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DOUBLE STOCHASTIC INTEGRALS, RANDOM QUADRATIC
FORMS AND RANDOM SERIES IN ORLICZ SPACES

BY STANISLAW KWAPIEN! AND WOJBOR A. WOYCZYNSKI 2

Case Western Reserve University

Let X(t), t > 0, be a process with independent, symmetric and stationary
increments and let (£;) be i.i.d. symmetric real random variables. We provide
a characterization of functions f(s, t), s, ¢t > 0, such that the double integral
J/f(s, t) dX(s) dX(t) exists, a characterization of infinite matrices () such
that the double series La;;§;£; converges a.s. and a characterization of Orlicz
space [, valued sequences (a;) for which the series La;£; converges as. in .
The above three problems are closely related.

1. Introduction. The aim of this paper is to characterize measurable real
functions of two variables f = f(¢, s), ¢, s > 0, for which the double integral

(1.1) Ix(f) = [ [#(s, ¢) dX(¢) dX(s)

exists in the sense defined in Section 5. Here X(¢), ¢ > 0, is a stochastic process
with symmetric, independent and stationary increments, and the characteriza-
tion is obtained in terms of the Lévy measure of X. This goal is accomplished by
studying first series of independent random variables with coefficients in a
sequence Orlicz space and then by providing a full description of infinite real

matrices @ = (@;;); j-1,5,... for which the double random series
o0

(1.2) Qx(a) = Z aijgigj
i, j=1

converges a.s.; throughout this paper the convergence of (1.2) is understood as
existence of the limit lim %, _; ;_,a;£;§;. Here, the random variables ¢, £,,...
are assumed to be symmetric, independent and identically distributed. The basic
tools we use are refinements of Hoffmann-Jergensen inequalities which we
discuss in Section 2 together with other preliminaries on real random series and a
decoupling inequality for special martingale transforms. Truncation techniques
play a crucial role throughout the paper and the (somewhat unorthodox)
notation we use is as follows:

a, ifé&>a,
«_ ¢ ifa>|§ =8,
[eli=\ o itp>pa,

—a, if —a>¢,

where 0 < B < a. Also, routinely, we will write [¢]* instead of [£]¢.
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Our results extend earlier results on p-stable, p > 1, double stochastic in-
tegrals and series obtained by Cambanis, Rosinski and Woyczynski (1985),
Rosinski and Woyczynski (1986) [see also McConnell and Taqqu (1984)]. They
give a deeper understanding of the structure of double stochastic integrals and
provide a more direct approach in comparison with the previous work in this
area. The results also offer a better promise in an effort to create a general
theory of multiple stochastic integrals.

2. Preliminaries: Hoffmann-Jergensen type inequalities and real ran-
dom series. This section contains a summary of inequalities originally studied
by Hoffmann-Jergensen (1974) in the case of random variables taking values in a
Banach space. The slightly more general setup here is necessitated by the needs
of applications to the study of series of independent real- and vector-valued
random variables which follow in Sections 3, 4 and 5.

Let F be a linear metric space and let ¥: F -» R* be a continuous function
which satisfies the following conditions: There exists a constant C > 0 such that
forall x, y e F

(2.1) Y(x +y) < C(¥(x) + ¥(y)),
and, forall x € F,and a € R, |a| <1,

(2.2) V(ax) < ¥(x).

ProrosITION 2.1. Let £, §,,... be a sequence of independent, symmetric
random variables with values in F, such that the partial sums S, = &, + - -+ +§,,,

n=12,..., convergea.s. to S as n = oo0. Then
(2.3) P( sup¥(S,) > t) <2P(¥(S/2) > t/2C), ¢>0,
(2.4) P( sup¥(£,) > t) <2P(¥(S/2) > t/2C), t>0,

and, whenever the right-hand side below is positive,

CE sup,¥(¢,) + 4a
1/3 — 4C?P(¥(S) > a/2C?)’

(2.5) E¥(S) < a>0,

where C is the constant appearing in (2.1).

The proof of the above proposition is almost identical to the proof in the case
when F is a Banach space and ¥ is a norm. An even more general situation was
considered by Kwapien (1973).

The inequality (2.5) immediately implies the following

CoRrROLLARY 2.1. If §,§,,... are as in Proposition 2.1 and if ¥(§)),
i=1,2,..., are uniformly bounded by a constant, then E¥(S) < co.
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Also, integrating both sides of inequality (2.4) one obtains

COROLLARY 2.2. If &, ¢,,... are as in Proposition 2.1, then

(2.6) Esup¥(¢,) < 4CE¥(S).

We will also need the following

ProposITION 2.2. If £,,¢,,... are as in Proposition 2.1, then for all t > 0,

(2.7) P(sup\Iz(g,,) > t) > [1 - 2P(¥(S/2) > t/2C)] T P(¥(Z,) > ¢).

n=1

ProOF. Observe that

P(sup¥(£,) > 1) =1 - T1(1 - P(¥(&,) > 1)

(2.8) >1—exp|— )

n=1

P(¥(t,) > 1)

> exp( Z P(¥(¢,) > t)) Y. P(¥(¢,) > t),
since 1 — e”* > e *x for x € R. Now the first two lines of (2.8) and (2.4) yield
2P(¥(S/2) > t/2C) > P(supqr(g,,) > t) >1- exp(— Y P(¥(,) > t)),
n n=1

which combined with (2.8) gives (2.7). O

In the remainder of this section, and in the following sections, we assume that

£, £, &,,... are independent, symmetrically and identically distributed real ran- )
dom variables, and that «,, a,,... € R. Define h
(2.9) o(u) = E[(ut)* A 1], ueR,
and
(2.10) () = X o(ay).

i=1

The following proposition gives a familiar description of multiplier sequences
(a@;) for which the random series La;{; converges almost surely.

PROPOSITION 2.3. The series Ya;¢; converges almost surely if and only if
®((a;)) < o00.
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The proposition follows immediately from the next theorem which can be
thought of as a “uniform” version of Proposition 2.3. It is this “uniform” result
that we will need later on.

THEOREM 2.1. (a) If 0 < b <1/200 and

A

o0

Z a;€;

i=1

>b)<b,

then
®((a;)) < 200b.
(b) For any b > 0,

i

PROOF. (a) Applying (2.5) in the case F = R, ¥(x) = x? [so that the con-
stant C in (2.1) can be taken equal to 2] and S = L[«;£;]", one obtains for any
a>0,

o0
Z a;
i=1

> b) < 290((a;)/b).

o((e) - 5 £ laT|

i=1
2E supi([aiﬁ,-]l)2 + 4a
< .
1/3 — 16P((Z,~[a,~£i]l)2 > a/8)
Since, by (2.4) applied to ¥(x) = |x| (C = 1), for any b > 0,

ES‘}P([“iﬁi]l)z <b+ P(|Su'p[ai£i]ll > b)

<b+ P(sutp|ai$,~| > b)

>b),

and since, by the contraction principle [cf., e.g., de Acosta (1980) or Sztencel
(1981)]

0

2 af;

i=1

<b*+ 2P(

P( i (]| > (a/8)1/2) < 2P( iaigi > (0/8)1/2),

one gets, selecting a = 8b%,
34b% + 4P(Z,;¢)| > b)
o((e)) < — )
1/3 — 16P(|L;a.€ > b)
which immediately yields (a).

(2.11)
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(b) The proof here is straightforward. Indeed,

P( > 1) < P(
< E( g’l[ai&]l + §1¢(ai)

=20((a;)). o

00

Z aé;

i=1

o0

[“iﬁi]l
1

i=

> 1) + ¥ P(agi > 1)
i=1

3. Convergence of random series in sequence Orlicz spaces. Let y:
R — R* be a continuous function such that ¢(0) = 0, y(—x) = ¢(x) for x € R,
and such that ¢ is increasing for x € R* and

(3.1) ¥(2x) < cy(x),
for some ¢ > 0 and all x € R. The last inequality implies that
Y(x +y) < c(¥(x) +¥(y)),

for all x, y € R. For a sequence a = («;);_, o .. of real numbers let *
0
¥(a) = ¥ w(ay),
i=1

and define
llall, = inf{s: ¥(a/s) < A},
where A < 1/48¢? is a number fixed from now on. The sequence Orlicz space
df

l,={a: Y(a) < oo} is a linear space. The functional y fulfills conditions (2.1)
and (2.2). If one introduces a topology in [, by saying that lim,a, = 0 if and
only if lim,¥(a,) = 0, then [/, equipped with this topology becomes a complete
linear metric space. In general, if ¥(a,) — 0, then also ||a,||¢ = 0 but the
reverse implication is not always true.

Let & £,,&,,... be a sequence of independent, symmetric and identically
distributed random variables considered in Section 2. The function ¢(u) =
E[(u$)? A 1] defined in (2.9) fulfills the conditions from the beginning of this
section. The constant ¢ in (3.1) for ¢ can be taken to be 2. The set of all

sequences (a;) for which Ya.§; converges a.s. is the Orlicz space [/, (cf. Proposi-
tion 2.3).

Let a; = (a;;)j-1,5..., 1 =1,2,..., be a sequence of elements of a general
sequence Orlicz space [, and let a; = ||la,l|,, i = 1,2,..., and B; = |I(a;;);=1 2,.. [l 4
Jj=12,.... We define

(3.2) H(x,u,v) = H(x,u,v) + N(1/u)¢(v),
where

N(t) = P(¢ >t), t>0,
and

Hy(%,u,v) = Ey(x[£]5%).
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Notice that
(3.3) N(1/u) < ¢(u).

THEOREM 3.1. The series Ya{; converges almost surely in 1, if and only if

o0
Y H(ey,a;,B) < oo.

i, j=1

The proof of the above theorem depends on the following lemma which also
will be used later on.

LEMMA 3.1. The following two conditions are equivalent:

() the series Ya§; converges a.s. in l,;
(ii) the series Ya;[£;]"/* converges a.s. in l, and

i N(1/a;) < .
i=1

[ Notice that in view of Corollary 2.1 the first condition in (ii) is equivalent to the
condition E¥(X,a;[¢,]V*) < 00.]

Moreover, for each a > 0 there exists a b > 0 ( for each b > 0 there exists an
a > 0) such that

P(‘I'(g‘,laigi) > b) <b

(3.4)

= (=) f; N(1/a)) <a and E\If( f ai[gi]l/“-‘) <a.

i=1 i=1

ProoF. To prove Lemma 3.1 it is clearly sufficient to show the validity of
implications (3.4).

(=) For a > 0 let us put b = (a/30) A (A/4). Then, by (2.7) and (2.4) and
the assumption

2P(¥(Zat;/2) > 2b/c)
1 - 2P(¥(La;¢,/2) > 2b/c)
2P(¥(Zat;) > b)
<
1 -2P(¥(Zat;) > b)
2b
1-2b°

i P(¥(a;¢;) > 4b) <

Since 4b < A < 1/48c? we have

<3b<a.

(3.5) .§N(1/a,.) - g;lp(\lf(aiéi) >8) s —
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By (2.5)
0 4AE sup~\I’(a-[£-]l/""’) + 32b
E¥| Y a, .1/"‘")5 -~
(i§1 iL£:] 1- 2P(‘I’(Ea,~[§,-]l/ai) > b)
(3.6) - 4(4b + 4bP(sup,¥(a.¢;) > 4b)) + 8b
~ 1-2P(¥(Zag;) > b) — LP(¢) > 1/a;)
24b + A3b 25b
< <
1-2b—-3b " 1-5b
(=) For b> 0let us put a = b2/(b + 1). Then, by the assumption

P(‘I’( i aiéi) >b| < P(\Ir(élai[gi]l/"‘) > b) + EIP(& * [£]17*)

i=1

< 30b < a.

3.7 < E\If( > a.-[&]l/"“)/b + i N(1/)

i=1
<a/b+acx<hb. ) m]
PrROOF OF THEOREM 3.1. Sufficiency. Assume that
ZH(aU, a;, B_]) < 00.
t,J

Since H(a;;, a;, B;) = N(1/a;)¥(B;), we also have
(3.8) > .H(ai,j’ a;, Bj) > Y N(1/a;) Y ‘I’(,Bj):

i, j=1 i=1 j=1
so that "
Y¥(B) <o and Y N(1/a;) < .
Also
Be(Sals]) - £ Bo| £ el
i j=1 i=1
Now, the inequality (2.5) applied in the case F = R gives for each j =1,2,...,

o . cE sup,y( a;;[£]1%) + 8c2y(B;)
(3.9) E‘P( > aij[gi]l/ ') = 2 ( : ) 1/a; 5 .

i=1 1/3 - 4c P(‘xb(ziaij[gi] ') > ‘P(:Bj))
On the other hand, the contraction principle and Theorem 2.1(b) give

P(\p( 3 aij[»sill/“') > \P(B,—))

i=1
(3.10) = P( i aij[gi]l/ai > .Bj)
i=1
( - ) ((“if)i=12...)
i=1 B;
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which, together with (3.9), yields

o ve| _ CE Supi‘l’(aij[gi]l/ai) + 8c%y(B))
(3.11) Enp( Yoo [4] ) < PR .

i=1

Since for each j=1,2,...,
Sl{P‘P(aij[fi]l/ai) <v¥(B)+ X \P(“u[ﬁ]gﬁ?m)’
i i=1
(3.11) summed over j = 1,2,... gives finally
E‘I’( > ai[gi]l/ai)
i=1
(3.12) 3 - -
D —————— .. . . 2 .
< T8 lci’jz-lHl(aU,a,,BJ) + (c+ 8¢ )jEl\l’(ﬁ,)],
which gives the desired convergence because L2, N(1/a;) < oo (see *the state-
ment of Lemma 3.1).

Necessity. Assume that the series Ya,£; converges in /,. Then, by Lemma 3.1,
we have for each ¢ > 0,

Y N(1/ta;) < © and E‘I’( Y a,.[gi]l/‘“-) < 00.
i=1 i=1
Select ¢ so that X2 ,N(1/ta;) < b/2 < A/400. Then, by Theorem 2.1,

Eqr(iga,.[s,-]”‘“-')

% E¢( 3 ai,-[zi]‘/‘“")

j=1 i=1

(3.13)

v

é\p( b,Bj)P( f" ay L€,V

i=1

1

> 3 w(88)(b - b/2),

J=1

> bﬁj) ,

v

. 4(t8)

Z aijgi/ﬁj
i=1

> b) - i P(&i # [gi]l/tai))

i=1

which proves that

(3.14) ¥ W(B)N(/a,) < o.

i, j=1
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On the other hand, by (2.4)

4c8¥(Lal617%) = 4o 5 54| £ 0617

(3.15)
= ;lEsqub(aij[g]l/“i).

Applying Proposition 2.2 in the case F = R and ¥(x) = |x|, we obtain for each
J=12,..., and each t > B;

a&]7| > t)
(3.16)
> (1 - 2P( PO

i=1
Now, as in (3.10) we get

P(|Eaij[§i]l/ai

P( sup

Atz )

> Bj) < 4A,
so that, for ¢ > B,

(317) P( qu laij[gi]l/ai

> t) > (1-8A) §1P(| JLE16% > ¢)
and, consequently, for all £ > 0 one has
(3.18) P( s1:p|a,.j[gi]1/“i > t) >(1-84) ilPUaij[&]};;{a,ﬂ > t)
Multiplying both sides of (3.18) by y’(¢) and integrating over R *, we obtain
Esupy(a,[¢]7*) = (1 - 8A)§E¢(a,~,~[£]}{/"fam)
=(1- 8A)?Hl(aij’,ai’ﬁj),
so that by the above inequality and (3.15) we conclude that

(3.20) L E‘I'( E‘, ai[‘si]l/ai) 2 f‘, Hl(aij’ a;, Bj),
1-8A im1

i, j=1

(3.19)

which, together with (3.14), proves the theorem. O

REMARK 3.1. Formally speaking, the functions H, and ¢ depend on our
initial (and arbitrary) choice of A. However, it follows from the main results that
the classes of ‘corresponding single and double sequences are independent of A as
long as it is sufficiently small.

4. Double random series. Let £, £, £,,... be a sequence of independent,
symmetric and identically distributed random variables (as in Sections 2 and 3)
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and let 7,7, 7,,... be another, independent of (£,), sequence of independent,
symmetric and identically distributed random variables. Define

(4.1) v(u) = E[(un)’ A 1], ueR,

and denote by /, the Orlicz sequence space associated with ¢. In this case, the
constant C from (3.1) can be chosen to be equal to 2 so that A, from now on, can
be chosen, say, to be 1,/200.

of real numbers, the

PROPOSITION 4.1. For an infinite matrix (a;;); j-1,2
following conditions are equivalent:

(i) lim,, wZK, j<n®ij§im; exists almost surely;
(i) for each j=1,2,..., the series L. a;;¢; is a.s. convergent and the
sequence (Xa;,€;);_, o ... almost surely belongs to 1,
(iii) the series £2.,a¢;, where a; = (a;;);=1 ... fori=1,2,..., convergesin
1, almost surely.

ProoF. Notice that, by Fubini’s theorem, if

=)

Z ;i8N

i, j=1

P

>e) < e?

x SRR

so that by Theorem 2.1(a), for ¢ small enough, we have

el

i=1

then

)

P> aijsi(w))n,.

J=1\i=1

(4.2) P( Yoy,

’.]

> 2008) <e,

where
‘I'((“i ) illl(a

On the other hand, by Theorem 2.1(b) we have

P( ~ - (Ziaijgi)"lj

Ny

ij

:

>s)sP£XPn(

< [Ezqr( 5 aig,./e)] A1

i=1

< [8‘2E2\I'( i a,{i)] Al
i=1

as long as e < 1. The last inequality follows from the fact that y(&x) < t%(x)
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for ¢t > 1. Consequently, for each 0 < ¢, § < 1, we get

o0 o0
(4.3) Pl Y a;;§m;| > e) <e?P ‘I’( Zaiﬁi) >6/2| + 4,
i, j=1 i=1

and the propositien follows from inequalities (4.2) and (4.3). O

It follows directly from Proposition 4.1 and Theorem 3.1 that
lim Z o;€m;
R0 1<, j<n

exists a.s. if and only if
o0

Z H(aij, a;, Bj) < 0,

, i, j=1

where a; = ”(aij)j=1,2,..."|p’ ,Bj = (@;j)i=1,2,...lls and
H(x,u,v) = Hy(x,u,v) + N1/u)¥(v),

where N(t) = P(|§| > t) and

Hy(x, u,0) = E¢(x[£1) = B((x85m)" A 1).

The function H, however, is not satisfactory since it does not depend symmetri-
cally on £ and 7 although a; ;¢,7n; does. To remedy this situation we will modify
the function H as follows. Let

(4.4) F(x,u,v) = F(x,u,0) + ¢(u)y(v),
where

Fy(z,u,v) = E[(x[£]V*[n]"*)* n 1],
and where £, n are independent. In other words,

F(x,u,v) = E((x[g]l/"[n]l/”)2 A1)+ E((ug)” A 1)E((un)’ A 1).

THEOREM 4.1. The series La;;£;n; converges a.s. [as defined in (1.2)] if and
only if '

F(ai’j, a;, ,Bj) < 00.
1

ek

i

Proor. In view of the preceding remarks, it is enough to show that
L, F(a;;, a; B) < oo if and only if ¥; ;H(a,;, a;, B;) < co. To prove this equiv-
alence let us observe that

Hl(x7 u, U) = E(x[g]}?éllf’cl’r')2 A1
< B(«[§15n17°)" A 1+ E(2[£]InT10)" A 1

< E(x[£1V°[11"°)" A 1+ E(xqg ospXn>1/0))
< Fy(x,u,0) + ¢(x/|0)¥(v),

ij?

(4.5)
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and that, similarly,
Fi(x,u,0) = E(x[£]7*[2]"°)’ A 1
X 2
(46) < B(s[€]%m)" A 1+ B[ S[617o[a]7) A1

< Hy(x,u,0) + ¢(x/0)¥(0).

Also, for any matrix (a;;); j_1,,..., We have

yoee?

5 6(ay/B)(B) = 3 (Z¢(a,/B))¢(B)
(4.7) b=t = ;"’1
=A gl‘//(ﬁj)'

Now, assume X, H(a;;, a;, B;) < oo. Since H(x, u, v) > N(1/u)y(v), the conver-
gence of the series ; H(a, » @;, B;) implies the convergence of the series 4/ B)-
On the other hand, the condltlon Z‘, H(a;;, a;, B;) < oo, being equlvalent to the
a.s. convergence of the series X, ;a;; ,11 » has to depend symmetrically on £ and 7
so that we also have ¥;¢(a;) < oo, which together with (4.6) and (4.7) gives the
convergence of ; ;F(a;;, a;, B;).

The converse unphcatlon follows directly from (4.5), (4.7) and definitions of H
and F. O

In what follows we will assume that (7;) = (§/) is an independent copy of (;).
The function F, in this particular case, is

(48)  F(x,u,0) = E[(«[¢][¢'17) A 1] + 6(w)9(0).

THEOREM 4.2. For a symmetric matrix (a;;); j_1,2
i=1,2,..., the following conditions are equivalent:

... such that a; =0,
() the series ¥; a;§,£; converges a.s.;
(ii) the series ¥; ;a;;§,§] converges a.s.;
(i) X; ;F(a;;, a; a;) < oo.
Moreover, for each e > 0 there exists 8 depending only on ¢ ( for each § > 0
there exists € > 0 depending only on 8) such that the condition

1

implies (is implied by) the condition

o0

E aijgigj

i, Jj=1

>8)<8

o0

Yy F(aij,ai,ﬁj) <e.

i, j=1

ProOF. The series in (i) [resp. in (ii)] converges as. if and only if
L2 (Xi< ja;;£,)¢; is as. convergent [resp. L7 (X, < jo;;€;)§! is a.s. convergent].
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But, by the decoupling principle observed first by Krakowiak and Szulga (1986)
[cf. also Kwapien and Woyczynski (1986)], the two series above converge a.s.
together, i.e., convergence a.s. of one of them implies the a.s. convergence of the
other. This proves the equivalence of (i) and (ii). The equivalence of (ii) and (iii)
is a special case of Theorem 4.1.

To prove the final assertion of Theorem 4.2 suppose first that

A

Zaijgigj/'
i, J

> 8') <.
By (4.2), we have
P(@(Eaigi) > 2008') <,
i
and from (3.5) we obtain that if §’ < A/800, then
f N(1/a;) < 3 - 2008,

i=1

and if 3 - 2008’ < A /400, then
LN(1/a;) < A/400,
so that putting b = 2A /400 we obtain by (3.13),
(4.9) f; g-cp(bai) < E(I)( iia,.[g,.]lfat) <6-10%’.
Since ¢(bx) > b%x for b < 1, we get
(4.10) f o(a;) <2672 6-10%’ < 10'3A 3%,

i=1

By (4.6) and (4.7) and (3.20)

> F(a;;, ai’aj) < X H(a;;, a,a;) +A Y o(a;)
,J= i=1

1 i, j=1

l

8 [~ 00

< E®| ) ai[gi]l/ai +AY ¢(a;)
1-8A i=1 i=1
.6-1038" . 1013A —38/
< Tgr 60 10% + A 104470,

the last inequality following from (4.9) and (4.10).
Hence, by (4.10)

o0
) F(aij: a;, a;) < Cyd’,

i=1

where the constant C; depends only on A.
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On the other hand, if one assumes that T, ;F(a, a;, @;) < ¢, then T;¢(a;) < Ve
which implies that £, N(1/a;) < Ve. By (3. 12), (45) and (4.7)

E@( 3 a,-[zi]V“‘)

i=1

Z 2H(a;, a;, ;) + 34 Z o(a;)

i, j=1

— 48 - 4A l
< C2‘/g,

where C, depends only on A. Now, by Chebyshev’s inequality and the above
inequalities, we obtain for each b > 0,

P((I)( Y aig,.) > b) < Cye /b + Ve
i=1
and, from (4.3) it follows that

P(

Putting b = /%, we get

0

Z aij£i£;'

J=1

>3')<(a) 2(Coe /b + Ve) + 2b.

0

Z aij£i£;‘

i, j=1

> 8| < Ce/4(87) 72,

where C, depends only on A.
So, now, Theorem 4.2 follows immediately from the following lemmas.

LeEMMA 4.1.  Let (a;;) be as in Theorem 4.2. For any §,8’ > 0,

0 0 172
X« >s) <5[(8’8 22 1 3(2P|| ¥ akdi| > 8 )) }
i, =1 i,j=1
and
0 1/2
Y oa k> 8 ) < 5[(8/8')2/3+ 3 P(sup Y oa g > a)) }
i, j=1 n l1<i, j<n

Proor. This is an immediate consequence of Corollary 2.2 of Kwapien and
Woyczynski (1986). O

LEMMA 4.2. Let («;;) be as in Theorem 4.2. For § > 0

)y ijSi io‘;

1<i,j<n

P( sup > 8/2)

n

> 8) < 4000P

PROOF. Let us observe that in view of the symmetry of the ;’s it is sufficient
to prove the above inequality in the case when () is a sequence of ii.d.
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Rademacher random variables. Let

T= inf{k: Yy a6 > 8}
i, j<k
and
A= { Yotk > 6/2}.
i,J
Then

P(4) > ,glP(A A (r = k).

On the other hand, if, for a fixed &,

w-|

where £f = £, for i < k and £ = —§; for i > k, then
P(A*N (1=£k))=P(AN(1=Fk)),
Bkd=f{

[e¢]

Z aijgfg}?

i,Jj=1

> 6/2},

and

)y ;€€ + )y ;€€
k

i,j<k L, J>

> 6/2} CAUAS

so that
P(B,Nn(1=Fk)) <2P(AN(1=F)).

Since by Paley and Zygmund’s (1932) inequality, forany X € L2 and0 <A < 1,
P(X>MAEX) > (1 -\)’E*X/EX?,

we have P(|la + Y| > a/2) > d/20 as long as EY = 0 and E?|Y|/EY? > d, and
since, by Bonami’s (1970) inequality,

)/E(i’gkaijgigj)z >d> 1072,

E2

Z aijgigj

i,j>k

we get
P(B,n (7 =k))

Fie i<k ® Fg, i>n

(7=k)n( Yo+ X aijgigj) >8/2)

i, j<k i, j>k

Z aijgigj

i, j<k

> (d/20)P((7 =k)N > a)) = dP(7 = k) /20.

Finally, P(A) > (d/40)L,P(t = k), which yields the assertion of Lemma 4.2. O
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REMARK 4.1. If £, §,,... and 7, 14, ... have finite second moments, then in
4.4)

F(x,u,0) ~x2A 1+ (u2A1)(02 A1)

and the a.s. convergence of L, ;a; 7, takes place if and only if ; ja,?j < o0. This
fact can be established, however, by a much simpler approach than the one used

above.
REMARK 4.2. If ¢,§,,..., and 7,,7m,,... are p-stable random variables

0 < p < 2, then a relatively straightforward computation (we supply some more
details in an analogous case considered in Remark 5.1) gives

x
F(x,u,v) ~1A (lxl"log*lzal) + (u? A 1)(0P A1),

where log™x = 0 V log x, and the a.s. convergence of ¥, ;a;:§,1; takes place if
and only if

& lo
Y lagP|1 + log* <

i1 (S8 lag A7) P (T leslP) P

For 1 < p <2 and (§;) = (n,), the above result appears in Cambanis, Rosinski
and Woyczynski (1985) although, in the context of p-stable series in [, it was
known earlier to Pisier.

REMARK 4.3. It follows from Theorem 4.2 that if o(x) = E(x£n)? A 1, then
the condition Y¢(a;;) < oo is sufficient for the a.s. convergence of series X; ;a;:§,1;
(compare Remark 5.2).

REMARK 4.4. The methods developed in this section can be also used to give
necessary and sufficient condition for the a.s. convergence of the series ¥; ;a; €1,
in the case when £, &,,... and 75y, 1,,... are not necessarily identically distrib-
uted. However, the formulas in that case become quite complicated.

5. Double stochastic integral. Let X(¢), 0 < ¢ < 1, be a stochastic process
with independent, symmetric and stationary increments. In the sequel we as-
sume that X has no Gaussian component (the general case is briefly discussed in
Remark 5.3).

In such a case

Eexp(iu(X(s) — X(¢))) = exp(s — t)foo(cos w — 1)L(dv), 1>s>2t>0,
0
where L is the Lévy measure of X.

DEFINITION 5.1. Let n be a positive integer and let

(5.1) f(s,t)= X ain((i—l)/n,i/n](s)X((j—l)/n,j/n](t)

1<i, j<n
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be a real step function vanishing on the diagonal and symmetric (ie., a;; = 0,

and a;; = a;;, i, j = 1,2,..., n). By definition, we set

Te(f) = [ ' [ 'i(s, t) dX(s) dX(t)

P Bl )

DEFINITION 5.2. Let f=f(s,¢),1>s, t >0, be a real, symmetric measur-
able function, vanishing on the diagonal. f is said to be doubly integrable with
respect to X [in short, f € £(dX ® dX)] if there exists a sequence ( f,) of step
functions of the form (5.1) such that f, —» f in measure ds ® dt as n — oo, and
such that the integrals Jy(f,), n =1,2,..., converge in probability. In this
case, we define the double stochastic integral

Te() = [ ['#(s, 1) dX(s) dX(£) = lim J(£,),

which is independent of the choice of a particular approximating sequence ( f,,)
(see Proposition 5.1).
Define

(5.3) ¢(x) = /0 “((xu)? A 1)L(du), x <R,

and recall that the class #(dX) of functions on [0, 1] that are integrable with
respect to X is identical to the Orlicz space

Ly={: 010, Zint{a: ['6(f(s)/a) = &) < e},

where A here is the same as in Section 4 [cf. Urbanik and Woyczynski (1967)].
Furthermore, define

(5.4) F(w,u,v) = /0"°f0°°[(w[x]l/u[y]l/v)2 A 1]L(dx)Lv(dy),
where w € R, u,v > 0, and

Flw,u,v) = F(w,u,v) + ¢(u)o(v).

The following theorem is our main result and gives a full analytic description
of functions which are doubly integrable with respect to X.

THEOREM 5.1. Let f = f(s,t), s,t >0, be a real, symmetric measurable
function. Then f € #(dX ® dX) if and only if

(55)  Ax(1) = [[['F(1(s,0), 11(s, Voo I (-, D)]) dslt < oo.

The proof of the above theorem will be based on the following sequence of
auxiliary results.
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LEMMA 5.1. For each € > 0 there exists a 8 > 0 ( for each 8 > 0 there exists
an & > 0) such that for each step function f as in (5.1) the inequality

P(ll
0 Y0

[ 165, 0) dX(s) ax(e)| > s) <s

implies (is implied by) the inequality A x(f) < e.

ProoF. For each m which is an integer multiple of n

5= ¥ > f(i’i)(x(ﬁ)‘x(k__l))

i, j=1(i-1)/n<k/m<i/n \T T m m
(j-1/n<l/m<j/n

<o) -5}

so that by Theorem 4.2 for each & > 0 there exists a § > 0 (for each § > 0 there
exists an & > 0) such that P(|Jx(f)| > &) <& implies (is 1mp11ed by) the
condition

22 % (2o 15 2)pots0p) - ertamontar)]| <
where
¢"(u) = E(uX(1/m))* A 1,
Fr(w, u,0) = E(w[X(1/m)] [ X (1/m)]*)’ A 1,

X'’ is an independent copy of X, and where

i 1
I(f(m))m ..... ol
- inf{t: ,é %w( f(% %)/t) < A}.

By the standard theory of infinitely divisible distributions [cf., e. g, Feller
(1966)] if ¢ is a bounded, continuous function such that lim, _, ,¥(s) /s? exists,
then

m _
;" =

Tim Eng(X(1/n)) = [“4(s)L(ds).

Hence, we obtain that for each u > 0, m¢™(u) = ¢(u) as n > oo, and it is easy
to see that the convergence is uniform on compact sets of u’s. Therefore, for
each fixed ¢ > 0, we obtain

el 2 E
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so that

i
lim o =|fl—, ]| -
m— o n P

On the other hand, if y(s, t) is such that (s, ¢)/(s% A 1)(¢2 A 1) is continu-
ous and bounded, then

lim En(X(1/n), X'(1/m)) = [ B [ ¥(s )L (ds)L(ap),

and, moreover, if

¢n(8,t) _ ll’(S, t)
n-w (2A1)(82A1)  (s2A1)(E2A1)

uniformly for s, £ > 0, then

Jim En*y(X(1/n), X (1/n)) = [

oo

/O “u(s, t)L(ds)L(dt).

4

Hence,

i j i Jj i
: 2pm - = m m\| _ —_ = —
n}gnme‘(f(n’n)’a"a’) F‘(f(n’n)’“f(n’)

and

J

b
¢

lim A(f) = Ax(1),
which concludes the proof of Lemma 5.1. O

LEmMma 52. If lim, , Ax(f,—f.) =0 andf, f,,... are step functions
as in (5.1) such that f, > f, n - oo, in Lebesgue measure on [0, 1] X [0,1], then
liminf, Ax(f,) = Ax(f).

Proor. Without loss of generality, one can assume that f.—f ae on
[0,1] X [0,1]. By Fatou’s lemma F(w, u, v) is lower semicontinuous in (w, u, v).
So using Fatou’s lemma one more time we would obtain the assertion of the
lemma if we could demonstrate that

(56) [[1u(s, Mo = 1£(s, )l and (-, )y =1 (-, )]l e n > o0

(the latter following from the former by symmetry of f ).
Now, for g, h defined on [0, 1] we have the inequality

®'*(g + h) < @'%(g) + 9'/2(h),
where ®(g) = [Jo(g(s)) ds, which follows immediately from subadditivity of the
function |x| A 1. Hence, if ®(h, — k) — 0, then l.llg = 12|, or, equivalently,
if lim, ,®(h, — h,)=0and h, > h ae., then 12.llg = 12| 4. So, to show (5.6)
it suffices to show that

im ®(f(s,") - f.(s,")) =0 s-ae.

n,m-c
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Observe next, that for each a > 0 we have
(a® A Do(w)[L((a, ) — ¢(v)]
< ¢(aw)[L((a, 0)) — ¢(v)]
< f “[(wxa)? A 1] L(dx)L((a,1/v))

(5.7) < /‘ /‘<y<1/v[ wx[y]l/o)2 A 1] L(dx)L(dy)

< F(w,u,v) + /

x>1/u

[ L(dx)L(dy)

a<y<l/v

= Fl(w’ u, v) + ¢(u)¢(1/a),
for each u > 0. Finally, note that the assumption A x( f, — f,,) = 0 implies that
for almost all s, ||f(s,) — fu(s,)llg = 0, n,m = oo, so that putting in (5.7)
v=| fn(S, ')”q‘n w= fn(s’ ) — fm(s’ t) and u = Il fn(" ) — fm(" t)”q‘n and using
Fubini’s theorem we get the desired conclusion. O

ProrposiTION 5.1. If hy, hy,... and g, 8,,... are two sequences of step
functions as in (5.1) such that lim h, = lim,g, = f in Lebesgue measure on
[0,1] X [0,1] and such that Jy(h,) and Jx(g,) converge in probability, then
lianX(hn) = lianX(gn)'

Proor. By Lemma 5.1 it suffices to show that for f, = h, — g, we have
Ax(f,) — 0as n - co. Indeed, since Jx(f,) — 0 in probability, by Lemma 5.1,
lim, ,Ax(f, - f,) = 0. Now applying Lemma 5.2 to f, — f, we get for each
fixed k&,

Tim inf Ay(f,~ 1) > Ax(f,),
which implies that lim,A x(f,) = 0. O

LemMmaA 53. If |f| < |g| and Ax(g) < o, then Ax(f) < oo and, moreover,

Ax(f) < Ax(g) + 204%%(g).
Also, if f, 10 and Ax(f,) < oo, then Ax(f, — f,) = 0, n,m — .

Proor. If |f| < |g|, then || f(s, -)Il, < [I&(s; *)ll, for all s and
[l 1G5, ) l) ds < ['o(las, ) 1) ds

and, similarly for f(-, ¢). Also, if w < w’, u < u’, v < v/, then

F(w,u,v) < F(w,u’ v)+fL>1/u[(%xy)2A1

(5.8) +jj>1/o [(—x) A1l

< F(w,u,v) + ¢(w/u)e(u’) + o(w/v)o(u’)
< F(w',u',v') + ¢(w/u)p(u’) + ¢(w/v)d(u’).

L(dx)L(dy)

L(dx)L(dy)
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Substituting in (5.8) w = |f(s, t)|, w’ = |g(s, t)|, u = || (s, )|l4, etc., and taking
into account the fact that
—————) dsdt < A,

11 f(s,¢) 1rl
j(;j(‘)(p(”f(s,’)”.p)detSA’ fofoé llg(-, )M,

we get the first two conclusions of Lemma 5.3. The last conclusion follows from
the first inequality in (5.8) used for w = f, — f,,, W’ = f,, k < m < m, and from
an application of the Lebesgue dominated convergence theorem. O

g(s,t)

ProoF oF THEOREM 5.1. Necessity. Assume that Jy(f) exists. Then, by
Definition 5.2 and Lemma 5.1 there exists a sequence f,, f,,... of step functions
as in (5.1) such that f, = f, n — oo, in Lebesgue measure on [0,1] X [0,1] and
such that Ax(f, — f,) < € for n, m large enough. In particular, for n, m > n,,
Ax(f,— fn) <1. Applying Lemma 52 to the sequence (f,—f,) we get
Ax(f - f,,) <1 and, finally, Lemma 5.3 gives Ax(f) < oo.

Sufficiency. If Ax(f) < oo, then, in view of Lemma 5.3 we can assume that
f>0.Let f,=[f]" Then f, > f, n > co, in Lebesgue measure. Now, applying

Lemma 5.3 to the sequence f — f, we obtain
(5.9) lim Ax( fo = fm) = 0.
n, m—oco

For each n there exists a sequence f,;, £ = 1,2,..., of step functions as in (5.1)
such that |f,,| <n, k=1,2,..., and f,, = f, in Lebesgue measure. By the
Lebesgue dominated convergence theorem we obtain that for each bounded g

(5.10) kli_H:oAx( fun— 8) = Ax(f, - &)

Therefore, taking into account (5.9) and (5.10) we can construct a sequence
of step functions f, such that f, - f, n = oo, in measure and for which
Ax(f,e1— ) — 0 arbitrarily fast as n - . In view of Lemma 5.1 and
in view of the fact the convergence in probability is metrizable, we get
Ay(f,—F,) = 0,n, m = oo, so that another application of Lemma 5.1 gives the
existence of Jy(f). O

REMARK 5.1. If X(¢),0 <t <1,is a p-stable process, 0 < p < 2, then

L(dx) = |x|77 ' dx,
so that, by (5.3)
o 2
2
o(u) = xu) Al)x™ P ldy = ———|ul?,
(u) = [*((2u)* A1) T
and, by (5.4)

F(w,u,v) = fo

0

fooo[(W[x]V"[y]‘/”)2 A 1|xP=ly =P =1 dx dy

w
- 1u|P|v|"G(—),
uv
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where

G(r) = [)wfow(r[x]l[y]l A l)x'p“ly‘p’ldxdy

2 Plog* 2 ’ P
= ——— + —_— .
2e—p) e oy )

Therefore,

F(w,u v)=—2—|w|"l<>g+ w +( 2 )2('wlp+|u|f'|v|v)
Y p(2-p) lullo] |\ p(2-Dp)

(2 Vel s 2R2P) e -
= (p(2—p)) [|w| (1+ 2 log ] |U|) + |ulP|v| ]

Also, by (5.3)
1/p

= __2_ lfpdx)l/p_(_—z—) f .
nfn,,,—(p(z_p)AfOH =\ 2@ —pa) Ml
so that, by (5.5)

ax(1) = |5y ) [ L1600

1+ p(2 —p)10g+ 17(s, ©)|(p(2 - p)a)”

2 1 (s5 Ml £C-5 D),

2 P4 m » 2
+|—F—— , b dsdt) .
(p(z—p)A) ([ [116.01 |
Therefore, Theorem 5.1 gives f € Z(dX ® dX) if and only if

- , | (s, )]
|f( 7t)| 1+ log* 1/p 4
/o/o ° ( ® (fal 1, ) du) (131 £(s, w) I du)

For 1 < p < 2, this result was obtained by Rosinski and Woyczynski (1986) using
a different approach.

X

)dsdt

dsdt < .

1/p

REMARK 5.2. It follows from Theorem 5.1 that the condition
— 11—
(5.11) 8(f)= [ [3(f(s,2))dsdt < o,
0 Yo
where

o(w) = L /y Sl[(wxyf A 1| L(dx)L(dy),

is sufficient for the existence of Jy(f).
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Indeed, first of all, it is not difficult to see that J(f) exists if and only if
JX( f ) exists, where X is the process corresponding to the Lévy measure L which
is the restriction to [0, 1] of L. In the latter case,

F=F(w,u,0) + ¢(u)(v),

where
(612)  F(w,u,0) = [ [(wlx]""[5]*) L(dx) L(dy) < 3(w).
Moreover, since

[(u.x)2 A 1] (i;)—y)2 A1 < (wxy)® AL,

we get
and, similarly,

Hence,

Af'o(1 (s, )) as= ['['s (" S )),,¢) (1, ) 1) dsat
<®(f),

and, in the same fashion we obtain
ALSIFC)l5) de < B().
So, finally,
[ [ o1, 21)S ¢ 0)1,) dsde < 4282 1),
which, taking into account (5.12), gives

Ag(f) <®(f) +A72@%(f),
so that the sufficiency of the condition (5.11) has been established.
Needless to say, the condition (5.11) is much easier to check than the
condition A 4(f) < oo which appears in Theorem 5.1. For example, if
L(dx) ~ |x|~?~"|log x|~ dx,
then, by elementary calculations, one obtains

|wl?(log fw]) ™, ife<1,
¢(w) ~ lw[P(log |w]) "'loglog lw|, ifc=1,
|w|?|log w|~¢, if ¢> 1.

In the particular case of ¢ = 0, we recover the known sufficient condition for the
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existence of a double p-stable integral,
[ [11(s, ) 108*| £(s, £) | st < oo
0o

[cf. Rosinski and Woyczynski (1984), Theorem 4.4.2, where also the n-tuple case
is considered].

REMARK 5.3. Since ®(w) < Cw? holds, it follows that the condition
[/f 4(s, t) dsdt < oo is always sufficient for the existence of [[f(s, t) dX(s) dX(?).
On the other hand, if X is a Gaussian process this condition is also necessary.
Hence, it is not difficult to see that this is a necessary and sufficient condition for
the existence of the double integral with respect to X whenever X has a
nontrivial Gaussian component.

REMARK 5.4. In Definition 5.2 one could have defined the double integral
[/fdX dX as an iterated integral. One can show that our definition is equivalent
with the iterated integral definition.

REMARK 5.5. It is obvious that the interval [0,1] in this section (and
Theorem 5.1) can be replaced by an arbitrary interval [0, T'], T < oo. What is
interesting is that our results are also valid for T' = oo but in this case the proofs
require essential modifications. In particular, our formulas lead to a nontrivial
condition for double integrability of f on [0, o) X [0, o) with respect to the
Poisson process.
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