14(x), where 1, is the indicator function of
the set A, and g(x) is a density satisfying [,gdp =1, then f < g.

PROOF. It is easy to verify that condition (a) of Theorem 2.1 holds. O

As in vector majorization, f will be majorized by g if g is “averaged” in some
way to get f. Examples of averaging operators are:
1. Let A € A and
8 (x ) ’ x¢EA ’

! d A
—— , E .
u(A) fgdm

Then f < g can be verified using condition (a).
2. Suppose g(x) <a<b<g(y) for all x €A, y€ B, where A and B are
disjoint sets with u(A) = u(B). Let e = (b — a)/2. Then f < g if
g(x), x&€AUB,
f(x) =1(g(x) +e, XEA,
g(x) — ¢, x € B.

f(x) =

This can be verified using condition (a).

3. Suppose k: X X X — [0, ) is doubly stochastic, i.e., [k(x, ¥) du(y) =1 for
all x € X and [k(x, y)dp(x) = 1forall y € X.If f(x) = [k(x, ¥)&(y) du(y),
then f < g. This can be verified using condition (b) and Jensen’s inequality.
Suppose X = P and g, h and f are the densities of the random variables Z,,
Z, and Z, + Z,, respectively, where Z, and Z, are independent. Letting
k(x, y) = h(x — y), we see that the density of Z, + Z, is majorized by that of
Z, [cf. Hickey (1983, 1984)].

Following Hickey (1983, 1984), we introduce the concept of an uncertainty
parameter.
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DEFINITION 24. Let {f;} be a family of densities and a(6) be a real-valued
function. a(@) is an uncertainty parameter if f, < f;, whenever a(0) < a(8’) [or
fo < for whenever a(8) > a(6’)].

ExaMPLES. (i) Consider the family of uniform densities, i.e., for A such that
B(A) < 00, f4(x) = (1/M(ANIL). fa, < fa, if B(A) 2 B(A,), so that u(A) is
an uncertainty parameter.

(ii) Let X = %P, p > 2, and p = Lebesgue measure. Let ¢: [0, o) — [0, ) be
a strictly decreasing function such that [y(y)y?/?2~'dy < oo. Consider the
class { fs} of elliptically contoured densities [see, for example, Muirhead (1982)]
with fs(x) = |2|7/%(xZ"'x’), where x = (x,,..., x,,), x’ is the transpose of x
and 2 is a positive definite matrix. Then fy < fs, if |2;| > |Z,| so that |Z|is an
uncertainty parameter. The special case of multivariate normal densities is
obtained with Y (y) = (27) P/%~7/2,

ProoF oF (ii). Let my(t) = u({fs > t}). The formula for volume of the
ellipsoid {x: ="’ <y} is #P/2|2|/2y?/2/T(p/2 + 1) so that

e U (%) K Ca R R RO
0 > 127(0).

my(t) =

[Pmy(s)ds = wP/2[T(p/2 + 1)]7 1 t'fz((l’l)/z[:p‘l(s)]l”/2 ds is decreasing as |Z| in-
creases. The conclusion follows from condition (c) of Theorem 2.1. O
(iii) Consider the family of multinomial distributions with p,,..., p, fixed
k .
i—1D; = 1), 1e.,

k

n .

fal2ysenes ) = (xl,...,xk)‘ lpf“
i

fr, < fn, if ny > Ry, so that n is an uncertainty parameter. This follows from the
result included with the third averaging operator.

3. Majorization for densities when marginals are fixed. In this section,
let X=X, XXX, be a product space and let p=p, X --- Xp, be a
product measure. For most applications X; will be 2™® or a countable subset of
R2™® for some positive integer m(i) and p; will be Lebesgue measure or
counting measure. Let p_; = X p;, i=1,...,p.Fori=1,..., p, let f(x,) be
a density on X; with respect to p; Let Il =TII(f,..., f,) be the class of
densities f on (X, A, p) such that [fdu_;=f;, i = 1,..., p. Consider the order-
ing in Section 2 to be constrained to II.

DEFINITION 3.1.  f < g if there are marginal densities f,,..., f, such that f,
g € II(f,,..., f,) and (a), (b), (c), or (d) of Theorem 2.1 holds.
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A special case is the matrix majorization of Joe (1985), where p = 2, X, =
{1,2,...,r}, X, ={1,2,...,c}, r and c are positive integers and p, and p, are
counting measures. The matrix majorization ordering can be interpreted as an
ordering of dependence for two-way contingency tables or for discrete bivariate
distributions. This more general definition can be interpreted as an ordering of
dependence for multivariate distributions with g representing more “depen-
dence” than f if f < g. That is, with the marginals fixed, a multivariate
distribution is more “random” if it is closer to “independence.”

Now, some results in Joe (1985) will be generalized. A density f in II is
minimal if f > g implies f* = g*. An approximate necessary condition (from
Theorem 3.2 following) for f to be minimal is that f(xy,...,%;...,%,) >
f(x4, ..., x},...,x,) whenever f(x;)=f(x!), i=1,..., p. Note that
f(xy,-..,x,) =TI, fi(x;), which is the density of p independent random vari-
ables, satisfies this condition. In general, there are also other densities that
satisfy this condition.

THEOREM 3.2. Let g € 1. If there are sets A,, ..., A,, B,,..., B, such that
@) p(A) =p(B;) >0, A; and B; are disjoint, i = 1,..., p,
(i) fi(x,)) < fi(x]) for allx, € A,, x{ € By,
(iii) g(x,, x3) < a < b < g(x{, x3) for all x, € A,, x{ € B,, x5 €
Ay X oo XA, =G,
(iv) g(x, x5) = ¢ > d > g(x{, x3) for all x, € A;,, x{ € B;, x, €
By X -+ XB, = D,,

then g is not minimal.

Proor. Let ¢ be the minimum of (b — a)/2 and (¢ — d)/2. Define f(x) by

&(x), x & (A, UB,) X (C,u D),
f(x)={g(x)+e, 2x€A XCUB, XD,
g(x)—e, x€A; XD,UB, XC,

Then f €Il and f < g (according to second averaging operators in Section 2).
Hence g is not minimal. O

A sufficient condition for f € I to be minimal is given next.

THEOREM 3.3. Let ¢ be a continuous and strictly convex function with
¢(0) = 0. If f € II minimizes [$(g) dp, g € I, then f is minimal.

PROOF. Suppose f is not minimal, then there exist g € II such that g < f
and g* # f*. By condition (b) of Theorem 2.1, eg + (1 — ¢)f < f forall0 < e < 1.
Let J(e) = [¢(f + e(g — f))dp,0 < & < 1. Then J(e) < J(0). Also J(¢) is strictly
convex so that J(g;) < J(0) for some 0 < ¢, < 1. This contradicts the assump-
tion that f minimizes [¢(g)du. O
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REMARK. Minimizing [¢(g) dp subject to the constraint g € II is a calculus
of variations type of problem. An argument similar to the preceding proof can be
used to show that if a minimum exists, then it is unique (up to sets of measure
zero). A necessary and sufficient condition for f to be the minimizing function is
given next.

THEOREM 3.4. Suppose ¢ is differentiable and strictly convex with $(0) = 0
and the minimum of [¢(g) dp exists. Then f minimizes (¢(g) dp, g € I1, if and
only if [¢'(f)hdp = 0 for all integrable h satisfying (hdp_,=0,i=1,..., p.

PrOOF. Suppose f € II is the minimum. Note that if A satisfies the previous
condition, then f + eh € II (provided f + eh > 0). Let J(¢, h) = [¢(f + eh) dp
for & in a neighborhood of 0. Then (d/d¢)J(e, h) = [¢'(f + eh)hdp. Since € = 0
minimizes J(e, k), [¢'(f)hdp = 0.

If f satisfies the condition then f is a local maximum or minimum. By
convexity, f is global minimum. O

COROLLARY 3.5. If fﬂf,lognf, exlsts, then f(xl, ceey xp) = l_lf_‘l fi(x,-) is
minimal.

ProoF. Let ¢(u)=ulogu, u >0 (0log0 = 0 by convention). ¢ is strictly
convex and ¢'(u) = 1 + log u. It is easy to verify that the condition of Theorem
3.4 holds. O .

COROLLARY 3.6. If py(X;) =m; < o0 and

f(2) = m=t| & mifi(z) - (9= 1)] 2 0,

i=1

where m = T17.,m;, then f is minimal.

PROOF. Let ¢(u) = u? u > 0. ¢ is strictly convex. It is easy to verify that
the condition of Theorem 3.4 holds and that f € II. O

Corollary 3.5 suggests the use of the relative entropy function

8(¢) = [glogle/T1t] du= [gloggdu— [T1f(x)ogTf(x:) du

as a measure of dependence for g € II(f,,..., fp)- (The right hand equality
depends on the existence of the integrals.) §(g) is increasing with respect to the
majorization ordering and takes a minimum of 0 when g is the density repre-
senting independence. 8(g) can be used for p > 2; measures of dependence such
as the correlation coefficient, sup correlation [Gebelein (1941); Rényi (1959)],
monotone correlation [Kimeldorf and Sampson (1978)] are for bivariate distribu-
tions and do not generalize to multivariate distributions. We also note that
Jlg = T1f;1%dp, the measure of deviation from independence in Gilula and
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Schwarz (1985), and the generalization of mean square contingency of Rényi
(1959) are not increasing with respect to the majorization ordering. In the
bivariate case, §*(g) = [1 — e=28®]/2 [cf. Linfoot (1957)] satisfies conditions
B,C,D, F, G of Rényi (1959) [see also Schweizer and Wolff (1981)] and it satisfies
condition E for continuous random wvariables. §(g) has the following nice
property, which is a multivariate generalization of condition F in Rényi (1959):
If the (continuous) random variables V,,..., V, have joint density g and margi-
nal densities f,,..., f,, respectively, and W; = =(V;) for differentiable one-to-one
functions 7;, then 8(g) = 8(h), where A is the joint density of W,,..., W,. O

Next we introduce the concept of a dependence parameter.

DEFINITION 3.7. Let {f,} be a family of densities in II and let a(f) be a
real-valued function. a(9) is a dependence parameter if f, < f,, whenever a(0) <
a(8’) [or fy < f, whenever a(8) > a(8’)).

ExaMpPLEs. (i) Let {fs} be the family of multivariate normal densities with
f(x) = @m) Y% Yexp{—x2/26}}, i = 1,..., p; that is, the diagonal entries of
S are of,...,02. fy < fg,if |2 2 |Z,| [from Example (ii) in Section 2], so that
|Z] is a dependence parameter. Note that |Z| is maximized when 2 =
diag(af, ..., 07), and 8*(fz) = (1 — |2|/T1e})'/2.

(ii) Let R be a correlation matrix. The multivariate Student ¢ density with n
degrees of freedom is fg(x) = |R|™% (xR~ x’), where

V() = T((p + n)/2)(nm) " *[T(n/2)] }(1 + y/n) 72"/,

The marginal densities are univariate Student ¢ densities with n degrees of
freedom. By Example (ii) of Section 2, |R| is a dependence parameter.

(iii) Let {fs} be the family of m-variate normal densities. Let m = m, + m,,
where my, > m; > 1,and let 2 = (i“ z"), where 2,; are fixed m; X m; positive

21 22

definite matrices, j = 1,2. Let p = 2 and let the marginal density f; be m -variate
normal with covariance matrix 2,, j=1,2. Similar to Example (i), |Z| is a
dependence parameter and is maximized when Z,, = 0. Furthermore

2 - Tia-m]”
8*(f)=1-———-) =[1— 1—p?] :
* =0l 122 i
where p, > -+ > Pm, 2 0 are the canonical correlation coefficients [see, for

example, Muirhead (1982), page 531]. When m, = 1 with Z,, = 0,;, 6*(f3) =
(21.25'2,,/0,,)/2 is the square root of the multiple correlation coefficient from
regressing the variable with density f, on the m, variables with joint density f,.

The preceding results can be generalized to the case where higher-dimensional
marginals are fixed. For example, consider the class II(f,,, f,5) of trivariate
densities g with fixed bivariate marginals f,, = [gdpg, f,3 = [gdn,. The condi-
tion in Theorem 3.4 becomes [¢'(f)hdp =0 for all integrable h satisfying
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Jhdp, =0, [hdpsz=0. If ¢(u) = ulogu and the minimum of [p(g)du, g €
II( f19, f13), exists, then it occurs for

Fra(x1, %) f15( %5, x3)

fi(x,)

where f, = [f, dp, = [f3 dpg. This density represents conditional independence
of the second and third variables given the first. §(g) = /g log[ gf,/f12 f1s] du is
a measure of conditional dependence. If f is a m-variate (m > 3) normal density
and f,, and f,; are the marginal densities when the mth and (m — 1)st variables
are, respectively, integrated out, then §*(f) = [1 — e~2%(/)]1/2 ig the absolute
value of the partial correlation coefficient of the (m — 1)st and mth variables
conditional on the first m — 2 variables.

We end this section by briefly mentioning densities which are “large” with
respect the majorization ordering. When p; are Lebesgue measures, maximal
densities in II do not exist because the “most dependent” distributions with
marginals f,,..., f, have singular components (Theorem 3.8 following). In the
case p = 2, X, are finite sets and p, are counting measures, Joe (1985) obtains
results for maximal densities; the number of maximal densities is finite. When
p = 3 and X, are finite sets, the number of maximal densities can be infinite
(unpublished results of the author).

I( fi(x,) > 0),

f(x,, X9, X3) =

THEOREM 3.8. Let f €Il. Let p be Lebesgue measure. If there are sets
Ay, ..., A, By,..., B, such that
(1) I"i(Ai) = I"i(Bi) > 0: Ai’ Bi distint’ i= 1" <oy Py
(i) 0<g <f(x, %) <e, for all x, €A, x,€C,=A, X - XA, and
% €B,,x,€D, =B, X --+- XB,,
(i) f(xy,x,) > &, forallx, € Aj,x,€ D, and x, € B, x, € C,,

then f is not maximal (there exists g € I such that f < g and f* # g*).

PROOF. Let

f(x), x & (A, U B,) X (C,u D),
g(x)= f(x)_sl! xGA1X02UBl><D2,
f(x) + &, x€ A, XD,UB, XC,.

Then g€l and f<g.O
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