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EDGE FLUCTUATIONS FOR THE ONE DIMENSIONAL
SUPERCRITICAL CONTACT PROCESS!

BY ANTONIO GALVES AND ERRICO PRESUTTI
Universidade de Sdo Paulo and Universitd di Roma

We consider the one dimensional supercritical contact process with initial
configurations having infinitely many particles to the left of the origin and
only finitely many to its right. Starting from any such configuration, we first
prove that in the limit as time goes to infinity the law of the process, as seen
from the edge, converges to the invariant distribution constructed by Durrett
[12]. We then prove a functional central limit theorem for the fluctuations of
the edge around its average, showing that the corresponding diffusion coeffi-
cient is strictly positive. We finally characterize the space time structure of
the system. In particular we prove that its distribution shifted in space by at
(¢t denotes the time and a the drift of the edge) converges when ¢ goes to
infinity to a }-; mixture of the two extremal invariant measures for the
contact process.

1. Introduction. In this article we study the one dimensional supercritical
contact process, a stochastic process with infinitely many interacting particles
which move on Z, the set of all the integers. We consider initial states with
infinitely many particles to the left of the origin and finitely many to its right.
We first prove that at large times the state of the system approaches some
“definite structure” which, as time increases, “rigidly shifts to the right”: A
steady state propagates from the left to the right with constant speed through
the formerly empty region. The system is a (very schematic and rough) micro-
scopic model for the formation and propagation of one dimensional shock waves,
as we shall see in some more detail in the sequel.

At large times we can distinguish three different space regions: The first two
are semiinfinite intervals which extend to — co and + oo, respectively, while the
third one is the interval which connects the first two.

In the first region the state looks like the nonzero density equilibrium state
for the supercritical contact process, while, in the second it is the empty state.
The third is the interesting region. It describes the “wave front.” We find that
the state there is (close to) a superposition of the two extremal equilibrium
states. The weight of the decomposition ranges from 1 (all the weight to the
nonzero density state) to 0, as one moves from left to right. As the time ¢
increases, the previous picture shifts to the right and, at the same time, the size
of the front wave increases (like #/2). The picture is very similar indeed to that
found by Wick [25] in a zero range model. Our result is a consequence of a very
detailed analysis of the motion of the first particle in the system, the edge, and
of a precise knowledge of the structure of the state as seen from the edge. Such
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questions are interesting by themselves and have been extensively considered
both in the contact process and in several other model systems.

We prove in this paper a functional central limit theorem for the edge process,
thus extending the description given by Durrett [11], who proved a law of large
numbers for the edge. Our result answers Liggett’s problem 6 [21, Chapter 6].

With reference to the state seen from the edge, we answer a problem posed by
Durrett [12]. We prove that the state constructed in [12] is the only stationary
one for the process seen from the edge. We also characterize its domain of
attraction as the set of all configurations with infinitely many particles (to the
left of the edge).

Several questions arise naturally from the analysis of the space time structure
of the contact process as compared to other model systems, as we briefly discuss
in this section. As a first example consider independent asymmetric random
walks having drift & > 0. Assume the initial state has no particles to the right of
the origin, while those to the left have Poisson distribution with density p > 0.
Then, by Doob’s theorem, at any later time the state is a product of Poisson
distributions. As time increases, like in the contact process, we distinguish three
regions. In the first two the state is (approximately) a Poisson point process with
density p and O, respectively. In the intermediate region, in contrast to what
happens in the contact process, the state is again (locally) close to Poisson, its
density varying from p to 0 as one moves from left to right. With time the
picture shifts to the right with speed a (the drift of any of the random walks).

The same thing happens for the one dimensional symmetric simple exclusion
process [9], [14]. The speed in such case is 0, but, again, in the intermediate
region the state is locally (close to) an extremal equilibrium state (the equi-
librium measures for the simple exclusion are Bernoulli). A reason for the
different behavior from the contact process comes from the presence in the latter
of just two extremal equilibrium states, so that it is “ physically” impossible to
connect them smoothly (with other extremal equilibrium states). This is not the
only reason, as shown by the (already mentioned) example due to Wick [25],
where the equilibrium states are parametrized by their densities which can take
any nonnegative value. Yet, in the front wave, the state is a superposition of two
extremal ones, just as in the contact process. We believe that this happens also in
the asymmetric simple exclusion and zero range processes which exhibit shock
wave phenomena (cf. [1], [2], [4] and [23] for the simple exclusion and [3] for the
zero range; the result in the latter case has been recently extended by E. Andjel
and M. E. Vares [in preparation]).

The analogy with physical models suggests that the-occurrence of such
phenomena in a model system where shocks are present should be connected to
the following fact: There should be an invariant state seen from some suitably
defined tagged particle, which, far from the tagged particle, to its right and left,
is close, respectively, to two mutually distinct extremal invariant states. These
latter states would then be the states before and after the shock. The drift of the
tagged particle should be equal to the speed of the shock, while the fluctuations
should determine the weights of the mixture.
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The two drastically distinct behaviors observed in the previous models are
evident also in apparently different situations. Consider the evolution of the
symmetric exclusion process in a large but finite volume, with annihilation of
particles at the boundaries. Start with all sites occupied. Then the state of the
system changes in a smooth “deterministic” way toward the empty configura-
tion, as easily can be seen. At the other extreme is the supercritical contact
process. Assume the process is restricted to some finite interval F, so that its
only invariant measure has support on the empty configuration. Assume, as
before, that initially all sites in F are occupied. In the infinite volume case the
process has a nonzero density invariant state, and actually also in the finite
interval F it will remain for a very long time (long according to the size of F') in
an apparently stable (in fact metastable) state until a sudden breakdown occurs.
The process then moves abruptly toward the stable state and all particles die (cf.
[5] and [24]).

The preceding phenomena are certainly interrelated, but a clear understand-
ing of their precise connections still seems an open, though interesting, question.

This paper is organized as follows: Basic definitions and results can be found
in Section 2, while the proofs are given in Sections 3 and 4.

2. Basic definitions and results. The contact process has been extensively
studied since Harris’ papers [16], [17], so we will go very rapidly through the
basic definitions. We refer to [12], [15] and [21] for details.

The basic one dimensional contact process describes the time evolution of a
system of particles in Z, the set of all integers. Each site in Z is either empty or
occupied (by one single particle). Each particle either dies, after an exponential
time of mean 1, or it tries to create a new particle at one of its two nearest
neighbor sites, after the first out of two (one for each site) independent exponen-
tial times of mean A~!, A > 0. If the position chosen for the new particle is

“already occupied, then the creation is not allowed. All the exponential random
times so far introduced are mutually independent.

Graphical representation of the contact process. The contact process can be
constructed with the help of a directed percolation structure on Z X R, in
the following way: For x in Z let {U&D: p> 1}, {US*D: n>1) and

{U 7. n>1} be mutually independent Poisson point processes in R, with
intensities A, A and 1, respectively. We suppose that the Poisson processes
corresponding to different values of x are also mutually independent and we
denote by (£, #, P) the probability space where all such Poisson processes are
defined. For 0 < s < ¢, &/}, ,1 denotes the s-algebra of all events in the preceding
Poisson processes which refer to the time interval [s, £]. All the versions of the
contact process in this paper will always be defined in (2, <7, P).

We shall draw arrows and crosses on Z X R_. An arrow directed from x to
x + 1at time ¢ lndlcates that there exists n such that U™ **D = ¢, while a cross

at x corresponds to U,, = t, for some n. Arrows indicate attempts to create new
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particles, while crosses are death times for particles. Arrows are effective if they
join an occupied site to an empty one, while a cross annihilates a particle if it
appears at an occupied site.

Fix a configuration of particles at time 0 and a point in Q. We shall then say
that a particle is at x at time ¢ if it is possible to connect (x, ) to some (y,0) in
such a way that (1) the path from (,0) to (x, £) moves vertically on Z X R +
and it can only turn following the arrows (such turns are allowed, not com-
pulsory), (2) the path never meets a cross and (3) there is a particle at (y,0).
More precisely we pose the following:

DEFINITION. Given s and ¢t in R, s <¢, x and y in Z and w in © we say
that there is a w-path from (x, s) to (y, t) and write (x, s) = (y, t) if there is a

ﬁnitg sequence of points x, Xipeees X with xo=x, x, =y and |x; — x;,,| = 1,
for i =0,..., k — 1, and there are integers n,,..., n, such that
s < Un(lxmxl)(w) < e < Un(:lz—lyxlc)(w) <t

and for no j and m,

+
s< Uy <UH™,
+
Ugni(w) < Ug(e) < U5 (w),
+
Un(::k_hJ’)(w) < U{n < t.

The contact process takes value on {0,1}* (the configuration space). Given a
configuration 7, two times s < ¢ and a point w in 2, we define the configuration
£ 5)(w) as follows: For any x in Z, £™*)(w, x) = 1 if and only if thereis y in Z
such that #(y) = 1 and (y, s) =, (x, t). For s = 0 we simply write £7 in place of
£ %) and if n has only one particle which is at a [7(x) = 1 if and only if x = a],
then we simply write £{* ). The process (£7), . , is the contact process starting at
time zero from the configuration n. We will use the following:

NoTATION.

1. Given a configuration 7,

Il = X n(x),

xeZ
r(n) =sup{x € Z: n(x) =1},
I(n) =inf{x € Z: n(x) =1}.
E = {n € (0,1} r(n) < oo, |n| = o0}.

2.
3. E={ne€E: r(n)=0}. _
4. S is the map from E to E such that Sy(x) = n(x + r(n)).

There is a critical value of A which we denote by A*. For A < A* there is only
one invariant measure &, i.e., the Dirac measure on the zero configuration. For
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A > A* there are two extremal states, §, and p. The latter has support on
configurations with some positive density which depends on A. For this and most
facts about the contact process we will use, see [21, Chapter 6].

Durrett [12] has recently proved that there is a probability ji on E invariant
for the process S¢}, i.e., the process seen by the edge. We extend this result by
proving:

THEOREM 1. For any 7 in E, the process (S£}),. , converges in law, when
t — + o0, to fi.

As a consequence i is the unique invariant measure for the process seen from
the edge and its domain of attraction is the whole E. Let % be such that
n(x) = 1 if and only if x < 0. Let 7, = r(¢]). Let a > 0 be the a.s. limit of ¢ 'F,
as t = + oo (the existence of such limit was proved by Durrett [11].

We have the following result:

THEOREM 2. Let 1 be any configuration in E. Then the process t € R, —
e[r(£7-2,) — ae™%t] converges in law, when & goes to zero, to a Brownian motion
B, with strictly positive diffusion coefficient o2, and o? is independent of 7.

The preceding result answers problem 6 of [21, Chapter 6]. To the left and to
the right of the region where the edge is likely to be, the state is close to p and
d,, respectively. The next result concerns the structure of the process in the
region where the edge is likely to be. We first need the following:

NotATION. Given x in Z and a configuration 7, let n — x be the configura-
tion 7 shifted to the left by x, i.e., (n — x)(¥) = 9(y + x).

We then prove the following theorem:

THEOREM 3. Let T, be any monotone positive function such that
lim, T, = + o0 and lim,_, ¢T, = 0. Let t > 0, r € R and define the empirical

e—=0"e¢

measure A (t, r) so that for any cylinder function f,
At r)(f)= T;lfe;zHT’dsf(gZ' — [ae 2t + e 'r]).
£ %t

Then A (t, r) converges weakly when & goes to zero to the measure
P(B,<r)u+ P(B,>r)é,,

where (B,),. , is the Brownian motion starting at 0 and with diffusion coeffi-
cient a2 > 0 obtained in Theorem 2.

3. Proof of Theorem 1 and that the increments of the edge are a-mix-
ing. The proofs of Theorems 1, 2 and 3 are based on the good “mixing”
properties of the time evolution. Mixing originates from the following mecha-
nism: Suppose that at least one of the descendants of the particle which is the
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edge at some time ¢* remains alive for ever, namely assume that |£{"*¢")| # 0
for all ¢ > t*. Since we are considering the nearest neighbor one dimensional
contact process, the increments of the edge after ¢* will not (as we will show)
depend on what happened before ¢*. We then need to prove that t* < o as.,
starting from any configuration n in E.

The crucial point is that the event {|£{"=»®)| # 0} for all ¢ > s is independent
of ({7, t < s} for any 7 in E, due to the Poisson structure of the process. After
such a remark we observe that since the contact process is supercritical, then the
event {|£)] # 0, for all ¢ > 0} has positive probability. Therefore, it will occur
a.s. at some time. Such arguments can be made rigorous, as we shall see in this
section, and they will enable us to prove that the increments of the edge are
a-mixing, with rapidly decaying coefficient.

The invariance principle follows then from general theorems as discussed in
Section 4. The proof that the diffusion coefficient is strictly positive requires
some ad hoc considerations.

The independence property of the increments of the edge in the sense
previously discussed is one of the crucial points in our proof. It comes out
automatically in the following realization of the process, which, as usual, is
framed in the basic (2, <7, P).

Given u > 0,let £ bea positive integer and 7 a configuration in E. We define,
for ¢ > ku, the random variable £ % with values in E as follows:

@) £t =
(i) If nu < t < (n+ l)u, with n > k, then £m*® = gS6mu) 4 1 (£) where

§ g(n, ku)

When k = 0, we just write £ instead of £, For configurations 7 such that
n(x) = 1 if and only if x = a, we simply write £ ),

NotatioN. For any k and u as before let gk = Gk (£ s the
process seen from the edge.

The fact that (f}', t > 0) is really a version of the contact process starting
from 71, where 7 is in E, follows immediately from the translation invariance and
independence in disjoint sets property of the Poisson point process. There are
two quite obvious features in the construction which will be basic in the sequel.

1. Given any nonnegative integer &, the event {|£**¥)| # 0} is measurable with
respect to the sub-o-algebra s/, ,; C & (generated by all the Poisson events
in ZXJ[ku,t]). As a consequence, it is independent of any event in & ;).

2. Assume that for some w in ©, & > 0, ¢ > ku, it happens that | *¥)(w)| # 0;
then, for any 7 in E, £l(w, x) = £*%)(w, x) for all x such that I(£0#») <
x<0.

Notice that feature 1 is just the same as stating that for any 7 in E and % > 0,
the event N

{Iggrm).kuq # 0} with ¢ > ku
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is measurable on the o-algebra [, ,;. Observe that this is not true for the
variable S£}, i.e., for the usual “basic” realization of the edge process, as done in
[15], [21] and in our Section 2.

Property 1 is a trivial consequence of the definition of the process £,, while 2 is
based on the nearest neighbor nature of the interaction. It is proven just like its
analog for the basic contact process: At any time ¢, no particle to the left of
I(£®*¥9) can be responsible for the birth of one to its right because (by
definition) there is a particle in I(£*) [we are neglecting events of zero
probability, like for instance the fact that the particle at I(£{*%**)) dies and just
at the same time a particle at I(£{>*9) — 1 creates a particle to its right...].

Next we introduce the set A, , as follows. Given a negative integer y and
t > 0 we set

Ay,,= U {Io*) # 0and I(£:49) <y},

k<[u't]
where [a] is the integer part of a. Then for any cylinder set B in E defined by a
subset of sites contained in {y,..., —1,0} and for any configuration 7 in E we

have, by property 2,
|&(B) — P(£} € B), =’ [i(d5)P(& = B) - P(&1 < B)

< fﬁ(d{)P({ﬁ(x) # £7(x) for some x such thaty < x < 0)

< P(AS,,),

where i is the invariant probability measure whose existence was shown by
Durrett [12]. Therefore, Theorem 1 will follow once we show that P(A, ;)
converges to 1 when ¢ goes to infinity. We will actually prove something
stronger, which implies the a-mixing property for the process r,.

For y and ¢ as before, let

r,,= U ("% #0forall s> kuand I(£0#9) < y forall s > t}.

Y5t
k<[u't]

LEMMA 4. Fix any t > 0, let u = t*/* and consider then the process (£.) for
such value of u. Then

P(T¢,) < ae™®,
where a and b are positive constants which only depend on y and .

ProorF. In what follows a and b are positive constants whose values will
change from line to line. Let

7Ok — inf{s > ku: [£0*9) = 0},

K =min{k =0,1,2,...: 7@*) > (k + 1)u}.
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Then
P(Ty,) < P(K = [u7%])
1)+, I PE=BIP(k+Du<rom < o)
+P('r(°’k”) = o0, l(fgo”“‘)) > y for some s > t)]
Now, by the translation invariance and independence in disjoint sets property of
the Poisson point process,
P(K > [u't]) = P(r©9 < u)["_I'] < P(7©9 < oo)["_l‘] =(1- p)["-I'].
A theorem by Durrett and Griffeath [13] provides the second upper bound,
P((k+1)u < 10%) < ) < ge~b¥,

where a and b are positive constants which depend only on A (cf. [21, Chapter 6,
Theorem 3.23)).
For the remaining terms in the r.h.s. of (3.1), we write

(3.9) P('r(o’k“) = o0, l(g"g”k")) > y for some s > t)

< P(If?l >1,Ve> 0, r(£2) - 1(£2) < |y| for some s > u).
Notice that
{r(&) - (&) <1} < {(H(£) < 1) U (U£) 25},
so that
rhs. of (3.2) < 2P(1€) > 1,V¢ > 0; r(£2) < |y| for some s > u)
< 2P(F, < |y| for some s > u),

where 7, = r(¢]), 7 being the configuration where all sites x < 0 are occupied
while all the others are empty.

At this point we use an estimate due to Durrett [12, Section 12, page 1031],
namely that

(3.3a) P(7, < (a—8)t) < ae™®,

where ¢ and 8 are any positive numbers and a and b depend only on & and A (cf.
[21, Chapter 6, Corollary 3.22]). The same inequality (with different a and b)
holds for all s > ¢, namely,

(3.3b) P(infs™'7, < o - 23) < ae?,
s>t

Proor oF (3.3b). We first notice that the above inequality holds if s is
restricted to be an integer (> ¢). Therefore,

P(infs 17, < a - 28) < ae* + P|infs'F, < a — 28, inf s, > a — 8.
s>t s>t sezi
S
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Since the last term is exponentially small in 8¢, (3.3b) is proven. O

We now choose 8 = a/4. For ¢ large enough u = /2 > 2|y|/a, hence
(3.4) P(7, < |y| for some s > u) < P( inf s”IF, < a/2) < ae %
s=>u

We have so far proven an upper bound of the form ae™%* for each term
appearing in the r.h.s. of (3.1). Lemma 4 is therefore proven. O

PROOF THAT r, HAS a-MIXING INCREMENTS. For notational simplicity we
restrict ourselves to discrete times. (It is easy to see that the CLT for discrete
times implies the corresponding result for r,.) Call

Q=ExQ.
For every (1, w) € § and n > 0, we define

X,(n, 0) = r(£1,1(0)) = r(£1(«)).
Let
Z,=o(X,:n<m), Fm"=0d(X,:n=m),

be the o-algebras of the past and the future at time m, respectively, of the
process X,. Finally, we denote by P; the direct product of P and {i. F; is
therefore the distribution of the process starting from fi, the stationary distribu-
tion for the edge. We now have the following proposition:

PROPOSITION 5. For everym > 0 andn > m,
sup*|P(F N G) — P(F)P(G)| < aexp(—b(n -m-1)"?

where the sup* is over all sets F and G which are, respectively, in %, and ™.
a and b are positive constants which depend only on \.

ProOOF. Let f and g be two measurable functions from Z"N to [0, 1] such that
f depends only on the coordinates x,,...,x, and g only on x,,x,, 4,..., 1
being larger than m. We need to show that there are a and b positive so that

|E;[F(X.)g(X)] — E;[ {(X)]E;[8(X)]| < aexp(-b(n — m — 1)/%)

© ku) —

for any f and g as before. For n > ku, in the set {7 oo} we define

X = r(8949) - r(69%9).

Notice that in the set {r©®*% = o0}, the equality X,(1, @) = X(w) holds for all
n > ku and for all n (cf. property 2 at the beginning of this section). On the
other hand, f(X.) only depends on the initial configuration and on the o-algebra
(o, m]- Therefore, by property 1 (stated at the beginning of this section) we
have, for m < ku < n,

(35) E;[f(X)g(X.),7@* = o] = E;[ f(X.)] E;[8(X.), 7®* = e0].
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We now define the random variable
K, =inf(k > [u"(m + 1)]: r®*¥ > (k + 1)u}.
From (3.5) we then get
E,z[ f(X)g(X)]
= Eii[ f(x)] Y E,;[g(X.), K, =k, 10k = ]

[u" (m+D)]<k<[u"'n]

y E;[f(X)g(X), K, =k, 7©@* < ]

(e (m+D)]<k<[u"'n]
+E;[ /(X)g(X), K, > [u7'n]].

We rewrite (3.6) with E;[ f(X)] in place of f(X). We subtract one from the
other and we get

|E:[ (X)g(X)] - E;[ {(X)] E;[e(X)]|
<2P(K, > [u‘ln]) +2P(u < 709 < )

(3.6)

<2(1- p)["_l("_m_l)] + ae~ %
It is enough to take u = (n — m — 1)/2 to conclude the proof. O
4. Proofs of Theorems 2 and 3. Hereafter in this section r, will denote the
random variable in ({2, P;) defined as
"t("?,"«’) =r(£t(w)), (77,‘0) EQ:=E~XQ,
where £, is the contact process as realized in Section 3 (we will specify the value

of u when needed).

THEOREM 6. The process {e[r,-2, — Ey(r,-2,)], t > 0} converges in law, as
e — 0, to a Brownian motion with strictly positive diffusion coefficient o2,

ProOF. Since i is the invariant probability for the process as seen from the
edge, then the increments of r, are stationary. Moreover, Proposition 5 assures
that its a-mixing coefficient decreases as exp(— bn'/?), b > 0. Therefore, classical
results on the invariance principle will imply convergence to a Brownian motion
once we show that for some § > 2

(4.1) Ey(r, - Ey(r)P) < o
(ct. [18], [6], [10]). This is done in the next lemma.

LEMMA 7. For every 8 > 0 the inequality (4.1) holds.

Proor. We will prove that there are a and b positive so that for any d > 0,

Bl > d) < ae~t”,
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from which the lemma follows. For any d (large enough) set ¢ = d/2\. Divide
the time interval [0, ¢] into subintervals of length u, where u is the integer such
that

u<t<(u+1)>

We consider for such u the realization £} of the contact process defined in
Section 3. Let K be the stopping time introduced in the proof of Lemma 4. Then

P,1(|"1| >d) = Rl(lrt — 14 >d)
(4.2) u-2
< Y P(K=Fk,r,—r,_,|>d)+ P(K>u-2).
k=0
As in the proof of Lemma 4, we have that

P(K>u-2<(1-p)""<(1-p)"" " <ae b

since t = d/2\. For each of the other terms in the r.hs. of (4.2) we write
(k<u-2)

Pﬂ(K =k, |r,—r_,>d)
< P((k+1)u < 7@" < o)

+Py( 7Ok = oo; r(f(o ku)

IA

) < r(£9,%») for some s > (k + 1)u)
+ Py ) = r(£54) = 41
(7(0 ku) _ 0; r(é(o ku)) r( 20 ku)) %t )
(1-(0 k) = o0 p(£0F) > p(£050) for all s > (k + 1)u;
r(£0.k0) — p(£0,0) < 2\

\r,—r,_i| > d).

P.r© ku) — ( (0 ku)

v

(4.3)

fors=t—1land s = ¢

The last term vanishes because both r, and r,_, are in

[r(£8:4), r(€04) + 3e];

hence, |r, — r,_,;| < 2tA = 3d < d. The first and second terms in the r.h.s. of (4.3)
are both bounded by ae ™% [cf. the proof of Lemma 4 for the first one and (3.3b)
for the second one]. The third and fourth terms are bounded by the probability
of the sa;ne events in the contact process with no deaths. We again get a bound
like ae %%

Since the number of terms in the sum in (4.2) grows like d'/2, the lemma is
proved. O

So far we know that &[r,-2, — Ey(r,-2,)] converges in law when & goes to zero
to a Brownian motion. The diffusion coefficient however might be zero and the
Brownian motion degenerate. In several cases this turns out to be a very delicate
point (cf. for instance [7], [8], [19] and [20]).
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The proof that
(4.4) o = lim sTE(Ir, — Ey(r,)2) > 0

is in our case based on the following strategy. We will fix suitably many of the
increments of the edge and consider the remaining ones as variable. In such a
way we “decrease” the diffusion. The increments which have not been fixed are
chosen so that they are mutually independent, after conditioning on the others.
Hence it is easy to compute the corresponding diffusion coefficient, which turns
out to be positive. To implement the preceding strategy we introduce a measura-
ble partition = on the space & (cf. [22, Section 3]). The conditional law of r,onw
will be equal to the law of a sum of i.i.d. random variables (plus a constant which
depends on the fixed atom a of #). The number of such i.i.d. variables also
depends on the atom a; their law is however independent of a.

In order to define the partition = we realize the contact process as in Section
3, choosing u = 1. We then introduce an increasing sequence of positive integer
random times ¢,: € > N, n =0,1,..., as follows. For any w in £,

o .
ti(w) = min{t =1,2...: X L¢<tpwy=t+n = O and 7O D(w) = 00},
k=1

o0
tpi(w) = min{t eEN:t>1¢,, ) L <0pwy=t+n = O and 7@ (w) = +°°}'
k=1
Notice that for any n in E the increments of r(n), for ¢ in [¢,,¢, + 1],
n=1,2..., are independent of £;1n. Moreover r(n) = r(§%&*D) for all
t>t, =1
The partition « of {2 is defined so that (n, w) and (7’, w’) are in the same atom
a of « if and only if the following three conditions are fulfilled:
1. n =17
2. t(w) = t,(w) for all n > 1. [We shall therefore write ¢, for ¢,(w) = t,(w’) in
the following text.]
3. r(myw) — 1, 14y @) =10, 0") — 1, (W, ") for all ¢ in [¢, +1,¢,,,], for
all n > 1.
Therefore, in each atom a we have
N,
rn=K(a)+ Y d,+ D,
n=1
where
d,= Ny+1— Ty

o0
N, = Z L <ty
k=1

o0
D, = )y l(t—lstkst}(rt - rt,,)
k=1

and K,(a) is a term which only depends on a (as well as N,).
Note that after conditioning on 7 the event {7®%*V(w) = 00} for k < N,
becomes, modulo zero, the same as {7 %*Y(w) > #,,; — (¢ + 1)}. As a conse-
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quence, conditioned on , the+increments d,, n>1, are iid.; they have the

same law as r(f{’ ), given that U? > 1. They are also independent of K,, N, and
D,. From the preceding remarks we get that

N,
Eﬁ((rt - st)2|‘77) = Eﬂ{ §1 [dn - Eﬁ(dn|‘77)]2|‘77}

(4.5)
+E{[R, - Ey(R7)]’|7},
where
s, = E;(r)m).
Since

Eﬁ{[rt - Eﬁ(rt)]2} = Eﬂ{Eﬁ[(rt - Eﬁ("t))2|‘77']}

the proof of (4.4) will be concluded once we show that

N,
R _ 2
(4.6) tlln;t lE,-‘{Eﬁ[ El(d,, - Eﬁ(dnlw)) |w]} > 0.
n—
It is, therefore, enough to show that there exists 8 > 0, sufficiently small, such
that

(4.7) P(N, = [Bt]) > 3.
Obviously
P(N, > [tB]) = P(tpy < t).
Therefore, using the Chebyshev inequality, we get
P(trp > t) < t7E(tp,)-
Since
t'E(tipy) = [BE1E(t,)¢" = [ Btle(tp) ™",
this concludes the proof of (4.4). O

Proor orF THEOREM 2. We use again the realization of the contact process
described in Section 3. We set

r(n,w) = "(Q(“’))

for 7 in E and w in Q. We have shown during the proof of Proposition 5 that
given any two configurations 7 and 7’ in E, there is a time T(%, v’) which is a.s.
finite w.r.t. P and such that the increments of r,(7, w) and of r(7’, w) are the
same for ¢ > T(n,n’). On the other hand, the value of r(n, w) — r(v’,w) at
t= T(n,7n’) is also a.s. finite. Hence, the limiting Brownian motions starting
from 1 and 1’ have the same law which is the same as that obtained in Theorem
6. The proof of Theorem 2 is therefore completed. O

ProoF oF THEOREM 3. OQur argument adapts Wick’s proof [25] to our
context. Let 1 be the configuration where all sites are occupied. From the very
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construction of the contact process described in Section 2, we know that for
almost all w in Q and for all ¢ > 0,

(4.8) £/(w, x) = £}, x)
holds for all x < r(w), where 7, = r(£]) (cf. [21, Chapter 6, Theorem 2.2]). We
also know that if F is a finite subset of Z and f the function defined by

(4.9) f= l;[Fn(x),

then, for any § > 0,

(410)  Jim supP{‘T-l [ Tast(g) - f duf‘ >a} ~o.
o ¢>0

(For details see [21] or [15]).

Theorem 3 is a consequence of (4.8), (4.10) and Theorem 2, as we are going to
show. .

Given t > 0, z an integer, 7, > 0 and a finite subset F of Z, let

Cf = {fs - [8_2at + s_lz] < a, for all s in [E_zt’ E—Zt + T‘E] },
Cs = {,-.s —[e2at + e %2] > b, forall sin [s"zt, et + Ts]}’

where @ = min F and b = max F. From (4.8) [cf. (4.9) for notation] we get

E[A(t, 2)(f) - [@®)P(C}) - E[T“ [ masi(el - ); Cef]

-2

(4.11)
<1-P(C;n C3),
where y = [ae™ ¢ + ¢~ '2] and 0 is the zero configuration.

Now by (4.10) and the invariance by spatial shifts of the law of £!, by letting
T, > oo when ¢ — 0, we get

BT [ as(g - [de~2 + e csf - [ du 1P(Cs)

e 2t

lim = 0.

e—0

Finally by Theorem 2, if 7T, is such that €T, — 0, when & goes to zero, then
lin(l)P(Cf) =P(B, < z2), linz)P(C;) = P(B,> 2)

and the r.h.s. of (4.10) vanishes when & goes to zero.
This concludes the proof of Theorem 3. I
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