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ONE-DIMENSIONAL CIRCUIT-SWITCHED NETWORKS

By F. P. KELLY
University of Cambridge

This paper is concerned with the stationary distribution of a one-dimen-
sional circuit-switched network. We show that if arrival rates decay geometri-
cally with distance, then under the stationary distribution the number of
circuits busy on successive links of the network at a fixed point in time is a
Markov chain. When each link of the network has unit capacity we show that
translation invariant arrival rates lead to a stationary distribution which can
be described in terms of an alternating renewal process.

1. Introduction. We begin by describing a stochastic process which can be
envisaged as representing a telephone network or a circuit-switched computer
communication network. There are finitely many links, labelled 2 = 1,2,..., K,
and link k& comprises C, circuits. A subset r C {1,2,..., K} identifies a route.
Calls requesting route r arrive as a Poisson process of rate »,, and as r varies it
indexes independent Poisson streams. A call requesting route r is blocked and
lost if on any link k € r there are no free circuits. Otherwise the call is
connected and simultaneously holds one circuit on each link %2 € r for the
holding period of the call. The call holding period is independent of earlier
arrival times and holding periods; holding periods of calls on route r are
identically distributed with unit mean. Let n,(f) be the number of calls in
progress at time ¢ on route r, let R be the set of possible routes, and let
n(t) = (n(t), r € R). Then the stochastic process (n(t), ¢ > 0) has a unique
stationary distribution and under this distribution 7 (rn) = P{n(t) = n} is given
by

(1.1) g (n) = n € N,

where

NK={nez§: Y n,<C,k -1,2,...,K}
' r: ker

and G is a normalizing constant (the partition function) chosen so that the
distribution (1.1) sums to unity ([1], [2], [4], [6]). Note that = does not depend
upon the distributions of call holding periods. If call holding periods are ex-
ponentially distributed the stochastic process (n(t), ¢ > 0) is Markov.

The classical example of the above model is a telephone network, but the
recent impetus to its study has been provided by developments in local area
networks, multi-processor interconnection architectures, and database structures
(see [5], [8], [9], [10]). In computer communication networks, and increasingly in
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Fic. 1. A one-dimensional network.

telephone networks, the circuits are virtual rather than physical: for example a
fixed proportion of the transmission capacity of a communication channel. The
term “circuit-switched” arises from these application areas, where it is used to
describe systems in which before a request (which may be a call, or a task, or a
customer) is accepted it is first checked that sufficient resources are available to
deal with each stage of the request.

Part of the above model’s attraction is that very many generalizations are
readily incorporated. For example, if calls requesting route r arrive at rate »,/7,.
and have holding periods with mean 7,, then the distribution 7, associated with
the resulting stochastic process is given by the unaltered expression (1.1). For
further generalizations see [4], [6]. The essential features of the model are that a
call makes simultaneous use-of a number of resources and that blocked calls are
lost.

Despite the apparent simplicity of the form (1.1) it is usually difficult to
determine from it quantities of interest such as the mean utilization of a link or
the loss probability on a route. Our aim in this paper is to explore some of the
implications of the form (1.1) when the system represented has an essentially
one-dimensional structure. In Section 2 we suppose that each route r € R is a
set of consecutive integers chosen from {1,2,..., K} and that C,=C, k=
1,2,..., K. One could imagine a cable on which are positioned K + 1 stations
(Figure 1), and that communication between two stations uses a fraction C~! of
the cable’s capacity over the section of cable lying between the two stations. Set

(1.2) = Ap/ L r={i,i+1,i+2,...,Jj},

for A € (0, 00), p € (0,1). Thus calls between stations a distance v apart are
attempted at rate Ap®~ L. Let

(1.3) my= Y n, k=12,...,K,

r: ker

so that m, is the number of circuits occupied on link k. Then we show that
under the stationary distribution (1.1) the sequence (m,, m,,..., my) has the
distribution of an inhomogeneous Markov chain. Further, we exhibit a homoge-
neous stationary Markov chain (x,, k € Z) with state space {0,1,...,C} and
the property that the distribution of (m,, m,,..., mg) is the same as the
conditional distribution of (x,, x,,..., xx) given that x, = x5, , = 0. The distri-
butions involved provide interesting examples of what have been termed quasi-
stationary distributions by Darroch and Seneta [3].
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F1G.2. A single channel network.

In Section 3 we suppose that links are labelled 1,2,..., J, ay, a,,...,a ;
that each link comprises a single circuit; and that a route takes the form
r={a;,i+1,i+2,...,ja;} for0<i<j<dJ. Onecould imagine that station
J is attached to a single channel cable by an auxiliary link a; (Figure 2). Set

(1.4) v=A(j—i), forr={a,i+1,i+2,...,ja),

where A € (0, 0) and f is a bounded nonnegative function, not identically zero.
Thus we have relaxed the assumption that call arrival rates decay geometrically
with distance covered, but have ensured that no station or link is involved in
more than one call. Let m; € {0,1} be the number of circuits occupied on link j,
J=1,2,...,J. Then we show that the distribution of the sequence
(my, my,..., m,) is the same as the conditional distribution of (x,, x,,..., x;)
given that x, = x;,, = 0, where (x,, k € Z) is a stationary alternating renewal
process. The process (x,, k € Z) consists of blocks of consecutive ones alternat-
ing with blocks of consecutive zeros: the lengths of successive blocks of ones have
distribution

(1.5) g(v) =21 - p)_lp"“f(o), v=12,...,
and the lengths of the intervening blocks of zeros have the geometric distribution
(1.6) &(w) =1 -p)“", u=12,..;

here p is the unique solution in the interval (0,1) of the equation

(1.7) (1 =p) =AY p*'f(v).
v=1

The alternating renewal process defined by (1.5), (1.6), and (1.7) has many
interesting features, some of which are briefly indicated in Section 4. For
example, if f(v) =1, v =1,2,..., then the distributions (1.5) and (1.6) are both
geometric with the same parameter p: hence the mean length of a block of ones is
the same as the mean length of a block of zeros whatever the value of the arrival
rate parameter A.

This paper is primarily concerned with systems comprlsmg a finite number of
links. Some of the questions which arise in infinite link systems are described
in [7].
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2. The Markov distribution. Write Z for the one-dimensional integer
lattice. For i < j let

[i; j1=(keZ: i<k <},
and let

R={li;j):i<j,i,jeZ}.
Write Z, for the nonnegative integers. Let Y = Z® with the product topology
and with measurable structure given by the o-algebra of Borel sets. Write

¥ = (3,, r € R) for a typical element of Y. Let 7 be the probability measure on
Y defined by

ny
Vr

(2.1) m(y: y,=n,reR) =[] e —,
reRr’ nr!

for any finite subset R’ C R. Assume that
(2.2) Y v,<ow, keZ

r:ker

If we regard y, as the number of calls on route r then under = the number of

calls on distinct routes are independent Poisson random variables, and condition

(2.2) ensures that the number of calls on each link is finite with probability one.
Let

[i; B+1={[i7]): j =k}
and let

R(k)={[i; k+]:i<k}.
For y € Y define

i k41 Z Yr

re(i; k+]
and
¥(k) = (%, r* € R(R)).

We can regard y;; ;. as the number of calls with left end 7 and right end > &,
and the collection y(k) as giving the left ends of all calls using link k. Let

Y(k) = {y(k): yeY, Y y< oo}-
rteR(k)
Note that Y(k) is countable, and that by condition (2.2)
7(y: y(k) € Y(k)) = 1.

Further, under the probability measure 7, the sequence (y(k), k€ Z) is a
Markov chain. Its transition matrix is determined, in generating function form,
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by the identity

k-1
ylk; k+1+] yli; k+1+]
E(sk+1 H S

y(k))

i=—o0
0
(2.3) = exp{—(l — Spe1) L Vg, j]}
j=k+1
(i k+1]
k-1 T’
x T1 {1—(1—@#’— .
i=-o0 J=kV[i; j]
Next let
(2’4) xk(y) = Z Yrs k € Z:

r: ker

and write x(y) = (x(y), k € Z). Let X = ZZ with the product topology and
with measurable structure given by the o-algebra of Borel sets. Then the
construction (2.4) induces a probability measure ¢ over X given by the natural
relation .

o(A) =n(y: x(y) € A).
Observe that condition (2.2) ensures x, < oo a.s. Under the probability measure
o the sequence (x,, k£ € Z) will not, in general, be a Markov chain. The next
result concerns a special case when it is.

LEMma 2.1. If
(2.5) i = AT i <],
where A € (0, 0), p € (0,1), then
j-1
o(x: xp=my, i<k <)) =P(mi)1:!—[.ﬁ(mk’mk+l), i<},
=i
where p(-, -) is a transition matrix on Z, X Z . with unique invariant probabil-
ity distribution P(-).
Proor. From (2.5)
Z V= A/(1 - "")2:

r: ker

and thus x, has the Poisson distribution
o(x: x, = m) = exp{ ~A/(1 - p)*}[A/(1 = )| "/m!

2 P(m).
Further
k-1 oo
Xp = Z Y= Z Zy[i;j]
r.ker i=—o00 j=Fk
k-1

=‘E iz e+1= E Y-

i=—o00 rt*eR(k)
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This makes explicit the representation of x,, as a function of y(k). Note that, by
(2.5),

Z Vir; 1= }‘/(1 - P)

j=k+1
and
T2 1Pl
éwk+l [i; 7] =n, i< k
j=kY [ j]
Hence, from (2.3),
k-1
E(sxlu-lly(k)) = E| gk k+1+4] ‘ ]._.[ sz k+1+] y(k))
i=—0o0
(2.6) 1

k-
=exp{—(1—s)A/(1 - ®)} . nw 1-(1- s)p,}y[""“]

i=—

= exp{—(1 = §)A/(1 — p)H{1 = (1 = s)u}™.

Thus the distribution of x,,, conditional on y(k) depends on y(k) only through
x,. It follows (see, for example, [11], Chapter IIId) that the sequence (x,, k € Z)
is a Markov chain. From (2.6) we can derive an explicit expression for its
transition matrix,

2.7) ﬁ(u,v)=exp( _A) S (e -

1- 1 w=max{0, u—v}

>\0+w—u

(v+w-—u)’
It follows, and can be checked by an explicit calculation, that B(-) is the unique
invariant probability distribution for the transition matrix 5(-,-). O

We now turn to the finite network described in the Introduction and il-
lustrated in Figure 1. Let

NK={n=(n[,d],0SiSjsK):n[,’J]GZ+,OSi<jSK,

k-1 K
Z Zn[i;j]SC,k=1,2,...,K},
i=0 j=k

and let
MK= {m= (mk’ k=0,1,...,K+ 1): my=mg., =0;
m, € {0,1,...,C}, k=1,2,...,K}.

Thus Ny is the set of possible configurations for the network illustrated in
Figure 1. For n € Ny let

(2.8) my(n)= Y n,, k=01,. ,K+1,

riker
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and let m(n) = (my(n), k=0,1,..., K+ 1). Thus m,(n) is the number of
circuits in use on link % under configuration n. Note that My is the image of Ny
under the mapping n — m defined by (2.8).

Let @ be the projection mapping on X which sends x to (x,, £ =0,1,...,
K +1) and ¥ the projection mapping on Y which sends y to (y, r: rn
{0,1,..., K'} # ¢). Define a probability distribution over Ny by

7(y: ¥(y) = n)
m(y: ¥(y) € Ng)’

. Oy,
i g1

=G_1 N nGNK,

0<i<j<K R j]!

where G is a normalizing constant chosen so that the distribution sums to unity.
Thus 7y is exactly the distribution (1.1) for the network illustrated in Figure 1.
The distribution 7 over Ny induces a distribution o, over My by the natural
relation

og(m) = > g (n), m € M.
n€Ng: m(n)=m
LEMMA 2.2
o(x: ®(x) =m)
o(x: ®(x) € M)’

ox(m) = m € My.

Proor. For m € My
o(x: ®(x) = m)

m(y: ®(x(y)) = m)
m(y: m(¥(y)) = m)
Y w(y:¥(y)=n).

n€Ng: m(n)=m

Further
o(x: ®(x) € M) = n(y: ¥(y) € Ni)
and so the desired result follows from the definition of o; and 7. O
THEOREM 2.3. If
v =AML 0<i<j<K,
then

(i) there exist transition matrices pg_,(-,*), k=0,1,..., K, over
{0,1,..., C)? such that

K
ox(m) = kl:lopK—k(mk’ Myi1), m € My;
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(ii) there exists a transition matrix p(-, ) over {0,1,..., C)? such that for
k=1,2,...
im py_x(u, ) =p(u,v);
K-

ITi_op(my, myy)
(iii) ox(m) = 2571(0,0) L, me M.

PROOF. Define a matrix q(-,-) on {0,1,...,C}? by
(2.9) q(u,v) = p(u,v), u,v<€{0,1,...,C},
where p(-,-) is the transition matrix (2.7) identified in Lemma 2.1. Define
g*(-, -) by matrix multiplication, with q°(+, -) the identity matrix. Define the
matrix px_,(+,-) on {0,1,...,C)* by
K-k
g% *(v,0)
2.10 ) = q(u, )
( ) pr_i(u, ) q(u D)qK K1y, 0)

and observe that px_,(-, ) is a transition matrix. Now by Lemma 2.1

K
o(x: ®(x) = m) = P(mo) TT p(my, my.n)-

Hence for m = (my =0, m;, my,..., mg, mg,, = 0) € My,

o(x: (I)(x) = m) = P(O) k];IOq(mk’ mk+1)

K
= P(O)qK+1(O1O) kl_IopK—k(mk’ mk+1)?

and
o(x: ®(x) € My) = P(0)g¥*%(0,0).
Part (i) now follows from Lemma 2.2.
Since g(-, -) is a primitive nonnegative matrix
(2.11) q’(u,v) ~ e’c(u)d(v), asj— o,
where e is the largest eigenvalue of g(-, -) and c(-) and d(-) are its associated
right and left eigenvectors, normalized so that ¥ c(u)d(u) =1 [12]. Let

g(u,v)c(v)

2.12 ,0) = ———F———

(212) plu,0) = S0
and observe that this defines a transition matrix on {0,1,...,C)? Part (ii) now
follows from (2.10) and (2.11).

Finally, for m = (my =0, m;, my,..., mg, mg,, = 0) € Mg
o (m) - l—[lle(=0q(mk’ mk+1)
K qK“(O,O)

_ I—[lle(=0p(mk’ mk+1)
pE+1(0,0)
by (2.12). O
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Part (i) of Theorem 2.3 shows that under oy the vector m =
(0, m;, m,, ..., mg,0) has the distribution of an inhomogeneous Markov chain.
Let (x,, B € Z) be a homogeneous stationary Markov chain with transition
matrix p(-, ). Then Part (iii) of Theorem 2.3 shows that the conditional
distribution of (x;, x,,..., xg) given that x, = xx,; = 0 is 0.

Note that relations (2.7), (2.9), and (2.12) provide a construction of the matrix
p(+, ). The unique invariant probability distribution for p(-,-) is (e(uw)d(u),
u=0,1,...,C). Darroch and Seneta [3] call this a quasi-stationary distribution:
see [3] for its interpretation in terms of a Markov chain with transition matrix
P(+,+) conditioned to avoid the set of states {C + 1,C + 2,...}.

3. The renewal distribution. Let a;, i € Z, be a set of labels, distinct from
each other and from the set Z. We can regard q; as labelling the auxiliary link
from station i (Figure 2). Let

[5/]={ani+1,i+2,..., 0}

and let

R={[i;jl:i<j,i,jeZ}.
Set
(3.1) v = M7 — 1), 1<],

where A € (0, ) and f is a function {1,2,...} — [0, c0) not identically zero. We
shall assume that

[oe]
(3.2) 1—-p=AY p"*'f(v)
v=1
has a solution p € (0,1) and that
0
(3.3) Y vp*tf(v) < o0.
v=1
Note that (3.2) can have at most one solution p € (0,1), and that both assump-
tions are certainly satisfied when f is bounded above.
Define the geometric distribution

(3.4) glu)=Q0-p)" !, u=12,....

Let

(35) &(0) =M1 -p) 0" H(v), 0=1,2,..

This also defines a distribution, by (3.2). Define p by

(36) 0-rn/p= £ uento)| £ oa(o)
u=1 v=1

Then

l1-p= [1 +A i vp"“l'(v)]_1 >0,

v=1

by (3.4), (3.5), and the assumption (3.3).
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Let X = {0,1)? with the product topology and with measurable structure
given by the o-algebra of Borel sets. Construct a probability measure o on X as
follows. Let

A(T; Uy, UgyeneyUpyq; 01y Dgyeney 0,)

S S
={mxk=m¢+-2(m+v)sk<7+-Z(m+o)+uﬁn

t=1 t=1
s=0,1,...,n;
s s+1
xk=1’7+Z(ut+vt)+us+13k<7+Z(ut"'vt)’
t=1 t=1

s=0,1,...,n— 1}.

ForreZ, n>0,u,ug...,U, Up,,q, U1, Vgy...,0, > 0, set

o(A(T; Uy, Ugy ooy Upyr; 01y Ugyenns U,))

- = p){ Men(u) [ TeCe) ot

This defines a measure o corresponding to a stationary alternating renewal
process: the lengths of successive blocks of ones have distribution (3.5), and the
lengths of the intervening blocks of zeros have the geometric distribution (3.4).
Note that p, given by (3.6), is the stationary probability of a one for this process:

(3.8) p=o(x:x,=1), keZ.

We now turn to the finite network described in the Introduction and il-
lustrated in Figure 2. Let

(3.7)

N(J)={n=(n[i;j],05i<jsJ):n[i;j]=00r1,Osi<jsJ;

J-1 J
Zn[i;j]"' )y n<1,7=01,..,d;
=0 k=j+1
k-1 J
Y X<l k=12..,J),
1=0 j=k

and let
M(J)= {m= (mk,k=0,1,...,J+ 1): my=m,,, =0;
m, € {0,1}, k= 1,2,...,J}.

Then N, is the set of possible configurations for the network illustrated in
Figure 2. For n € N, let

(3.9) my(n)= Y n,, k=0,1,...,d+1,

ri ker
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and let m(n) = (my(n), k=0,1,...,J + 1). Thus my(n) is the number of
circuits in use on link %2 under configuration n. Note that (3.9) defines a
one-to-one correspondence between N ;) and M. Define a probability distribu-
tion 7, over N, by
(3.10) m(n) =G T »y=", neN,

0<i<j<dJ
where G is a normalizing constant, chosen so that the distribution sums to unity.
Thus 7, is the distribution (1.1) for the network of Figure 2 (a network with a
total of K = 2J + 1 links). Let o, be the distribution over M, induced by =,
and the correspondence (3.9). Note that since this correspondence is one-to-one
between N, and M, the distribution 7, is determined by o). Let @ be the
projection mapping on X which sends x to (x,, 2 =0,1,...,J + 1).

THEOREM 3.1.
) = o(x: ®(x) =m)
U(J)(m - U(x: d)(x) (S M(J)) ’

me M,,.

PrOOF. For an element n € N ;) with coordinate n,, ;; = 1 write n — [&; []
for the element n’ € N, with

no =N L7 # [k ],
=0, [ 7] =[k;1].

Then the form (3.10) is determined up to a multiplicative constant by the
requirement that it satisfy the detailed balance condition

(3.11) "(J)(n) = 7T(J)(n - [& l])"[k;l]’
for every n € N, and every [k; [] such that n(, ;; = 1. It remains, therefore, to
show that the proposed form for ¢,,, and hence 7,,, is consistent with (3.11).
Let m = m(n) and write m — [&; [] for m(n — [k; []). From (3.1) and (3.11) it is
thus sufficient to check that
o gy(m) = a,(m - [E; IDAf(R = 1).
But this follows from (3.4), (3.5) and (3.7) since
o.s(m) _ o(x: ®(x) =m)
"(J)(m_ [%;7])  o(x: @(x) =m—[&;1])
(1-p)g(k-1)
= pk—l+1
=Af(k-1). m]

Let (x,, £ € Z) be the stationary alternating renewal process with probability
measure o. Then Theorem 3.1 shows that the conditional distribution of
(x1, x5, ..., x,;) given that x, = x,,, = 01is ¢,,,. Note that for any fixed value of
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J the distribution o, is unaffected by the values of f(v) for v > J; in particular
f(v), v > ¢, could be chosen to ensure that (3.2) has a solution p € (0,1) that
satisfies (3.3). The probability measure ¢ does depend on f(v) for all values of
v > 1. Our development has assumed a function f defined on the entire set
(1,2,...} since this has enabled us to relate the entire family (o), J = 1,2,...)
to a common probability measure, o.

4. Concluding remarks. In Section 3 we assumed that a station could be
involved in at most one call (Figure 2), while in Section 2 we allowed a station to
be the end point of up to 2C calls (Figure 1). These differing assumptions were
made for ease of exposition. If in Section 3 we had allowed a station to be
involved in up to two calls (by increasing the capacity of the auxiliary links in
Figure 2, or omitting them altogether), then very similar results could have been
obtained but with the complication that the associated alternating renewal
process would allow contiguous blocks of ones [the revised geometric distribution
corresponding to (3.4) would have support {0,1,...}]. Similarly, if in Section 2
we had insisted that a station be the end point of at most one call then a
somewhat lengthier development could have established a version of Theorem
2.3 with the matrices px_,(-, -), p(-, *) constructed from (2.10), (2.12), and the
revised matrix

q(u,v) =u(l —p)p* ', u=12,...,Cvo=u-1,

= p¥, u=0,1,...,C; v =u,
=}\u"(1—p,)_1, v=12,...,C—1l;v=u+1,
=0, otherwise.

The work of Lagarias, Odlyzko and Zagier [5] can be viewed as an investigation
of this system under the limiting regime p. — 1. [Note that while g(-, -) degener-
ates under this limit, p(-, -) does not. Note also that while the assumption of [5]
that all realizable configurations are equally likely to occur corresponds to A = 1,
p — 1, their methods extend to the case A # 1.]

Some simplifications arise if in the model of Section 2 we take the limit
K - o, p = 1, A > 0, with K(1 — p) and K 2\ held fixed. This corresponds to
a finite length of cable with a call able to connect any two points on the cable;
the distinction between whether or not a station can be involved in more than
one call disappears. Ziedins [13] has considered this limiting case, investigating
the form of the quasi-stationary distribution and the way in which the probabil-
ity a call is accepted depends upon the distance covered by the call.

We shall conclude by discussing briefly some of the interesting features of the
alternating renewal measure o defined in Section 3. In the model of Section 3 the
probability that a call attempting to cover a distance v is accepted is approxi-
mately (1 — p)p’~': more precisely, if j, J —j = oo, then
(41) Y I[m;=0,i=j,j+1,...,j+0—1]o,(m) > (1-p)°"

meM

Since the offered traffic may to some extent attempt to compensate for this
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exponential decay in acceptance probability, it is of interest to consider a wide
variety of choices for the function f, including examples where f is unbounded.
Recall that p, given by (3.6) and (3.8), is the probability of a one under the
stationary measure o.

EXAMPLE 1. f(v) =v~!, v=1,2,.... Then as the arrival rate parameter A
decreases to zero the solution p to Equation (3.2) increases to one, and p
decreases to zero. Limiting acceptance probabilities, given by (4.1), all increase to
one, as we might expect.

EXAMPLE 2. f(v) =1, v=1,2,.... The solution to (3.2) is p = (1 + AV/?)"},
and the distributions (3.4) and (3.5) are both geometric with parameter p. Every
choice A € (0, o) gives the same value p = 0.5. An increase in A decreases the
limiting acceptance probabilities (4.1) for v > 2, and especially for large values of
v. That p is unaffected by A is perhaps surprising. For the end effects introduced
in obtaining o; from ¢ to be limited it is necessary that J be large in
comparison with A~'/2: provided this is true changes in A will have -very little
influence on E, J)(E;ﬁlm ), the expected utilization of links 1,2,..., J under the
distribution ¢,;,. An algebraically tractable generalization of this example is

f(o)=(v=-1)(v—-2)---(v=1), ov=I1+1,1+2,...,
which leads to the solution p = (I + 1)/(! + 2) whatever the value of A € (0, o).

ExaMPLE 3. f(v)=a"!, v=1,2,..., where a € (1,0). Then as A de-
creases to zero the solution p increases to a~!; but p increases to one, and hence
(1 — p)p*~! eventually decreases to zero for any fixed value of v. It is perhaps
surprising that decreasing the arrival rate parameter A should cause the prob-
ability p to increase. Suppose oJ is large in comparison with (1 — ap)~2: then
under the distribution ¢, the effect of decreasing the arrival rate parameter A
is to let in calls covering great distances and, counter-intuitively, to increase the
expected utilization of links 1,2,..., J.

A variant of the above example shows that it is not always possible to satisfy
(3.2) and (3.3). If

f(o)=v %Y, o0=12,...,

where a € (1, 00) then as A decreases to the critical value

A =a(a-— 1)(0}20-2)_1

the probability p increases to one. For A € (0, A ) Equation (3.2) has no solution
p € (0,1). For A = A, Equation 3.2 has the solution p = a™?, but condition (3.3)
is violated.
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