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RANDOM FIELDS!
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Consider a binary Markov random field whose neighbor structure is
specified by a countable graph with nodes of uniformly bounded degree.
Under a minimal assumption we prove a decomposition theorem to the effect
that such a Markov random field can be represented as the nodewise modulo
2 sum of two independent binary random fields, one of which is white binary
noise of positive weight. Said decomposition provides the information theo-
rist with an exact expression for the per-site rate-distortion function of the
random field over an interval of distortions not exceeding this weight. We
mention possible implications for communication theory, probability theory
and statistical physics.

1. Introduction. Let X = (X;: i € S) denote a random process such that
each X; takes values in {0,1} and S is a countably infinite set. Given d with
0 < d < 0.5, there may exist a representation of X of the form

(1.1) X=Yo U,

where Y @ U represents the componentwise modulo 2 sum of Y and U, where Y
and U are independent, where the components of U are mutually independent,
and where P[U; = 1] = d for each i.

Our main result is Theorem 1 of Section 3. It says that, if X is a Markov
random field, or equivalently a nearest neighbor Gibbs field, with a uniformly
bounded number of neighbors, then under a minimal assumption a representa-
tion of the form (1.1) exists for all d sufficiently small. (An enlargement of the
probability space may also be needed.) To lead up to this result, we first study
similar representations for random vectors in Section 2.

In Section 4 we elucidate the connection between representations of the form
(1.1) and the rate-distortion functions of information theory. We show that for a
range of sufficiently small distortions the exact expression for the rate-distortion
function of a stationary Markov random field depends on the joint statistics
solely through the field’s entropy density. We also mention possible implications
for communication theory, probability theory and statistical physics.

2. Bernoulli extraction from n-vectors. Let mx be a probability distribu-
tion on {0,1}*. We say that D = (D,,..., D,) is extractable from 7wy if the
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DECOMPOSITION THEOREM FOR MARKOV FIELDS 1113

following is true. There are random n-vectors X, Y and U with binary coordi-
nates such that X has distribution 7y,

X=YoU,
Y,U,,..., U, are mutually independent and

By conditioning on Y, we obtain the following expression for 7y in terms of the
distribution 7y of Y:

(2.1) mx(x) = 2 Tn(x,y)7x(y),
where ’

(22) To(x,3) = [t x %)
and

_ l_DL D,: .’
N D l—Di.

1

tp(0,0) t5(0,1)

P [tp,(l,O) tp(1,1)

We can view T as a 2" X 2" matrix. Equation (2.1) can be rewritten as
(2.3) 7x = TpTy,

and (2.2) means that Ty, is the Kronecker product of the n 2 X 2 matrices
tps-ees tp.

LEMMA 1. Suppose that 0 < D; < § for 1 <i < n. Then D is extractable
from @y if and only if the vector TD frrx has nonnegative entries.

ProoF. The inverse Ty! exists, for it is the Kronecker product of ¢, Derer Dl
and the inverse
1 1-D;, -D:
(24) = ——— ! / ]
| ' (1-p)y-p| D 1-D

exists for each j. If D is extractable from wy, then by (2.3), Tp'7y is equal to
Ty, S0 it has nonnegative entries. On the other hand, if v defined by v = TD Tx
has nonnegatlve entries, it must be a probability distribution since each ¢5’, ! and
hence T, has columns that sum to 1. Thus, 7y = Tyv for some probability
distribution v, which implies that D is extractable from 7yx. O

LEMMA 2. Suppose X = (V,,V,) where V, and V, are independent. If D, is
extractable from wy for i = 1,2, then (D,,D,) is extractable from 7.

Proor. Straightforward. O

Let X, = (X,,..., X;) and X, = (X, ,,..., X,,), where j € {1,..., n}. Define
D, =(Dy,..., D), Dy = (D, y,-.. D)andD (D, Dy).
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LeEMMA 3. If D, = 0, then D is extractable from my if and only if, for every
x, € {0,1}/ satzsfymg 7x(X1) > 0, D, is extractable from my x (- |x,).

Proor. Since Tp! = I,, X Tp,, where I, is the m-dimensional identity
matrix, we have

Tp'mx = 77'xlTl52177x2|x,’
which makes the validity of the lemma transparent. O

LeMMA 4. Suppose X = (V,, W, V,) with V, and V, conditionally indepen-
dent given W. If both (D,,0,0) and (0,0,D,) are extractable from my, then
(D,,0,D,) is extractable from wy.

Proor. Since (D,,0,0) is extractable from =y, (D,,0) is extractable from
Ty, w- It follows from Lemma 3 that D, is extractable from Ty, w(|w) for all w

with 7y (w) > 0. Similarly, D, is extractable from Ty, w(:|w) for all w with
Tw(w) > 0. Since V, and V, are conditionally independent given W, it follows
from Lemma 2 that (D,,D,) is extractable from Ty, vyw(*,* |W) for all w with

Tw(W) > 0. By applying Lemma 3 again, we conclude that (D,,0,D,) is extract-
able from #y. O

LEMMA 5. Given D’ and D” in [0,2)", let D denote the vector with
components ’
Dl = Dl'(l - Di”) + (]. - Dl!)Di,/’ 1 < i S n.

(This is especially simple if for each i either D! =0 or D} =0.) Then D is
extractable from = if and only if D" is extractable from = and D’ is extractable
from Tgla.

Proor. It is not hard to check that T, = TD Tp/, which implies that
Tp'm = ToH(Tpin).

Obviously the vector on the right-hand side has nonnegative components if and
only if the vector on the left-hand side does. Invoking Lemma 1 completes the
proof. O

LEMMA 6. Suppose that 0 <8,<} for each i and that (8,,0,...,0),
©, 8,,0,...,0),...,(0,...,0,8,) are each extractable from w. Let D =
(Dy,..., D,), where

D;=(1-(1-268)%)/2

for some nonnegative t,,...,t, with t, + --- +t, < 1. Then D is extractable
from .
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ProoF. By Lemma 1 we need check only that Tp'7 has positive entries, i.e.,
that for each y € {0,1}", the sum

(2.5) LTy, x)7(x)

is nonnegative. Define
r,;=Dy/(1 - D)

and introduce the change of variable x =y ® n. The sum in (2.5) may be
rewritten as .

(Zotv 0 WIT(-)"}T1G - D).

Let
s;=8,/(1-9)

and e; = (0,...,0,1,0,...,0) with ith coordinate equal to 1. Next, introduce the
set G, compnsed of real 2k-tuples of the form

a=(a(uy,...,u), u;€ {0,1) forl1 <i<k)

according to the following prescription in which a(x) = a(x,..., x}):

& a(noe) 1 .
G,={aeR¥ a(0)=1lands;< ————< —forl<i<kand n€{0,1}"}.
a(m) 8;
Then define
Ly= min Ya(n) [T(-r)",
aeGh n i<k
U, = max Ya(n) [T(-r)"
acG, o i<k
and

0k = Lk/Uk'

As a function of n, 7(y ® n)/7(y) is in G,,, so it will suffice to show that L, > 0,
or equivalently, that 6, > 0. We shall accomplish this by showing that 6, > 0 for
every k < n.

We can, and do, assume without loss of generality that s, > s, > --- > s,,.
The relationship between D, and §; can be reexpressed as r; = p(s;, t;), where

B 1+s)-@1-s)
p(s,t)—(1+s)t+(1_s)t, 0<s<l.

Defining r * r’ by

rxr’'=(r+r)/(1+rmr’),
we readily verify that
(2.6a) p(s,t)*p(s,t’) =p(s,t+¢).
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Also note for future reference that

(2.6b) p(s,—t) = —p(s, t).

Since p(s, t) > 0 for ¢t > 0, Lemma 6 will be established once we prove the
following claim.

CramM. Forl<k<n,
(2.7) 0k 2 p(sk,l - (tl + A +tk))/sk.

To start the induction proof, we define s, = U, = L, = 6, = 1 so that (2.7) is
true for & = 0. Suppose now that (2.7) is true for some %k with 0 < & < n.

For a € G, ,, and x € {0,1}", let a(x) denote the component of a indexed by
(%4,...5%p41) Then

Ya(n) II (—r,-)"'=[ Y a(m)T(-r)"],
m i<k+1 i<k

“healen)| £ T,
where
b(n) = a(n)/a(e;,).

Now a(ny,...,n;,0) and b(n,,...,n;, 1), as functions of (n,,..., n,), are in G,,
so the two sums in square brackets each must lie in the interval [L,, U,]. We
also know that a(0,0,...,0,1) € [s,,,,1/s,,,] and, by the induction hypothe-
sis, that L, > 0. It follows that

Ly 2L,—Upryyy/Sp1 and Uy S Uy = Lysp 11y 1y,
which implies that
(2.8) Opir = (0, = 1y y/Sp1) (1 — SpiaTisnfy)

It is not hard to show that p(s, t)/s is increasing in s for ¢ > 0 so that the
induction hypothesis (2.7) implies that

(2°9) 0kZ P(3k+1’1 - (tl + . +tk))/sk+1-

Since the right-hand side of (2.8) is increasing in 6,, inequality (2.8) remains valid
when we replace 6, by its lower bound from (2.9). Using (2.6) and the fact that
i1 = P(Sp41s thy), We see that this replacement results precisely in the in-
equality (2.7) with & everywhere replaced by & + 1. This proves the claim and
establishes Lemma 6. O

REMARK 1. Suppose §; =8, = -+ =§, =8> 0. Let
82~ (»=D ifx; + -+ +x, is even,

'H'(X) = {(1 _ 8)2_(n_1) ifxl + e +xn is odd.

Then the assumptions of Lemma 6 are satisfied and the sum in (2.5) for
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y = (0,0,...,0) is nonnegative if and only if t, + - -+ +¢, < 1. Thus, in this case,
Lemma 6 is tight.

REMARK 2. Lemma 6 might lead one to conjecture that the set of vectors
extractable from a given 7 is convex. The conjecture is true if n = 2. In the
remainder of this remark, we present a counterexample to the conjecture for
n=3 "

Given ¢ with 0 < & < 0.5, we define a probability vector 7 on {0,1}? to be the
probability distribution of (X, X,, X;), where P[X, = 0] = P[X, = 1] = 0.5,
X, and X, are conditionally independent given X, and P[X, # X,|X,] =
P[X, #+ X,|X,] ==

Note that P[X,=0|X, =1, X, = 1] = §, where § = ¢2/[¢ + (1 — ¢)*]. Let
D¢ = (¢,0, ¢) and D® = (0, §,0). It is easy to check that D¢ and D? each are
extractable from 7% We will investigate conditions under which (D¢ + D?%)/2 is
extractable from «°. Notice that Tp,m® = 7% where « is defined by

a(l —¢/2) + (e/2)(1 — a) = ¢,

and 7 is defined in the same way as 7° with e replaced by «. Thus, by Lemma
3, D is extractable from = if and only if D%/2 is extractable from 7%, or
equivalently, if and only if

(2.10) 8/2 < a2[a2 +(1- a)2]_1.

The left-hand side of (2.10) is equal to £2/2 + o(&?), while the right-hand side is
equal to £2/4 + o(e?). Thus, the inequality is violated for all sufficiently small e,
which implies that for such values of ¢ the set of vectors extractable from #° is
not convex.

3. Bernoulli extraction from Markov random fields. Let S denote a
countably infinite set, and let @ = {0,1}S. For i in S, let X; denote the ith
coordinate function on £,

X(w) =w; forweQ,

and let = denote the smallest o-algebra of subsets of © with respect to which X;
is measurable for each i. Let D = (D;: i € S), where 0 < D, < ; for each i, and
let 7y be a probability measure on =. We say that D is extractable from mx if
the following is true. There is a probability measure 7y on (&, £) such that, if
Y = (Y;: i € S) has distribution 7y, if W = (W;: i € S) is such that Y and all
the W’s are mutually independent, if P[W,=1]=1 - P[W,;=0] = D;, and if
X; =Y, ® W, then (X;: i € S) has distribution 7.

Assume that for each site i there is a finite set N(i) C S of neighbors of site i,
that i & N(i), and that j € N(i) if i € N(Jj) for all sites i and j. Define the
boundary dA of a set of sites A by

dA = {i: iisnotin A and i is a neighbor of a sitein A}.
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Throughout the rest of this section we assume that « is a probability distribu-
tion on (£, 2) satisfying the following assumptions:

Al 7({x;=n;: i € A}) > 0 for any finite subset A of S and any 7 in Q.
A2 If A and B are finite subsets of @ such that A " B= @ and dA c B, and
if n€ Q and v € {0,1)4, then

m({X;=v:i€ A){X,=n:i€B}) = WA,n(V),
where we define 7, . by
Ty, (V) = 7({X; = v: i € A}{X; = n;: i € 0A)}).
A.3 There is an integer M such that any site has at most M — 1 neighbors.
A.4 There is a strictly positive constant D, such that
Ty, o(0) = Dy forany v € Q, v € {0,1}.

REMARKS ABOUT ASSUMPTIONS.

1. Assumptions A.1 and A.2 together are often taken as the defining proper-
ties of a Markov random field. So defined, the set of Markov random fields is
well known to be equal to the set of Gibbs states with nearest neighbor
potentials; see Dobrushin (1968), Lanford and Ruelle (1969) and Preston (1974).

2. Given the other assumptions, A.4 is easily seen to be equivalent to the
assumption that the vector indexed by S with ith coordinate D, and all other
coordinates equal to zero is extractable from .

3. If A.1 were dropped and if A.2 were weakened to cover only 5 and B such
that #({X; = »,;: i € B}) > 0, then A.2-A.4 would imply A.1 anyway.

For any d € [0, ;], define
d*=[y—u—2dWWVz
and for £ > 0 define
g(k) = [1 - (1 - 2D,)""] fo.
Note that
g(0)=D, and g(k+1)=g(k)* fork>0.

For a vector D = (D,,..., D,), we define D* = (D},..., D*).
Given a finite set F and a probability distribution = on {0, 1), we let R ()
denote the set of vectors D = (D;: j € F) such that D is extractable from .

LEMMA 7. Given a finite subset F of S, define D; forjin F by
, D; = g(k),
where k is the number of neighbors that j has in F. Let D = (Dj: j € F). Then
D € Ry(m,) foralln.
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Proor. We will use induction on the number of sites in F. The theorem is
clearly true if F contains only one site. Suppose the theorem is true for sets
containing n sites, and let F' be a set containing n + 1 sites. Choose a site i in F
and write F = A U B U {i}, where B is the set of sites in F which are neighbors
of site i. For jin A U B, let D; = g(k’), where k’ is the number of neighbors of
j which are in A U B. We shall abuse notation by writing (D4, Dp) instead of
(D;: j € A U B), with the understanding that D, represents the vector elements
indexed by A and Dy represents the vector elements indexed by B.

The induction hypothesis applied to the n-element set A U B yields

(D4, Dp) € RAUB(WAUB,q) for all v,
which directly implies that

(3.1) (DA’ DB,O) (S RF(”F,‘I]) fOr all ‘l].
We also have
(3.2) (0,0, D) € Rp(7p,,) forallq.

For all 4, the Markov property assures us that 7 (v) assigns probability
such that, conditional on the binary random variables {v;, j € B}, v; is indepen-
dent of {v,, k€ A). Consider first the case in which B= &. Then v, is
independent of {v,, & € A}, so it follows from Lemma 2, (3.1) and (3.2) that
(D4, Dy) € Rp(7y,,) for all n. Thus, the theorem is true when B is empty.
Henceforth, we will assume that B is not empty.

Equation (3.1) implies that (D,,0,0) is in Rg(7y ), which, by (3.2) and
Lemma 4, implies that

(3.3) (D,4,0, D,) € Rp(7g ).

Next, note that Lemma 5 implies that (3.1) and (3.3), respectively, are equivalent
to

(3.4) (0,D5,0) € Ry(Tip} 0,07,,) forallm
and '
(3.5) (0,0, D) € Ry(Tp} o,07r,,) forallm.

Hence both (Dg,0) and (0, D,) are extractable from the conditional distribution
for {v,, k€ B U {i}} derived from T ¢ o7, by conditioning on any fixed
value of {v,, k € A}. Since B U (i} contains at most M sites, it follows from
Lemma 6 that (D#, D) also is extractable from each of these conditional
distributions. This permits us to deduce from Lemma 3 that

(3.6) (0.D%, D¢') € Ry(Tip) 0,07r,q) forallm.
A final application of Lemma 5 shows that (3.6) is equivalent to
(3.7) (D4,Dg, Df) € Rp(mp,) forallm.

The jth coordinate on the left-hand side of (3.7) is at least as large as g(k),
where & is the number of neighbors of j in F. (Observe that k2 =k’ + 1 for
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J € B, and recall that B # @, so k > 1 for site i.) Thus, the theorem is true for
F, which completes our proof by induction. O

THEOREM 1. Let D denote the vector indexed by S with each component
equal to 8, where

(3.8) d=g(M-1)= [1 —(- 2D0)M"M’”]/2.
Then D is extractable from .

PrOOF. Let A}, A,,... be finite subsets of S such that A, c A, € --- and
S =U,A,. Let D(n) denote the vector with ith coordinate & for i in A, and
zero for i in S — A,,. By Lemma 7, D(n) is extractable from #. Let £ ® 3 denote
the product c-algebra of subsets of @ X © and let (Y, W) denote the coordinate
functions on © X Q. Since D(n) is extractable from =, there exists a probability
measure », on (£ X €, 2 ® ) such that, under measure »,, W is a process of
independent Bernoulli variables independent of Y, with »,({W, = 1}) = D,(n),
and Y & W has distribution . .

© and Q X Q with the usual product topologies are compact metrizable spaces
and 2 ® 3 is generated by the open subsets of @ X Q. Thus, by passing to a
subsequence if necessary, we can assume that », converges weakly to a distribu-
tion » as n tends to infinity. Y and W are continuous mappings from € X Q to Q
so that, under measure », Y and W are independent and Y @ W has distribution
a. Finally, under measure », W is a process of independent Bernoulli variables
such that »({W,; = 1}) = 4. Thus D is extractable from #. O

4. Applications to rate-distortion theory. The concept of extractability is
important in information theory for the computation of rate-distortion func-
tions; see Gallager (1968) or Berger (1971). This is elucidated by Theorem 2, a
result familiar to many information theorists, but nonetheless proved here for
completeness. We then couple Theorem 2 with our preceding results about
extraction in order to obtain explicit lower bounds for the so-called critical
distortion d, for the one-dimensional and two-dimensional Ising models.

Let I(X;Y) denote the Shannon mutual information between the pair of
random binary n-vectors X and Y; see Gallager (1968). The rate-distor-
tion function for a probability distribution 7y on {0,1}" is the function
R4:[0,3]" = R™ defined by

Ry(D)=infI(X;Y),

where the infimum is over all pairs of random vectors (X, Y) such that

(4.1) P[X,+#Y]<D, 1<i<n,
and
(4.2) X has distribution 7.

An important related function, the per-site rate-distortion function
R:[0,2] » R™, is defined by

Ry(d) =infn I(X;Y),
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where the infimum is over all pairs of random vectors (X, Y) such that

n

n' Y P[X;#Y]<d

i=1

and X has distribution 7. _
Under broad conditions the limit as n tends to infinity of R x(d) exists and

equals the minimum number of encoding bits per site required for X to be
recoverable from these bits with an average per-site distortion of d. Rigorous

statements of this fact are called source coding theorems; again, see Gallager
(1968) or Berger (1971).

THEOREM 2. (a) If D is extractable from mx, then
RX(D) = H(X) - Z h(Di)’
i=1

where H(X) denotes the Shannon entropy of the random vector X, and
h(x) = —xlogx — (1 — x)log(1 — x). ‘
(b) If (d, d,...,d) is extractable from =y, then
’ R,(d) = H(X)/n - h(d).

Proor. If (X,Y) satisfies (4.1) and (4.2), then
I(X;Y)=H(X) - H(X|Y)

= H(X) - Z H(Xilxl,..., Xi—l’ Y).

i=1

Now

H(X|X,,..., X, ,,Y) < HX]Y) < h(D,),
SO
(4.3) IX;Y) = HX) - ¥ h(D).

On the other hand, if X = Y ® U, where Y and U are independent, U,,...,U,
are independent and P[U;] = D,, then

I(X;Y) = H(X) - H(X|Y)
- H(X) - HU) = H(X) = £ k(D).

This proves part (a) of the theorem.
By the definition of Ry, we see that

(4.4) Ry(d) = n'gnn'lRX(D),

where the minimum is over vectors D in [0, ] satisfying D, + Dy + --- +D, <
nd. For each such D we deduce from (4.3), the concavity of A(-) and the fact that
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h(-) is monotonic increasing on [0, ;] that

“s) n"R4(D) > n"'H(X) — n~! Elhi(Di)

>n"'H(X) - h(d).
On the other hand part (a) of the theorem implies that
(4.6) n 'Ry((d,...,d)) =n"'H(X) — h(d).
Combining (4.4)-(4.6) proves part (b). O

The specific entropy of a stationary random field X with site space Z* is
defined as the limit as n = o of H(X)/n as the n sites spread out ap-
propriately to cover the entirety of Z*. Follmer (1973) has shown that its limit
Hy(X) exists for any stationary random field on Z*. By combining Theorems 1
and 2 and taking limits, we obtain

(4.7) Ry(d)=Hy(X)-h(d), 0<d<3$é

for any stationary binary random field X with site space Z* that satisfies
assumptions A.1-A.4, where 8 is given by (3.8). The critical distortion is defined
as

d, = sup{d: By(d) = Hy(X) — h(d)}.

Ising’s celebrated model of a ferromagnet over Z? with no external magnetic
field is a Markov random field with

exp( (- 1)0):je N~ 1)nj)
’exp( Yzje N(i)(_l)nj) + eXP(—Y):jeN(i)(_l)nj) ’

where y is a positive constant. For this example, D, = e *7/(e™*¥ + e*Y).
Onsager (1944) derived the formula for H(x) for this model. Hence, (4.7) yields
the exact formula for the per-site rate-distortion function of the homogeneous
two-dimensional Ising model for 0 < d < & < d_; the exact value of d, remains
unknown. Since each site has 4 neighbors in the two-dimensional Ising model, M
of Section 3 is 5 so (3.8) gives us d, > g(4). However, the special structure of Z2
permits us to cover any finite set of sites sequentially such that the following is
true: At most two of the neighbors of any site are chosen before the site is
chosen, and at most two of them are chosen after the site is chosen. It follows
from detailed inspection of the anatomy of Lemma 7 that d, > g(3) even when
M = 5 is replaced by M = 3 in the definition of g(%). Therefore,

(4.9) d. > [1- (1 -2D)"| /2 = [1 - tanh(4y)"*] /2

for the two-dimensional Ising model. For all other interaction models over Z*,
k > 2, only approximations to Hy(X) are known, so we are unable to evaluate
(4.7) analytically.

Gray (1971) was the first to prove that (4.7) always holds for some d, > 0 in
the special case of a finite-alphabet homogeneous Markov chain on Z possessing

(4.8) '”(i),n(v) =
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a strictly positive one-step transition matrix. Furthermore, in the special case of
a binary symmetric Markov chain with m = min(p,1 — p), where p =
P[X;,, = X,], Gray (1970) derived the exact formula

(4.10) d,= [1 - (1= (m/1- m)2)1/2]/2.

In addition, Gray (1970, 1971) and Avram and Berger (1985) have calculated
and /or bounded d, for several other classes of random sequences on Z.

The binary symmetric Markov source is, in essence, the random field that
statistical physicists refer to as the one-dimensional Ising model with no external
magnetic field. It is instructive to compare the exact value of d, for the
one-dimensional Ising model with the lower bound provided by the theory
developed in Section 3. Since M is 3 for the one-dimensional Ising model,
Theorem 1 gives d, > g(2). However, by covering the sites sequentially according
to the usual one-dimensional indexing, we see from the proof of Lemma 7 that
we can reduce the effective value of M from 3 to 2 without disturbing the
validity of d_ = g(2). Therefore,

d

c

1 m? v
(410 =5(1_(1'2m2+(l—m)2) )

1 . (1-m)® — m? 1

2 (1 =m)®+ m? '

It is straightforward to show that the bound given by (4.11) is indeed strictly less
than the true d, of (4.10) in all but the trivial cases m = }, in which they both
equal 3, and m = 0, in which they both equal 0.

A strengthened version of Lemma 6 can be proved which yields the correct
value of d_ for the one-dimensional Ising model. This strengthened lemma
concerns for which values of D, and D it is true that, if both (D,,0) and (0, D,)
can be extracted from the joint distribution of any pair of binary random
variables, then (D,, D) also can be extracted therefrom. It can be shown that
d. > D for any value of D that meets this condition for some D,, and that for
the one-dimensional Ising model the value of d, given by (4.10) is indeed such a
D. Similarly, it can be shown that d_, for the two-dimensional Ising model is
greater than or equal to the largest value of D for which there exist D, and D,
such that, if (D,,0,0) and (0, D,, D,) both are extractable from the joint
distribution of any three binary random variables, then (D,, D,, D) is extract-
able therefrom. We conjecture that the maximum such D actually equals d. It
does not appear to be a simple matter to calculate said maximum D analytically,
but it should be feasible to evaluate it numerically.

The exact formula for R 4(d) for the case in which X is a stationary Gaussian
random field over either Z* or R* and distortion is measured by quadratic error

> %(1 - (1-2D,)"%)
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stems back to work by Kolmogorov (1956) and was first displayed explicitly for
k = 2 by Hayes, Habibi and Wintz (1970).

5. Concluding remarks. From the viewpoint of communication theory, our
representation theorem provides a sufficient condition for a discrete-parameter
binary random field to be viewed as the output of a communication channel that
adds binary, white, possibly nonstationary noise modulo 2 at each space-time
index. It clearly is possible to generalize to certain nonbinary alphabets which
support appropriate definitions of additive noise. The generalization to Ham-
ming noise on channels from GF(q) to GF(q) is particularly straightforward.

We close with some speculations about the possible significance of our results
in probability theory and in statistical physics. Suppose one were able to
determine the maximum possible weights D, for the U, in a decomposition
{X;} = {Y;® U} of the sort we have been considering. Then the associated
random field {Y;} would exhibit in relatively transparent form the long-range
dependency structure of the field { X}, since the field {U.} possesses no memory.
Hence, for models of interest in statistical physics or in other areas of applica-
tion, the indecomposable process {Y;} associated with the maximal-weight {U)}
in our decomposition should be an object worthy of study by probabilists
concerned with the regularity of memory in random fields. Such decompositions
also may prove helpful in establishing the effective equivalence of certain models
from the viewpoint of their ability to support long-range order. That is, by
decomposing a random field that has been proposed as a mathematical model of
a phenomenon of interest in statistical physics into a portion that is innately
memoryless and, independent of that, a portion that is responsible for the
model’s long-range memory, we should be better able to assess the model’s
suitability for the task at hand.

Motivated by the suggestion of Berger and Bonomi (1984) that such problems
merit study, Bassalygo and Dobrushin (1987) have independently pursued the
problem addressed here. Using cluster expansion techniques they have proved
the existence of a decomposition of the desired sort for quite general additive
noises of sufficiently low weight, provided the temperature parameter in their
Gibbs interaction potential over Z* is large and the number of terms in the
potential to which any site contributes is uniformly bounded. In recent work
Newman (1987) has uncovered interesting links between our decomposition
theorem and Lee-Yang theory in statistical mechanics and has obtained im-
proved estimates of d_ in certain instances.
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