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A CONDITIONAL LIMIT THEOREM FOR THE FRONTIER OF A
BRANCHING BROWNIAN MOTION

By S. P. LALLEY' AND T. SELLKE?
Columbia University and Purdue University

We prove a weak limit theorem which relates the large time behavior of
the maximum of a branching Brownian motion to the limiting value of a
certain associated martingale. This exhibits the minimal velocity travelling
wave for the KPP-Fisher equation as a translation mixture of extreme-value
distributions. We also show that every particle in a branching Brownian
motion has a descendant at the frontier at some time. A final section states
several conjectures concerning a hypothesized stationary “standing wave of
particles” process and the relationship of this process to branching Brownian
motion.

1. Introduction. Branching Brownian motion is the stochastic process
. which evolves as follows. Starting at time ¢ = 0 and position x € R, a particle
moves according to the law of a standard Brownian motion until a random time
T independent of the motion, with a unit exponential distribution P(T > ¢) =
e~ % At this time the particle splits into two identical particles, which then begin
independent branching Brownian motions emanating from the point of fission.
Thus, at any time ¢ > 0 the “state” of the process is completely described by the
positions X{(t),..., X%, of the particles in existence at time ¢, arranged in
order from smallest to largest; the random process N(?), ¢t > 0, is the “Yule” or
“binary fission” process [cf., for example, Athreya and Ney (1972)]. Observe that
the processes (X7(2)), i< n) * € R, may be constructed from a single process
(X;(#)1 < < Ny commencing at the origin by

1) X:(t) = X,(t) +x, i=1,2,..., N(t).

Interest in the branching Brownian motion has recently centered on its
connection with the so-called KPP-Fisher [for Kolmogorov, Petrovsky and
Piscounov (1937) and Fisher (1937)] equation
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In particular, if M(t) = max, _; . n¢)Xi(¢) and w(¢, x) = P{M(¢) < x}, then u is
the (unique) solution to the KPP equation for Heaviside initial data (0, x) =
1{x > 0} [cf. McKean (1975)]. Now the main result of Kolmogorov, Petrovsky
and Piscounov has it that this solution settles down to a “travelling wave” with
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velocity V2 for large ¢; thus,

(3) tlim P(M(t) — m(t) <x} =w(x), VxeR,
where

(4) lw” + V2w + w?-w=0

and

(5) m(t) = med M(t) ~ V2t.

By exploiting the connection between the branching Brownian motion and the
KPP equation, Bramson (1978) showed that the centering term m(t) satisfies
m(t) = V2t — (3/2V2)log t + O(1), and by using somewhat different techniques
based on the Feynman-Kac formula, Bramson (1983) improved this by showing
that

(6) m(t) = V2t — (3/2V2 )log(¢) + constant + o(1).

Our interest in the branching Brownian motion began with the realization
that despite the weak convergence (3) the corresponding pointwise ergodic
theorem cannot possibly hold for all x € R, i.e,,

(7) £ jo‘l{M(s) ~m(s) <x}ds» w(x) as.

The argument for this is very simple. Suppose that the convergence indicated in
(7) did hold for all x. Then by (1) it would follow that

t1 fotl{Mx(s) -m(s) <x}ds—> w(0) as,

where M*(s) = max, _; . ni)X7(5). On the other hand, if independent branching
Brownian motions were started at 0 and x, respectively, then with positive
probability the two particles would meet before either fissioned, and therefore a
successful “coupling” could be achieved with positive probability. This would
imply that lim ¢~!ff1{M(s) — m(s) < x}ds is a constant independent of x,
contradicting the fact that w(0) # w(x) for some x # 0.

Our interest was further piqued by a representation for the travelling wave
w(x) given by McKean (1975), according to which

w(x) = E exp{ —Ye“ﬁx}, x €R,

where Y is the almost sure limit of the positive martingale Y(¢) =
Y Nexp{V2 X,(t) — 2t}. McKean’s statement is actually false [his argument fails
because it depends on his proof of (3’) from (2’), cf. McKean (1976)]; in fact, we
will show in Section 2 that Y =0 as. [cf. (24)]. But the “representation” is
nevertheless interesting because, if it were true, it would exhibit w(x) as a
mixture of translates of the extreme value distribution exp{ — e“ﬁx}. This would
suggest that in a typical “sample path” a “tidal wave” of particles eventually
builds up, with a random “delay” of (log Y)/ V2, after which the behavior of the
maximum M(¢) is more or less determined by the extreme-value mechanism.
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The purpose of this note is to salvage this appealing intuitive picture of the
sample path behavior of the branching Brownian motion. Our main result is

THEOREM 1. Let Z(t) = ENOW2 t — X,(£))e2XdO=2t Thep

i=1

(8) Z= lim Z(t)

exists, is finite and is positive with probability 1. Let Z, = o{(X(¢)), <, Nty

0 < t < s}. There is a constant C > 0 such that for each x € R,

(9) lm lim P{M(t+s) <m(¢t+s)+x|#} = exp{ —CZe“/Ex} a.s.,
§—00 -0

for suitable versions of the conditional probabilities. Consequently, the travel-
ling wave w(x) has the representation

(10) w(x) = E exp{ — CZe~ 2%},

It will turn out that the constant C in (9) and (10) is determined. by the tail
behavior of w(x): In particular, as x — oo,
(11) 1 - w(x) ~ Cxe™ V2=,

The pointwise ergodic behavior of M(¢) — m(t) is apparently much more
difficult to determine. We conjecture that '

(12) ! ](;tl{M(s) —m(s) < x}ds — exp{ —CZe“/E"},

almost surely for all x € R, but have had no success in proving this. (See Section
4 for some background for this conjecture.)
In Section 3 we will prove

THEOREM 2. Suppose two independent branching Brownian motions
(XP(2)s- -5 Xfagy) and (XE(2), ..., XBa,)) are started at 0 and x, respectively,
where x < 0. Then with probability 1 there exist random times t,1 + o such
that
(13) MA(t,) < M3(t,)
for all n, where

MA(t) = max XA(¢)
1<i<N4(2)
and
ME(t) = max X5(t).

1<i<NB(2)

COROLLARY. Every particle born in a branching Brownian motion has a
descendant particle in the “lead” at some future time.

2. Proof of Theorem 1. Let X(¢), i =1,2,..., N(¢), denote the positions
of the particles in existence at time ¢#> 0 in a branching Brownian motion
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started at x. Let f(y) be a function of ¥ € R satisfying 0 < f < 1, and let
N(t)

(14) u*(t,x) = E T f(X¥(0).

Then u* is the unique solution of the KPP equation (2) with initial data
u*(0, x) = f(x).[That (14) solves (2) is easily proved by conditioning on the time
of the first fission, cf. McKean (1975). Uniqueness follows from the maximum
principle for parabolic equations, cf. Proposition 2.1 of Aronson and Weinberger
(1975) for the argument.] Similarly,

N(t)

(15) a(t,x) = ETT1(/2¢ - X7%(¢))

is the unique solution of the modified KPP equation

16 o 19%%

(16) at 2 Ix®

for the initial data 2(0, x) = f(x).

Notice that if w(x) is the increasing solution to (4) with lim

lim, _, _ w(x) = 0, then the function
a(t, x) = w(x)

is a solution to (16), hence by (15) and uniqueness of solutions

N(#)

(17) w(x) = ET]w(V2t - X7*(1)),

for all x € R and ¢ > 0. Now the branching Brownian motion is Markovian, and
conditional on everything that has happened up to time ¢ > 0 the “future” of
the process is the same as if independent branching Brownian motions were
started at time ¢ at each of the p0s1t10ns X7 H(t), X3 *(2),- .-, Xn(y- Thus, in
view of (17) we have

aa
+V2— —a(l - &
ax u( u)’

w(x) =1 and

X — 00

PROPOSITION 1.  The process W*(t) 2 TINOw(y/2 t — X;*(t)) is a martingale
with respect to the filtration %, 2 o (everything that has happened up to time t).

Since W(¢) is nonnegative and bounded,

(18) W* 2 lim W*(t)

t— o0
exists almost surely, with 0 < W* < 1 almost surely and
(19) EW* = w(x).

Now consider the positive martingale T¥(9e/2X«©=2¢_ This converges almost
surely to a finite nonnegative limit. It therefore must be the case that

20 i 2t — X,(t +00 a.s.
(20) 15?1512@)(‘/_ (2)) > +o as

because otherwise the value of TN®eV2X(0-2¢ would fluctuate for arbitrarily
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large ¢, contradicting the martingale convergence theorem. In view of (1) it
follows from (20) that for all x € R,

21 min 2t — X7*(¢t + S.

(21) lsisN(t)(‘/_ o )) T T as

The convergence (21) indicates that the large time behavior of the martingale
W*(¢) is intimately related to the tail behavior of the distribution function w( y).
It is known that as y - o

(22) 1—w(y) ~ Cye V2
[cf. Bramson (1983), equation 1.13. Caution: McKean (1975) claims that 1 —
w(y) ~ Ce“/z_y, but this is false; cf. McKean (1976).] Now it follows easily from
(21) and (22) that as t - «©

N(#)

Y logw(V2t - X;%(¢))

i=1

log W*(¢t)

(23) R \
~ ¥ - C(V2t- X,(t) + x)exp{V2 X,(¢) — 2¢ - V2x}

i=1
~ —CZ(t)e V2* — CY(t)xe V2%,
where
N(t)
Y(t) - Z eﬁx,(t)—zt
i=1
and
N(t)
Z(t) = ¥ (V2t - X,(¢))elXun-2t,
. i=1
It is clear that Y(¢)/Z(t) — 0 a.s. as ¢ - co by (20). Since Y(¢) is a positive
martingale lim Y(#) = Y > 0 exists almost surely, and, consequently, Z(¢) - + oo
a.s. on the event {Y > 0}. But by (23) and (18) this implies that W* = 0 a.s. on
{Y > 0} for all x € R. Therefore

(24) P{(Y>0} =0,

because EW* = w(x) » 1 as x = o0, and 0 < W* < 1; moreover, for every
x€ER

(25) tl_i_)n:oZ(t) = (—eﬁ‘/C)log W* as,
by (23), (24) and (18). This and (19) prove (8) and (10).
McKean (1975) shows that
(26) tlinolo {m(t+s)—m(t) —V2s} =0,
for each s > 0. [This is, of course, also an immediate consequence of the Bramson

(1983) result quoted above in (6).] Now for any s > 0 the “future” of the
branching Brownian motion beyond time s depends on the “past” % only
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through the values X(s), Xy(s),..., Xy)(8), by the Markov property. More-
over, the particles alive at time s give rise to independent branching Brownian
motions with initial positions X,(s),..., X Nesy(8)- Thus, for each x € R

N(s)
(27) P(M(t+s)<m(t+s)+xZ}) = []u(t,x+m(t+s) - X(s)),

where
(28) u(t,x) & P{M(t) < x}

is the solution to the KPP-Fisher equation (2) with Heaviside initial data.
Combining (26), (27), (28) and (3) gives

tlim P{M(t+s) <m(t+s)+x|%)

(29) N(s)
= [T w(x + V25 - X,(s)) 2 W(s).

i=1

In view of (18) and (25) this proves (9). O

3. Proof of Theorem 2 and the corollary. To prove the corollary it
suffices to show that if independent branching Brownian motions are started at a
finite number of positions x,, x,,..., x,, then with probability 1 there will be a
time ¢ at which a descendant of the particle started at x, is in the “lead.” Let
“A” and “B” denote independent branching Brownian motions X/(2),..., X{a £
and XJB(t),..., X8s(t)) as in Theorem 2. Then there is a nonzero probability
that at time ¢ =1, the “A” process will have given rise to (n — 1) or more
particles, all of them to the right of max(x,,..., x,), while process “B” will
consist of a single particle to the left of x,. But Theorem 2 guarantees that a
descendant of “B” will eventually take the lead. Consequently, it follows from
the Markov property and the translation invariance of branching Brownian
motion that if independent branching BM’s are started at x,, x,,..., x,,, then at
some future time a descendant of the particle started at x, will be in the lead.
Thus, the corollary follows from Theorem 2.

Our original proof of Theorem 2 made use of Theorem 1, but the referee and
Burgess Davis independently came up with the following clever argument, which
uses only (3) and basic probability.

Let

9, = o(everything that happens in process “A” by time ¢ + 3
and everything that happens in process “B ” by time t) .
Let T}, be the first time in the interval [k — 1, £ — }) at which

(2) M5(t) = m(t) — N,
and
(b) MA(t+ 1) <m(t+ 1) + N(<m(t) + N, + 1),

where N, is for the moment fixed. Let T;* = T}, A (k — }). Note that T* < T)*, ,,
and that T,, M®(Tj*) and M4(T;* + }) are all &p,-measurable.
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Let ¢ > 0. We will first show that
(30) P{T, < o infinitely often} > 1 — 2¢,

if N, is chosen large enough. By (3) and Fubini, N, can be chosen so that for
large s,

(31) P[p{te [s—1,s—1%): MB(¢) > m(t) - N} < £] <e
and
(32) Plp{te[s—1,s-1): MA(t) < m(t) + N} < &] <e,

where p is Lebesgue measure on R. Consequently, for large %,

(33) Plp{te [k -1,k —1):(a) and (b) hold} > &] > 1 — 2e,
and hence

(34) P{T, < 0} >1— 2.

Since (34) holds for all large %,

P{T, < oo infinitely often} = P[ N U(T,< oo}]
n=1k=n

= lim P[ U (T, < oo}]

R0 | pop

>1— 2e.
If T}, < oo, then by (a) and (b)

(35) ME(TX) > MA(T* + 1) — (2N, + 1).

Thus, we will have MB(Ty* + 1) > MA(T* + 1) if T, < o0 and ME(T* + 1) —
MB(T¥) > 2N, + 1). But the conditional distribution of MZ(Ty* + 1) —
MB(T,*), given Yy, 1s clearly stochastically larger than the distribution of X %),
where X(t) is standard Brownian motion. Thus, it follows that

(36) 1{T) < 0} P{MA(T¥ + }) > MB(T* + })|%z, } < P{X(}) < 2N, +1}.

Let j be a positive integer. By (30) and (36), the probability that
MA(T* + 1) > MB(Ty + 1) holds for all of the first m finite T}’s, k > j, is less
than

(37) [P{X(}) < 2N, +1}]™ + 2.
Letting m — oo shows that

(38) P{M*(t) > MP(t),forall t > j— 1} < 2¢
and hence

(39) P(3t,10: MA(t,) < M5(t,)} =1 - 2e.

Since ¢ > 0 was arbitrary, we are done. O
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4. Conjectures. What does a branching Brownian motion look like in the
vicinity of its frontier? In this final section we will elaborate on the “tidal wave”
story mentioned in Section 1. This “tidal wave” story leads to the conjecture
12).

Start off with a Poisson point process with intensity e ** on R, where A is a
positive constant. Then start independent branching Brownian motions at these
points, but where the Brownian motions have drift —p, with p another positive
constant. Let f(Z, x) be the total expected particle density at time ¢ and at
position x, so that the expected number of particles in the measurable set A c R
at time ¢ is [, f(¢, x) dx. Then, of course, f(0,x)=e %, and f(¢ x) evolves
according to the PDE
af 1 92 f af
9t 2 9x? ”ax I
If we take p = p(N\) = (A2/2 + 1)/A, then 3/dtf(t, x) = 0,so that f(¢,x) = e *
for all ¢ > 0. Thus, the expected number of particles in a set remains constant
over time. From now on, use p = u(}\) = (A2/2 + 1)/\. Note that p(\) is
minimized by A = V2, and that u(v2) =

Let M,(t) equal the position at time ¢ of the rightmost particle in the above

process. What does this stochastic process look like? First of all,
M(e) = MNO) + at, ),

i.e., the distribution of M,(t) is a location shift of the distribution of M\(0),
which is easily seen to be the extreme-value distribution with c.d.f. exp(—e~**).
Furthermore a(¢, A\) < 0 for £ > 0. The argument for all this is as follows. Each
original particle has a rightmost descendant at time ¢ As in Section 1, let
u(t, x) = P(M(t) < x}, where M(¢) is the maximum at time ¢ of a standard
(driftless) branching Brownian motion started at position 0. Let @,(¢, x) =
u(t, x + pt). Then @,(¢, x) is the c.d.f. for the difference in position between a
rightmost descendant at time ¢ and the corresponding original particle. Since the
original particles came from a Poisson point process with intensity e ** and
since the branching Brownian motion starting at different points are indepen-
dent, the point process of “all rightmost descendants at time ¢” is also a Poisson
point process with intensity

g(t,x) = [~ e (¢, dy)

(41) = e [7 eMmy(t, dy)

— 00

= exp{ —Mx — a(t, )\))}’

(40)

where

(42) a(t,\) = 1log{ /” eV, dy)}

Since [§°f(¢, x) dx > [°g(t, x) dx (the expected number of particles to the right
of 0 at time ¢ is greater than the expected number of rightmost descendants to
the right of 0 at time ¢) we must have a(¢,A) <0 for ¢ > 0.
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It is not hard to show that M,(t) > — o0 a.s. if A < y2. Indeed, suppose that
we start with a Poisson point process with intensity e **, A < y2, and then start
independent standard branching Brownian motions (with no drift) at each of
the points. Let

o0
(43) Y(¢)2 Y eV2Xun-2t,

i=1
where the summation is over all particles present at time ¢. Then Y(0) is almost
surely finite [although EY(0) = o], and Y(#) is a positive martingale if one
conditions on the value of Y(0). As in (20) of Section 2, it follows that

(44) min{y2¢— X,(t)} - +0 as,

since otherwise Y(¢) would fluctuate for arbitrarily large . Thus, M,(t) goes to
— oo at least as fast as {y2 — u(A)}t if A < V2. It follows that a(t, \) > — oo as
t - oo for A < V2.

For A\ > V2, we conjecture that a(¢, \) converges (probably monotonically)
down to a finite limit a(oo, A) as £ = co. We further conjecture that the entire
(point-process valued) stochastic process converges rapidly in total variation
norm to a limiting stationary (point-process valued) stochastic process which is
strongly mixing. It would follow that

(45) t! fotl{MA(x) <x+a(o,\)} ds - exp{e ™} as.

This limiting stochastic process would be a sort of “standing wave” of particles.

A similar but much simpler “standing wave of particles” can be obtained if
one eliminates the branching: If independent Brownian motions with drift —A /2
are started at the points arising from a Poisson point process with intensity e **,
then the distribution of the ensemble of particles at time ¢ is still that of a
Poisson point process with intensity e ~**,

Now, what does all this have to do with our original problem? We conjecture
that a “wave of particles” builds up behind the frontier of a branching Brownian
motion. If one subtracts off the “position” of this wave, then the resulting
point-process valued stochastic process converges in distribution (in the proper
sense) to the A =2 “standing wave” process. More specifically, if
Xy(t),..., Xn( are the positions at time ¢ of the particles in a branching
Brownian motion, look at the values of

X,(¢) — m(t) + a(c0,v2) — 27%log CZ(t)

which fall inside an interval [b, ©0), b € R fixed. This “point process on [ b, )”
valued stochastic process should converge (in total variation norm, say) to the
“point process on [b, 0)” valued stochastic process obtained from the A = V2
“standing wave” process, for every b € R. Our conjecture (12) in Section 1 is a
consequence of this and (45).
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Theorem 1.
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