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AN EXTENSION OF SPITZER’S INTEGRAL REPRESENTATION
THEOREM WITH AN APPLICATION

By ABDULHAMID A. ALZAID, C. RADHAKRISHNA RAO! AND
D. N. SHANBHAG!

King Saud University, University of Pittsburgh and University of
Sheffield

Using a new approach, an extended version of Spitzer’s integral represen-
tation for stationary measures of a discrete branching process is obtained.
This result is used to provide a complete solution to a problem in damage
models satisfying a generalized Rao-Rubin condition.

1. Introduction. Consider a modified discrete branching process {Z,: n =
0,1,...} with one-step transition probabilities given by

(0 i=0,1,...,j=12,...,
11) p;,=P(Z, ., =j|Z,=i)={ ’ ,
D) 2y = P2y = iVn = 4) l1-c+epf, i=0,1,..,j=0,

where 0 <c<1 and {p{”: j=0,1,...} is the i-fold convolution of some
probability distribution {p;} having 0 < p, <1 with itself for i > 0 and the
degenerate distribution at zero for i = 0. (It is seen that the process reduces to a
Bienaymé-Galton-Watson branching process when ¢ = 1.) Define

o0 o]
(1.2) m= Y jp, m*=Y (jlogJ)p;
j=1 j=1

In this paper, we extend Spitzer’s integral representation for stationary measures
of a Bienaymé—Galton-Watson process with m < 1 and m* < o to a branching
process of the type defined in (1.1). Such an extension could be arrived at by
using arguments similar to those of Spitzer (1967) based on the potential theory
of Markov chains. However, we give a new approach based on Bernstein’s
theorem on absolutely monotonic functions. (For the definition of an absolutely
monotonic function and the relevant details concerning Bernstein’s theorem, see
Widder (1946; Chapter IV).) We use the extended version of Spitzer’s theorem to
obtain a complete identification of the solution to a certain functional equation
in damage models considered earlier by Talwalker (1980) and Rao, Srivastava,
Talwalker and Edgar (1980), and thus establish a link between branching
processes and damage models.
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2. An extended version of Spitzer’s integral representation. We estab-
lish the following theorems.

THEOREM 1. The g.f. (generating function) U(s) = L jsf of any stationary
measure {7,} of a modified branching process defined in (1.1) is analytic for
|s| < q, where q is the smallest positive root of the equation s = f(s), and (if
normalized so that U( p,) = 1) satisfies the equation

(2.1) cU(f(s)) = ¢+ U(s),

where f(s) is the g.f. of {p;}. Conversely, if U(s)=Xn;s/, 1,20, |s|<gq
satisfies (2.1), then {n,} is a stationary measure.

Proor. If U(s) is analytic for |s| < s, for some s, > 0, then

U(s) = an3j= Znizpijsj

-c im([ f() - [1O])

= c(U(f(s)) - U(po)), sl < 50,

which implies that (2.1) is valid at least for |s| < s,. Then using the arguments
exactly as in A.N. (Theorem 2, page 68) [where we use the abbreviation A.N. for
the book by Athreya and Ney (1972)], we find that U(s) is analytic for |s| < gq.
The converse assertion easily follows by equating the coefficients of s/ in (2.1). O

THEOREM 2. (An extended version of Spitzer’'s theorem.) If m <1 and
m* < oo with f as in Theorem 1, then for every probability measure v on [0,1)

(2.2) U(s) = Kf[o l)U(s, t)dv(t)
is the g.f. of a stationary measure, where
U(s,t) = E‘, [exp{(2(s) —‘l)m"“} — exp{ —m""*}]| ",

n=-—o0

with #(s) as the unique p.g.f. among those vanishing at s = 0 and satisfying
the equation

(2.3) B(f(s)) =mAB(s) +1—m,

and K the appropriate normalizing constant. Conversely, every stationary mea-
sure has the representation (2.2) for some probability measure v on [0,1). (For

an interpretation of # in Bienaymé—-Galton—Watson branching processes (see
A.N., page 17).)

ProoF. The first part of the theorem is easily verified. To prove the
converse, it is sufficient to establish that the representation is valid for every
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s € [0, 1). Define then for every s € [0,1)
U*(s) = U(# Ys)),

where # is as mentioned in the statement of Theorem 2. In view of Theorem 1
and Equation (2.3), we have

24) c"U*(m"s+1—-—m"*)=U*(s) +¢&,, n=12,...,0<s<1,
n

where
1—-c" .
£ = c(l—c)’ ife#1,

n, ife=1.

We can write (2.4) also as

U*(s) = c"U(1 + m"Q,(# ' (s))) —é,, n=12,...,0<s<1,
where Q,(s) =[fs) — 1]/m”" with f (s) as the nth iterate of f(s). Conse-
quently .
(25) U*(s) = lim {c"U(1 + m"Q,(0) — m"Q,(0)Z,(% '(s))) - £.)

for 0 <s <1, where %,(s) =[Q,(0) — Q,(5)]/Q,0). If 0 <s, <s<s,<1,
then noting in particular that #, - % pointwise (see A.N., page 47), and # and
&' are strictly increasing on [0, 1), we find that

— m"Q,(0)%,(# (1)) < —m"Q,(0)s = —m"Q,(0)%(%B (s))

< -m"Q,(0%,(F \(s;))

for large enough n. Since U is increasing on [0,1), we obtain from (2.5) using
(2.6),

U*(s,) < lhtlinf{c”U(l + m"Q,(0) — m"Q,(0)s) — £,}

(2.6)

2.7

(27) < limsup {c"U(1 + m"Q,(0) — m"Q,(0)s) — £,} < U*(s,).
n—oo

It is seen that U *(s) is continuous and U *(0) = 0, and hence from (2.7), in

particular, we have

U(s) = lim (U(L + mQ,(0) - mQ,(0)s) ~ £,)
CO Lt (U0 + mQ,0) - mQ,0)5) - UL + mQ,0)])

for s € [0,1), with the limits well defined. Since for each n > 1, the expression
within the second limit in (2.8) can be expressed as the g.f. of some nonnegative
sequence for s € [0,1), the extended continuity theorem given in Feller (1971,
page 433) implies that U* is the g.f. of a nonnegative sequence. Define now a
function U on (—0,1) such that its restriction to [0,1) is indeed U * and for
s € (_ 00, 0)’

U(s) = c"U*(m"s + 1 - m") — £,,
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where n is the smallest integer for which m”s + 1 — m"™ € [0, 1). It is easily seen
that

(29) c¢cU(ms+1-m")=0U(s) +¢,, n=12,...,s€(-w,1),

which, since U = U* on [0,1), implies that U’ (ie., dU(s)/ds, s € (—,1))
exists and is absolutely monotonic on (—o0,1) with limU’(s) =0 as s » — .
Since U(0) = 0, we conclude from Bernstein’s theorem that for some measure p
on (0, 00)

(2.10) U(s) = f (e’*—1)dp(x), se€(—o,1).
(0, 0)
From (2.9), we find that the measure p is such that
c" es*m"+A-mhx _ 1) du(x) = e — 1) du(x) + &,
21) f(o’w)( ) du(x) f(o’w)( ) dp(x) + £,
n=12,...,s € (—o,1).

If s, € (—o0,1) and s € (— 0,0], then subtracting the identity (2.11) from the
corresponding identity with s replaced by s + s,, we obtain

(2.12) c* j

esxm"(esoxm" _ 1)e(1—m")x du(x) = f
(0, 0)

(0,

es*(e%* — 1) du(x),
)

which is valid for all s € (— o0,0]. Then, in view of the uniqueness theorem for
Laplace—Stieltjes transforms, (2.12) implies

(2.13) f (e** — 1) du(x) = c"f (e®o*m" — 1)e@=m"* dy(x)
[mn’mn~]) [l,m'l)

for n=20, +1,+2,.... Since s, in (2.13) is arbitrary, we conclude using (2.10)
that

Us(s)=0s)= ¥ [

n=—oo

e’* — 1) du(x)

mn’mn—l)(
ad n n
(2.14) — Z cn(e—(l—s)xm — e xm )ex dp,(x)
[L,m Yp=—oo

[>¢]

=K { E cn—t(e—m""(l—s) _ e—m""‘)} dl’(t)
[O,D\ p= -0

for s € [0,1), where K is a positive constant and » is a probability measure on
[0,1) such that for every Borel subset A of [0,1) we have

(2.15) v(A) = K‘lfse"c_b“/bg"'du(x),
A

where S, = {x: (—log x/log m) € A}.[The operation of interchanging the order
of summation and integration in (2.14) is justified by either Fubini’s theorem or
the monotone convergence theorem.] The required result now follows on observ-
ing that U(s) = U *(%(s)), s € [0,1).0
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REMARK. 1. In Definition 2 on page 432 of Feller (1971), 0,00 should be
changed to 0, 0 to make the extended continuity theorem given on page 433
nonambiguous. [We used this theorem in the proof of our Theorem 2.]

REMARK 2. If we define G(i, j)-to be the Green function corresponding to
the substochastic matrix (p;;), i, j = 1,2,..., then an argument essentially as in
A.N. (page 70) implies that for every subsequence of positive integers {&;} such
that the fractional part of (—log k;)/log m — t with ¢ € [0,1) we have

E G(ki’ J )sj ~
i Uls,t)
G(k;,1) U(o,t)’
where U(s, t) is the U(s, t) of Theorem 2 with m”~¢ replaced by (— Q(0)m"~?),
Q(0) being as defined in A.N. (page 40), and
aU(s, t)
as s—o0 )
We note that the proof in A.N. (page 69) remains valid in the present case as well
with U(s, t) changed to U *(s, t). Consequently, the Poisson-Martin integral
representation for a stationary measure analogous to the one given in Seneta
(1973, page 151) for a super regular vector yields the validity of our Theorem 2
with U(s, t) replaced by U(s, t). Now, it is easy to verify that Theorem 2
remains valid even when @Q(0) is not necessarily equal to —1 and hence we have
an alternative proof of Theorem 2.

- U*(s,t) =

U(o,t) =

REMARK 3. The version of Theorem 2 with U(s, t) replaced by U(s, t) of
Remark 2 yields Spitzer’s theorem when ¢ = 1.

CorOLLARY. If f(s) =1 — m + ms, then every sequence {v,} is a stationary
measure iff it is of the form
o mr=0J
(216) n,=K Y "l —dv(t), j=12,..,
n=—o0 "[0,1) J:
where v is a probability measure on [0,1), and K is a positive constant as in
Theorem 2.

The result (2.16) is obvious from Theorem 2 in view of the fact that #(s) = s.

3. An application to damage models. Let (X,Y)and (X’,Y"’) be two-vec-
tor random variables with nonnegative integer-valued components such that X
and X’ have the same marginal distribution {g,} with g, < 1, and Y and Y’ are
such that for each n with g, > 0,

P(Y=r|X=n)=('rz)vr'(l—w)"—r, r=0,1,...,n,
P(Y'=r|X"=n)= (',l.)ﬂ"(l—ﬂ’)"_r, r=0,1,...,n,
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where 0 < 7, 7/ < 1 are fixed. Talwalker (1980) and Rao, Srivastava, Talwalker
and Edgar (1980) considered the problem of characterizing the distribution of X
or X’ by the equation

(3.1) P(Y=r)=P(Y'=rX'=Y'), r=0,1,...,

which is an extended version of the Rao-Rubin condition (Rao and Rubin
(1964)). It is seen that (3.1) is equivalent to

(3.2) GA -7 +as)=G(7n’s)/G(n"), |s|<1

where G is the gf. of {g,}.

When # = 7’, (3.1) is the Rao—Rubin condition, and it is shown by Rao and
Rubin (1964) using Bernstein’s theorem and in a simpler way by Shanbhag
(1974), that in this case G is the p.gf. of a Poisson distribution. When 7 > 7/, it
is easily seen that G is the p.g.f. of a binomial distribution with an arbitrary
index and success probability (7 — #’)/7(1 — «’).

When 7 < 7', the picture is totally different, and the family of distributions
{g,) for which (3.1) holds is somewhat curious and fairly large. Talwalker (1980)
and Rao, Srivastava, Talwalker and Edgar (1980) identified the family as a
mixture of Poisson distributions with the mixing measure itself satisfying a
further functional equation. The following theorem gives a complete identifica-
tion of the solution and provides a more satisfactory answer and a rigorous proof
to the characterization problem than that given earlier.

THEOREM 3. Let (X,Y) and (X’,Y’) be two-vector random variables as
considered above with 0 < 7 < @’ < 1. Then (3.1) is valid iff

g = K i cn—te_(vr/fr’)"_l (ﬂ/ﬂ,)(n_t” o
o (A J! (1 —7)

[/ avto,

ji=o0,1,...,

where v is a probability measure on [0,1) and c is a real number lying in (0,1)
and K is a normalizing constant.

The result follows from the corollary to Theorem 2 (see (2.16)) since (3.1) is
equivalent to (3.2), which can be written as

cU(1 —m+ ms) =U(s) +cUQ1 —m)

with
(4 U ™
gO_l_c ( _m)’ m_;y
1_ ’
ww=437ﬂ1ﬁ—&.
T — T

(Observe that (3.2) implies that the p.g.f. G(s) is defined for all s such that
|s| < #’(1 — @)/(w’ — m) and it satisfies the equation in (3.2) for every

_ 7’(l1—a) a'(1—a)
“| )

b
7 —a 7 —a
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REMARK 4. If the measure v in Theorem 3 is taken as the Lebesgue measure
on [0, 1), then the distribution {g,} in question reduces to a negative binomial
distribution.

REMARK 5. It is interesting to note that if a p.g.f. G satisfies (3.2) simulta-
neously for two pairs (=, 7/), i = 1,2, where 0 <m; <7/ <1 and (logm —
log /) /(log m, — log m4) is irrational, then G is the p.g.f. of a negative binomial
distribution of the form

_ ([ —m)/(nf — m)] —1)°

{[m@ = m)/(nf = m)] - 5}"
for some a > 0. Since the condition implies G to be well defined also on (1, s;)
where s, = 7/(1 — m,)/(w{ — m,), the result in question follows as a corollary to
the result of Marsaglia and Tubilla (1975) by noting in particular that f(x) =
G(sy — S~ *)/G(0), x > 0 is well defined and satisfies the equation f(¢; + x) =
f(t)f(x), x>0, i=1,2 with ¢, =log(n//m;), i =1,2. The same result was
established in Rao, Srivastava, Talwalker and Edgar (1980) by a different and
slightly more involved method.

G(s)
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