The Annals of Probability
1987, Vol. 15, No. 3, 1203-1209

ON A PROBLEM OF KAHANE ABOUT THE IMAGE OF
GAUSSIAN TAYLOR SERIES

By J. S. Hwang
Academia Sinica

We prove that a Gaussian Taylor series takes almost surely every complex
value with at most one exception. This presents an answer to a problem of
Kahane. We also present an example to show some differences between
Gaussian and classical Taylor series.

1. Introduction. Let {Z,} be a sequence of complex random variables which
are independently and normally distributed in standard form (see Kahane [6],
page 118). As introduced by Kahane ([6], page 125), a power series is called a
Gaussian Taylor series if it can be written as

[oe]
(1) F(z) = X a,Z,2",
n=0
where a, > 0, limsup,_ a/" =1, and z is a complex variable. Since
Z, = O(log n)'/? a.s. (almost surely) ([6], page 121, Proposition 3), it follows that
a.s. (1) admits the unit circle C = {2: |z| = 1} as a natural boundary ([6], page
32, Theorem 1).

Let D be the unit disk, C = dD, and E a subset of D. We say that F(z) has
the recurrence property on E if for each complex number w, we have as.
liminf|F(z) — w| = 0, as |z]| = 1, z € E, and the transience property if we have
as. lim|F(z)| = w,as |z| = 1, z€ E.

With the above two definitions, Kahane has proved the following two theo-
rems ([6], pages 132-137).

THEOREM K1. If the sequence a, is monotonic and satisfies

oo

n \1/2
al=w and a,= o( )
ne1 log n

then F(z) has the recurrence property on any circular set (i.e., a union of circles

|z| = rwith r - 1).
THEOREM K2. If the coefficients a, satisfy
(2) lim a,(nlogn)™? = 0,
n— oo

then F(z) has the transience property on some circular sets.
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By applying the Rouché theorem, Kahane has obtained the following:
THEOREM K3. If (2) holds, then F(z) takes a.s. every complex value.

Clearly, if a, = n% a > 3, then the above theorem says that F(z) takes a.s.
every complex value. From this, Kahane ([6], page 137) asked whether the image
of F(z) fills the plane a.s., when a, = n® — ;< a < }. In this paper, we shall
present an answer in the following affirmative sense. For simplicity, we say that
F(z) takes a.s. every complex value with at most one exception if the probability
of F(z) omitting any two complex values is zero.

THEOREM 1. Let {a,} be a real sequence in the a2 = co. Then F(z) takes
a.s. every complex value with at most one exception.

2. Preliminary lemmas. Before proving Theorem 1, we shall state some
necessary results from probability and function theory. We first need the
following assertions of Kahane ([6], page 126, Theorems d’ and e’), which are
derived from the Paley-Zygmund inequalities ([6], page 24) and the Poisson
method of summation ([6], page 26).

LEMMA 1. If Ya2 = oo, where a, are real, then we have:

(i) F(re') diverges a.s. asr — 1, for almost every t.
(ii) Given any real t, F(re') diverges a.s. asr — 1.

Note that the assertion (i) is an immediate consequence of (ii), but for our
convenience, we list both of them here. Also notice that if the Gaussian Taylor
series F(z) is replaced by a standard Taylor series, then there is a series

f(z) = Y a,z", where Y a2= o0,

such that the limit f(re®) diverges as r — 1, for almost every ¢, but it is not
necessary that for any ¢, f(re‘) diverges as r — 1. In other words, the assertion
(i) is true, but not (ii) for such a series. An example will be given at the end of
this paper.

Next, we shall need a theorem of Collingwood and Cartwright (see [2],
Theorem 4.2). For this, we say that a function f(2z) has the angular limit v at a
point e‘ on C if f(z) tends to v as z > e* inside any angular domain lying in D
and having e as vertex. A special case is that of a radial limit; that
lim, _,, f(re®) = f(e%) exists.

LemMma 2. If {(z) is analytic and omits two values in D, and if f(z) tends to
a limit v along a path T' C D, then this path T must terminate at a point e on C
and f(z) has the angular limit v at e*.

Note that the notions of radial limits and angular limits are the same for
functions which are analytic and bounded in D, due to Lindel6f’s theorem ([2],
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Theorem 2.3). This together with Fatou’s theorem ([2], Theorem 2.1) yields that
if f(z) is analytic and bounded in D then the angular limits exist almost
everywhere on C.

With the above definition and remark, we can now state the following
extension of Lowner’s theorem, due to Ohtsuka and Tsuji (see [9], Theorem
VIIL.30).

LemMma 3. If f(z) is analytic and bounded by one in D, and if E = {e':
If(e®)| = 1} and E* = {f(e™): e € E}, then both E and E* are measurable
and their measures satisfy mE < mE *.

Finally, we shall need the following strong form of the maximum principle (see
Collingwood and Lohwater [2], Theorem 5.3).

LemMa 4. If f(2) is analytic and bounded by M in D and if the radial limits
If(e®)] < m < M almost everywhere on C, then |f(z)| < m everwhere in D,
unless f(2) is a constant of modulus m. .

To close this section, we remark that if f(z) is analytic and omits two
complex values in D, then f(z) is a normal function in the Montel sense, due to
Lehto and Virtanen ([7], page 53). From this, we can see that the technique of
Bagemihl and Seidel [1] is applicable in proving our Theorem 1, cf. Hwang [4],

[5].

3. Proof of Theorem 1. Suppose on the contrary that the assertion is false;
then with a positive probability the series F(z) omits two complex values, say a,
and a,. In view of the remark made in (1), we have as. F(z) # oo in D. It
follows that with a positive probability, F(z) omits three values a,, a,, and oo.

We now consider the function

(*) G(z) =1/(F(z) —a,), z€D.

Then with a positive probability, G(z) is analytic in D. We shall construct a
path y such that with a positive probability G(z) tends to co along y. This
together with Lemma 2 will contradict Lemma 1.

For more precise demonstration, we denote by (£, &7, P) the probability space
and we write F(z, Z(w)) in place of F(z), where w € Q. Let A be the event in &/
defined by

A = {w: F(z,Z(w)) # a;(w), for all z € D},

where a,(w) = a;, as., a, * a, are constant, and az = co. Then the probability
P(A) > 0 and the function G(z, Z(w)), where G is as in (*), is analytic in D for
any w € A. To construct the desired path, we fix an w € A and write G“(2) =
G(z, Z(w)). We then define the region

R¢={z:z€Dand |G°(2)| >n}, n=12,....

Let z, be a point in R® and let S be the component of R% containing the point
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2,,. Denote by S“ the closure of S2. Then by the maximum principle, we find
that the intersection §,‘;’ N C is not empty.

We shall prove that the function G“(z) is unbounded in S¥. For this, we let
Sy* be the smallest simply connected region containing S“. Then by the
Riemann mapping theorem, there is a function z = ¢*(w) that maps D, (Jw| < 1)
conformally onto S¢*. It is easy to see that dS¥ N C = 3S°* N C. Clearly, the
function ¢“(w) is analytic and bounded by one in D,. Let C,, be the unit circle
in w plane. Then by Fatou’s theorem ([2], Theorem 2.1), ¢“(w) has a radial limit
at almost all points of C,. As before, we let

E= {ei‘: lo@(e®)| = 1} and E* = {¢“(e"): e € E}.

Then by Lemma 3, we know that mE < mkE *.
We now have two cases to be considered: either mE > 0 or mE = 0. In either
case, we are going to prove that the function

He(w) = G°(¢°(w))
is unbounded in D,. Clearly, from the definition of R%, we have
|H*(w)| > n for w € D,,, where ¢“(w) € RY.

Suppose on the contrary that H“(w) is bounded in D,, and assume the first
case that mE > 0. Let E, be a Borel subset of positive measure of E at each
point of which H“(w) possesses a radial limit, and let Ej* be the image of E,
under the mapping z = ¢“(w). It follows from Lemma 3 again that 0 < mE, <
mEg.

Let e be an arbitrary point on EJ* and let e’ be the preimage of e under
the mapping z = ¢*(w). Denote by r, the radius in D, ending at e and

= ¢“(r,). Since H“(w) has the rad1a1 limit, say v at e“’ it follows that the
functlon G“(z) tends to v along the path r* and hence the function F“(z) tends
to the value v, = a, + 1/v along the path r* due to (*). By Lemma 2, the
path r* ends at e and the function F“(z2) has the angular limit v, at e
Since mEo* >0, w € A is arbitrary, and P(A) > 0, this certainly contradicts
Lemma 1(i).

Turning to the second case mE = 0, we shall prove that the function H“(w)
has radial limits of modulus » almost everywhere on C,. For this, we let e?* & E,
then the modulus of the image |¢“(e**)| < 1, so that the point 2 = ¢“(e®) lies on
the boundary of S¥. This yields that |G“’(z)| = n or |H“(e*®)| = n. Since e® is
an arbitrary point not in E, we thus conclude that the function H“(w) has
radial limits of modulus n almost everywhere on C,. It follows from Lemma 4
that if the function H“(w) is bounded in D,, then we have |[H“(w)| < n for all
w € D,, a contradiction. This concludes that the function H“(w) is unbounded
in D,; so is the function G“(2) in SY.

Applying the method in [4], a path y ending at e can be constructed such
that the function G“(2) — 0, as z > e*, z € v, so that F(2) - a(w). It then
follows from Lemma 2 that the radial limit

F“(re") » a(w), asr— 1,foreachw € A.
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Since the probability P(A) > 0, the above limit contradicts Lemma 1(ii). This
concludes that the function F(z) takes a.s. every complex value with at most one
exception and the proof is complete. O

4. Extension. As an immediate consequence of Theorem 1, we obtain the
following theorem of Kahane and Zygmund ([6], page 127, Theorem 1).

THEOREM 2. If Ya’ = co, then F(z) has the recurrence property on D.

Instead of the whole disk D, recently [3], we have extended Theorem 2 to the
following rectifiable subregion of D.

THEOREM 3. If Ya2 = o, then F(z) has the recurrence property on any
subregion R of D, bounded by a rectifiable Jordan curve J such that the measure
mdJ N C>0.

In contrast to Theorem 3, we shall now extend Theorem 1. Here for the
definition of accessibility we refer to [2], page 168.

THEOREM 4. If La2= o and if R is a simply connected subregion of D
whose boundary contains an arc T of C such that every point of T is accessible,
then F(z) takes a.s. every complex value with at most one exception inside R.

ProoF. The method here is the same as in Theorem 1 and we sketch the
details. We first observe from the hypothesis that every point of T is accessible,
so that the endpoints of T can be joined by an arc I'’ contained in R except for
the endpoints. Let S be the region bounded by I and I'’. Then S C R, since the
subregion R is simply connected. Instead of A as defined in Theorem 1, we now
define

Ag = {w: F(z,Z(w)) # a;(w), for z € S}.

Let e be an arbitrary interior point of T and D(e) be an arbitrary disk
with center at e®. Then the relative neighborhood R* = D(e') N S contains a
Jordan region R, whose boundary JJ is rectifiable and consists of an arc of C. It
follows from Theorem 3 that F(z) has the recurrence property on R, and
therefore on R*. Thus, given a complex number a, we can choose a sequence
z, € R* for which F(z,) tends to a a.s. as n = . Let G(2) = 1/(F(z) — a);
then the sequence G(z,) tends to oo as. as n — oo. Therefore by the same
argument as in Theorem 1, there can be constructed a path y terminating either
at e’ or at a point { € J as close to e’ as we please such that on the event Ag,
the function G(2) tends to o along y or equivalently the function F(z) tends to
a along y. Since e is an arbitrary interior point of T, the point { can be
required to lie on T, so that { € C. Let { = e”; then by the same argument as in
Theorem 1, we conclude that

lim F(re) = a on the event Ag.
r-1



1208 J.S. HWANG

Since the probability P(Ag) > 0, the above limit contradicts Lemma 1(ii). This
completes the proof. O

5. Remark. We state two conjectures which would extend Theorems 1
and 4.

CONJECTURE 1. If YaZ2 = oo, then F(2) takes a.s. every complex value.

CONJECTURE 2. If Ya2= oo and if R is a subregion of D, bounded by a
rectifiable Jordan curve J such that the measure mJ N C > 0, then F(z) should
take a.s. every complex value with at most one exception inside R.

Note that the same argument as in Theorem 1 can only give that if F(2)
omits two values a and b, then with a positive probability F(z) tends to a along
a path terminating at a point { € J. The second conjecture would be true if one
could prove that such a { point can always be chosen on J N C.

Finally, we observe that Gaussian Taylor series behave differently than do
ordinary Taylor series. Thus both conjectures fail if we replace F(z) by the
Taylor series

f(z) = Y a,z", where Y a%= oo.

For instance, if p(z) is a Schwarzian triangle function (see Montel [8], Chapter
IT) for which p(z) omits these three values 0, 1, and o0, and u(x) can be required
to be real whenever x is real, then the coefficients a,, of the Taylor series of pu(z)
are real. This function p(2) is analytic in D and omits two finite values 0 and 1.
Furthermore, u(z) can have only radial limits 0, 1, and oo at a countable subset
of C, so that the series Za2 = c0. Thus each conjecture is false for Taylor series.
Meanwhile, this function p(z) shows that both Lemma 1(ii) and Theorem 4 are
no longer true if the Gaussian Taylor series is replaced by Taylor series. Finally,
the radial limits of p(z) diverge almost everywhere, but converge at a countable
dense subset of C. This property explains our remark which followed the
statement of Lemma 1.
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