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DECOUPLING INEQUALITIES FOR POLYNOMIAL CHAOS!

By STANISLAW KWAPIEN

University of Warsaw

Let X, X;,..., X; be a sequence of independent, symmetric, identically
distributed random vectors with independent components. The main subject
of this paper is the so-called decoupling inequalities, i.e., inequalities of the
form

E¢(Q(X, X,..., X)) < E$(Q(X,, X,,..., X;))
< E¢(CQ(X, X,..., X)),

where @ is a symmetric multilinear form with values in a vector space F
with all “diagonal” terms equal to zero and ¢ is a convex function on F.

1. Introduction. Decoupling inequalities, the main subject of this paper,
are useful in the study of multilinear random forms, multiple stochastic integrals
or more generally, polynomial chaos. They are particularly useful when one
considers problems such as convergence or existence of moments of polynomial
chaos. They were introduced by McConnell and Taqqu [8] for the purpose of
studying multiple stochastic integrals. In a more recent paper [9], they proved
that if X = (£, £,,..., £,) is a random vector with independent and symmetric
components and if X', X2,..., X¢ are independent copies of X, then for each
d-multilinear, symmetric form @ on R™ with all diagonal terms equal to zero and
each convex, symmetric function ¢ which fulfills the A, growth condition

E¢(cQ(X, X,..., X)) < E¢(Q(X,, X,,..., X,)) < E¢(CQ(X, X, ..., X)),

for certain constants ¢ and C depending only on ¢.

In the present paper we give a simpler proof of a more general result, namely,
we consider forms @ defined on R" with values in a vector space F and ¢ is an
arbitrary, convex and symmetric function on F. We also prove a contraction
principle for the polynomial chaos. The principle is essential in our proof of
decoupling inequalities and is also of independent interest. The decoupling

inequalities are later applied to obtain a comparison of moments of polynomial

chaos.

During the preparation of this paper many closely related results were
obtained by several authors. We would like to mention, besides the already
mentioned papers by McConnell and Taqqu, the papers by de Acosta [3],
Krakowiak and Szulga [5],[6], Kwapien and Woyczynski [7] and Zinn [10].

2. Contraction principle for polynomial chaos. A sequence of functions
(fi)i=1,2,..., » defined on a measure space (T, E, 7) is said to be a multiplicative
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system of order d iff -
ffi(t)'r(dt) =0, fori=1,2,...,n,
T
and

Jfetae e gen(t)r(de)
= [fe(oyr(ae) [ fi(e)e(de) -+ [ fen(e)r(at),

for each sequence ¢, ¢, ..., &, with values in the set {0,1,2,...,d}.

A sequence of independent random variables with mean value equal to 0 is
an example of a multiplicative system of any order, a sequence of martingale
differences is a multiplicative system of order 1 and a lacunary trigonometric
sequence is a multiplicative system of order d if the degree of lacunarity is
sufficiently large.

The following proposition is a slight generalization of a theorem from [4].

ProOPOSITION 1. Let (f;);—1
(Tr 59 7) and (gi)i=l
each i,

.....

.....

Ifilo < [82(5)0(ds)/ g
then for each convex function ¢ on R*~' we have
f#(F)dr < [4(G)do,
T )
where
F= ( fil fiz e fik)lsil<i2~-~ <ipsn? G= (gilgiz T gik)lsi1<i2-~~ <ip=n®
ProoF. Let K be a kernel on T X S defined by
K(t,s)=T1(1+a;fi(t)gi(s)), forte T, s€S,
i1

where a; = ([sg7(s)o(ds))™".
The kernel K fulfills the conditions

K(t,s) >0, forteT,s€S,
fK(t, s)r(dt) =1, forse S,
T

fK(t,s)o(ds) =1, forteT,
S

and
K2, 8)8.(5)8u(5) -+ gi(s)o(ds) = £i()1o(8) -~ £ (O),

foreachl < i, <iy<iy -+ <i,<nand t€ T Hence, by Jensen’s inequality,
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we obtain
[#(mydr= |, ¢( [, s)G(s)a(ds))f(dt)
< | [x (e 9)6(6(s))otas) |(ar
= fs #(G) do. | O

As an immediate consequence of Proposition 1, we obtain the following
corollaries:

n
Q(xy, x5,...,%,) = Z Z CironigXiXiy, =0 Xy
k=01<i< -+ <iy<n

where the coefficients c;
¢ on F we have

;, are elements of F. Then for each convex function

10 Bgyeeny

J(QUhs forees 1)) dr < [$(Q(81, 81, 8,)) do.
T S

COROLLARY 2. Let (1;);_,,... , be a Rademacher sequence on a probability
space (2, Z, P) and let (@;);_,,... , be a sequence of real numbers such that
la;| <1 fori=1,2,...,n. If $ and Q are as in Corollary 1, then

E¢(Q(ayry, agry,...,a,r,)) < E¢(Q(ry, 1y,...,1,)).

Let (§;);-.,..., » be a symmetric sequence of random variables, i.e., for each
sequence &, &,..., &, = +1 the sequence (¢;¢;),_; .., is equidistributed with
the sequence (§;);_, ... », and let (6,);_, .. , be a sequence of random variables
such that 6] < 1fori=1,2,..., n and such that the sequence (6;§;),_, .. ,isa
symmetric sequence of random variables.

LEMMA 1. Under the above assumptions on (0,);_,,... , and (§,);_,,. .. , we
have, for each @ and ¢ as in Corollary 1,

E¢(Q(0:1, 6:5,,..., 0,4,)) < ES(Q(£1, &5, £,))-

Proor. Let (r;);_,,.. , be a Rademacher sequence, independent of the
’’’’ » is equidistrib-

.....
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by Corollary 2 we get
E¢(Q(0:1, 0xs, .-, 0,€,)) = E&(Q(ri6:61, robaks, -, 1.0,£5))
= E(E{¢(Q(r101€1’ rbs€s,. -, rnongn))lG})
< E(E($(Q(rié1, robas - k) GY)
= E¢(Q(£1,§2’-~,£n))° o

THEOREM 1 (Contraction principle). Let (0,),-, ... , and (£;);-; ... , be two
sequences of independent, symmetric random variables such that for some

constants K, L and fori=1,2,...,n,
P, = ¢t) < KP(L|§| > t) fort > 0.
Then for ¢ and @ as in Corollary 1 we have
E¢(Q(n1, mgs---,m,)) < E¢(Q(KLE, KL, ..., KLE,)).

ProOF. Let (8,);~,.  , be a sequence of independent, symmetric random
variables which is mdependent of the sequence (7;);_,, ..., such that each §; is
distributed according to the law P(|§; =1) =1 — P(8 =0)=K L For i=
1,2,...,n and for ¢t > 0, we have

P(|8;n;| > t) < P(L§) = t).
Hence, we deduce that there exist a sequence (£)i-1.....» and a sequence
(6,);- 1...., n Of random variables (which, perhaps, are defined on another probabil-
ity space) such that the sequence (§; i=1,....n is equidistributed with the se-
quence (£;);-; ... , and the sequence (6; Lé i)i=1,....n is equidistributed with the
sequence (8,-1;,),,1 ,and |6 <1 fori=1,..., n By Lemma 1 this implies
that :

.....

E¢(Q(81"71’ L% PYR 'Sn"in)) = E¢(Q(61L£1’ §2L£2’ cees 6nL€-n))
< E¢(Q(LE, LE,,..., LE,))
= E¢(Q(L§1, L¢,,..., LE, ))
By Corollary 1 applied to the sequences (g);—;.. .= (8)i-1.. , and
(f)i=1,....n=(r/K);_y .. , We obtain that for each tetrahedral polynomial @
and ¢ as in Corollary 1
E¢(Q(5,,6,,..-,8,)) = E¢(Q(ry/K, 1/K,..., 1,/K)).
Hence, by the preceding inequality we get
E‘P(Q("h/K’ ny/K,..., "Tn/K)) = E¢(Q(81'71’ [ PR 8n"7n))
< E¢(Q(L&,, LE,, ..., LE,)).

An application of this inequality to the polynomial Q(Kx,, Kx,,..., Kx,) con-
cludes the proof of the theorem. O

3. Decoupling inequalities. Let Q(x) be a polynomial of degree d on R"
with coefficients in a vector space F, and let Q(x) = L¢_,Q,(x) be its expansion
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into homogeneous polynomials. @, is a homogeneous polynomial of degree k. We
associate with @ a d-affine, symmetric form

d ge, gy _
Q(x,, xy,...,%5) = Ave Y, —lzd'—(sl +ey+ oo +£d)d k
k=0 :
X Qplex; + ea25 + -+ +e4xy)
8182 o o 0

e
= Ave—--—d'—d(zs1 teg+ e 4ey)?

81X + 83Xy + ¢+ +Egxy
& teyt+ -0 gy
where the average is extended over all sequences ¢, €,,..., ¢, = +1 and where
the last expression under the average is equal to
8 1 8 2 LR 8 d
d!
It is easy to check that @ has the following properties:

(i) Q is, in each variable separately, an affine map on R", i.e, it is a linear
map plus a constant vector.
(ii) @ is symmetric, i.e., Q(xl, Xg,..., Xg) is invariant under permutations of
variables x,, x,,..., x .
(i) Q(x, x, ..., x) = Q(x) for each x in R™

A form @ with the above properties is unique. If @ is a homogeneous polynomial
of degree d, then the above formula is the well-known “polarization formula.”
We will refer to the above formula as the polarization formula.

Let X = (§,4,,...,&,) be a sequence of independent, symmetric random
variables and let X!, X2,..., X¢ be independent copies of X.

’

Qulexy + eoxy + - +egxy) ife +eg+ o0 +ey=0.

THEOREM 2 (Decoupling inequalities). There are constants c,C depending
only on d such that for each tetrahedral polynomial @ on R™ of degree d with
coefficients in a vector space F and for each convex function ¢: F - R™*, with
o(x) = ¢(—x) forx € F,

E¢(cQ(X)) < E¢(Q(X', X?,..., X9)) < E¢(CQ(X)).

We will need the following lemma.

LEMMA 2. There is a constant K depending only on d such that for all
¢, Q, X as in Theorem 2

E¢(Qu(X)) < E¢(KQ(X)), fork=0,1,2,...,d.
(Q;, is the kth homogeneous polynomial from the expansion of Q.)

PROOF. For each k there exists an integrable function g, on [—1,1] such
that [1,t'gy(t)dt=0 for i+ k, i<d, and [L thg(t)dt=1. Let C,=
J11lgx()) at.
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By Jensen’s inequality we obtain
E6(@u(X)) - Eo( [ QeX)e(t) at)

< Gi' [ (Eo(CQUeX)))|gi(t) | dt < Bo(CQ(X),

because, by Theorem 1, for each £ € [-1,1]
E$(CQ(tX)) < E¢(C,LQ(X)).

Putting K = max, ;. 4C, we conclude the proof of Lemma 2. (It can be
shown that K can be taken to be equal to 2%.) O

PROOF OF THEOREM 2. Let Xi= (¢}, ¢i,..., &) fori=1,2,...,d. Then for
eachl <i, <iy< - <ip<nand1<j, <j,< --+ <J,<d wehave

E{thtl -+ EMX'+ X2+ - +X7)

1 1
S de e ) g v)

1
(e € e ).

Hence, by the tetrahedrality of @ we obtain

q X1+X2+...+X;i
E{Q(Xl, X2’.,.’Xd)|Xl + X2 + oo +Xd} = Q( d )'
On the other hand,

{ X'+ X2+ .- +X¢
£l |

Thus by Jensen’s inequality, we get
1
E¢(Q((—1X)) < E¢(Q(X1, X2,..., X%)).

By Lemma 2 and by the convexity of ¢ we have
1 d 1 1 1
Es((d+1)'d-KQ(X)) < ¥, ——E¢ K“Qk(—X) <Es Q(—X) :
podt1 d d
which, together with the preceding inequality, proves the left-hand side in-

equality in Theorem 2 with ¢ = (d + 1)"'d " ?K .
By the polarization formula and by the convexity of ¢ we obtain

Eo(Q(X', X2,..., X%))

d 1 d+1
SAvek§0d+1E¢( T e, + &g + -+ +egl?k

XQu(e, X' + e X2+ -+ +edEdXd)).
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For a fixed sequence ¢,, ¢, ..., &,, let us write
F 1 2 d > —
gi_81§i+82£i + ce +£d§i’ 1—1,2,...,n,

and let X = (,£,,...,£,). For each ¢>0 and i = 1,2,...,n, P(§| = t) <
dP()¢;| = t/d). Therefore, by Theorem 1 and Lemma 2 we obtain

d+1 -
E¢( qr et +£d|d_ka(X))

d+1
(X))

d+1
Zr ") < Eof
d+
d!

< Bo|

< E¢(

Hence, we have

ld“KQ(X)).

Eo(Q(XY, X2,..., X)) < E¢(Kd;' 1(;z“"f’c)(.x)),

which proves Theorem 2. O

REMARK 1. If, in addition to the assumptions of Theorem 2, Q is homoge-
neous of degree d, then the above proof can be made much more direct and the
constants ¢ and C can be improved to be equal to d~¢ and d??/d!, respectively.
Moreover, if X = (§,,£,,...,£,) is a p-stable symmetric random vector, then
the constants ¢ and C can be even further improved to d¥*/?~V and d?/?/d!,
respectively.

As an application of the decoupling inequalities we obtain the following:

COROLLARY 3. Let us assume that X = (¢, ¢,,...,§,) is a sequence of
independent symmetric random variables such that for some p > q > 1 and for a

constant Cp, q
1/p
)" <.

for each Banach space F and each sequence Xg, X15...,%, € F.
If Q is a tetrahedral polynomial of degree d with coefficients in a Banach
space, then

q\1/q

n

Xo+ X xd;

i=1

E E

b

n
Xo+ X xf;
i=1

(EIQU)F)” < (..o < (EIQUOI),
where ¢ and C are the constants from Theorem 2.
Proor. By induction on d we obtain easily
(Elé(x", x2,..., X)) < (c, ) (EIQ(x*, x2,..., X)|")"".

Combining this with Theorem 2 we conclude the proof. O
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REMARK 2. A sequence X = (£}, &,,..., §,) of independent, symmetric and
identically distributed random variables satisfies the assumption of Corollary 3
with a constant C, , independent of n if and only if there exists a constant
C such that [*sP"!N(s)ds < Ct’N(t) for sufficiently large ¢, where N(¢) =
P(|¢;] = 2).

For a special class of random variables (£;) a result similar to the one in
Corollary 3 was obtained by Borell [1], by the method of hypercontractive
operators. Later it was extended by Krakowiak and Szulga [5] to a larger class of

random variables.

REMARK 3. If @ is a polynomial of degree d on R™ and X is a Gaussian
vector in R™, then there exist a sequence of tetrahedral, homogeneous polynomi-
als @™ on R”" of degree d and a sequence of Gaussian, symmetric vectors X™ in
R™ such that

E|EQ(X) + @™(X™) - Q(X)| -0, for each p;
cf. Borell [2].
Since for a Gaussian random variable (§;);_, 5 ... ,, the constant G, , appear-

ing in Corollary 3 may be taken to be equal to c‘/ﬁ where ¢ is some universal
constant, we obtain by Corollary 3 that

(EIQ(X)IP)” < (cype) (EIQI?)"?, forl<gq<p,

holds for all polynomials of degree d.
Hence, using the power series expansion we obtain

EexpM|Q(X)|”* < C, forA>0and C < oo,
which depends only on d and E||Q(X)]|.

We believe that inequalities similar to the decoupling inequalities hold for a
much more general class of functions ¢ than the class of convex functions. The
following result, which is a generalization of an observation made by Borell,
shows that this is true at least in the case of Gaussian random vectors.

PROPOSITION 2. Let us assume that € and X, in addition to the assumptions
made in Theorem 2, satisfy the following: @ is homogeneous and X is a
Gaussian random vector. Then for each convex, symmetric subset K of F

. 3dP(d‘d/2Q(X) ¢ K)<P(Q(X', X2%..., X)) ¢ K)

d/2

d!

< 2dP( Q(X) e K)

Proor. By the polarization formula we have

n &€ e g
Q(X!, X2,..., X%) = .L\ve—‘—"’g'——"’Q(eLX1 + e X2+ - +e,XY).

For each ¢, ¢,,...,e,= +1 the random vector & X' + g, X2+ -+ +¢,X¢ is
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equidistributed with d'/2X. Hence, we obtain

P(Q(XY,...,X%) ¢K) < P( Qe X' + e, X%+ -+ +¢,X%) ¢ K,

d!
for some ¢, €,,..., ;= il)
1 d/2
< 2"P(E'—Q(dl/2X) & K) = 2"‘P( T Q(X)e K)

This proves the right-hand side inequality. To prove the left-hand side in-
equality we need the following lemma.

LEmMA 3. If Y is a random vector in a finite-dimensional vector space F and
K is a convex subset of F such that EY & K, then

P(Y&€K)>} inf (Elx(Y)- al)z/EIx’(Y) —af.
x’eF’, acR! .

Proor. This result follows easily from the theorem on separation of convex
sets and the fact that for each real random variable £ with E¢ = 0 the inequality
P(¢ <0) > L(E|¢)?/EE? holds. O

Let X = (X'+ X2+ --- +X%)/d. Then the random vector (X' — X, X2 —
X,...,X-X) is Gauss1an and independent of X. Hence, if we put Y, =
Q(Xl X+a,X2-X+a,..., X*— X +a), then PQ(X X2,. LX) ¢
K|X} = G(X), where G(a) = P(Y & K). By Corollary 3 we deduce that for
each x’ € F’ and a € R!, 3 9E(x'(Y,) — a)? < (E|x"(Y,) — a|)?, because for a
Gaussian sequence X the constant C, , in Corollary 3 may be taken to be equal
to V3. Moreover, we have E{Q(X?, X2 ., X%)|X} = QX) (cf. the proof of
Theorem 2). Hence, by Lemma 2, we obtam that on the set {Q(X) ¢ K},
P{Q(X', X?2,. Xd) & K|X) > 37%/4 and this yields

P(Q(Xl, X?,...,X) ¢ K)>3"4P(Q(X) ¢ K)
=3"9/4P(d"9?Q(X) ¢ K). o

REMARK 4. Another “nonconvex result” was obtained by de Acosta [3]. He
proved that in the case when X is a p-stable random vector, then decoupling
inequalities are valid for ¢(x) = ||x||” where r < p.
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