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STOPPING TIMES OF BESSEL PROCESSES!

BY R. DANTE DEBLASSIE
Texas A & M University

Let X be a Bessel process with parameter a, starting at x > 0. Gordon
[3] obtained L” inequalities which relate stopping times to stopping places
for the case « = 1, x = 0 and p > }. Rosenkrantz and Sawyer [5] extended
them to a > 0, x =0 and p > 1. Burkholder [1] obtained results for « a
positive integer, x > 0 and p > 0. Here we consider arbitrary starting points
x, a > 0 and p > 0. The L? inequalities are valid for a > 2 with p > 0, and
also for 0 < @« < 2 with p > (2 — a)/2. Examples are constructed to show
that for 0 < a < 2 with p < (2 — «)/2, the L” inequalities cannot hold.

0. Introduction. Let X? be the Bessel process with index a > 0, where
x>0 and X3(0) = x; i.e., X¥(-) is that diffusion governed by the differential
operator L, on [0, o) defined by

o

1 -1
Lf=5|17x) + —1 ()|,

with domain
2(L,) = {f € CX([0, 0)): for some 0 < a, < a,,
f(x) = f(0) for x € [0, a;] and f(x) = 0if x > a,}

(see Ikeda and Watanabe [4], Example 8.3, pages 223-225).
In Gordon [3], it was shown for @ = 1 and starting point 0,

(0.1) c,Er? < EX¥(1)*? < C,Er>®,

for any stopping time 7 of X(-) with E7” < o0, p > 1. He also pointed out
that the right-hand inequality is true for any stopping time 7 of X(-) and
p > 0. Nothing was said about p < 1 for the left-hand inequality and starting
points other than 0 were not considered. Burkholder [1] allowed other starting
points and showed that for a« = 1,2,3...

(0.2) o nE(7+ x]?)° < E[X2(7)*]*P < C, E(7 + |x?)",
for any stopping time 7 of X* and p > 0 where
XH7)* = sup XXt A7)
0<t<oo
Next, Rosenkrantz and Sawyer [5] obtained (0.1) for general a > 0, provided 7 is
bounded and p > 1. They did not consider other starting points or 0 < p < 1. It

is the purpose of this paper to discuss these results for all starting points x,
powers p > 0, and indices a > 0.

Received July 1985; revised February 1986.

!This research was partially supported by NSF grant DMS-8301367.
AMS 1980 subject classifications. 60J60, 60G40.

Key words and phrases. Bessel processes, stopping times, L?-inequalities.

1044

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

L ®
www.jstor.org



STOPPING TIMES OF BESSEL PROCESSES 1045
1. Main results.
THEOREM 1.1. There are positive constants c, , and C, , depending only on

a and p such that:
(i) For a > 0, p > 0, any stopping time 7 of X;(+),

(1.1) ¢y o ELr+ 2217 < E[XX(1)*]*" < C, ,E[7 + x*]".
(ii) For a > 2 andp > 0,
(1.2) ¢, B[+ x2]? < E[ X3(7)]*,

provided either P(1 < «0) =1 for a > 2 or Elog 1 < oo for a = 2.
" (iil) For 0 <a <2, p>(2—a)/2 and ET? < 0,

(1.3) ¢y oE[7 +2%]” < E[X%(7)]™”.

It still remains to consider the case when 0 < a < 2 and p < (2 — a)/2. The
next result shows (1.3) [or (1.2)] cannot hold for these values of p and a.

THEOREM 1.2. Let0<a <2 andx > 0.
(i) There is a stopping time 7 of X(+) with 0 < ET? < o0 forp < (2 — @)/2,
ETP = o for

2 —_
® and E[Xi(r)]* =o0.

D=

(ii) There is a sequence T, of stopping times of XX(-) with E[7,]® %72 < oo
and

E[5,]° "

——————5— > ®© asn — oo.
E[X3(r,)]

REMARK. Note that (i) in Theorem 1.2 also shows the condition E7? < co in
Theorem 1.1(iii) cannot be dropped. Also, (i) is well known for the case a = 1.

2. Proofs of the main results. We use the martingale generating function
approach of Gordon [3] and Rosenkrantz and Sawyer [5]. Our method differs in
that the key to it all is the following representation of X7(-) (Ikeda and
Watanabe [4], pages 223-225) which enables us to handle the cases left open by
these authors: Let (2, %, P) be a complete probability space. Suppose {%;
t > 0} is an increasing family of complete ¢ subalgebras of #. Let B(¢) be a one
dimensional {%,} Brownian motion. Then we may represent

(2.1) xx(8) = [¥0)]”,
where Xj‘2 is the unique (nonnegative) solution of

22) dy,=2[Y,v 0] dB, + adt,

= x2
Y, = x°.
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Notice that the coefficients ¢(w, t) = 2[Y(w) V 0]*/2 and b(w, t) := a satisfy
sup |b(w, £)| v |[6(w, £)]*/Y(w)| < aV 4 < o.
t,w

Hence by Remark 1.3(ii) of DeBlassie [2], for p > 0 there are positive constants
C,, . and c, , such that for any stopping time 7 of X7(t),

(2.3) ¢y E[7+22]? < E[XX(1)*]*’ < C, ,E[7 + x2]".
LEMMA 2.1. Let a > 2, x > 0 and t be a stopping time of XX(-) satisfying
P(tr <o0)=1fora>2orElogr < ooif a=2.Then foranyp >0
E[XX(7)*]" < G, E[Xi(7)]*,
where C, , is independent of T and x.

Proor. By Theorem 2.2 in Burkholder [1], page 189, the case a = 2 is true.
By the proof of that Theorem 2.2, for the case a > 2 it suffices to show

(2.4) P(|X(t)| < rforsomet>0) = (r/x)* %, O0<r<ux.
But this is immediate since both sides solve the problem
L,f(x)=0 forx>r,
f(r) =1,
f(c0) = 0. O
PrOOF OF THEOREM 1.1. Part (i) follows immediately from (2.3). Part (ii)

follows from (2.3) and Lemma 2.1. For part (iii), let 0 <a <2, p > (2 — a)/2
and 7 be a stopping time of X*(-) with ET? < «. Choose

(2.5) a>1Vv (2p/[2(p-1) +a])
and note if p > 1, ¢ can also satisfy

D

2.6 <
(2.6) 9< 277
Let g’ be conjugate to g,

1 1

- + — = 1.

q9 q
Then
(2.7) ﬁ, <1.

q

For ¢ > 0 and x > 0, pick u(¢, y) € C¥R X R) with

u(t,y) = (t+e+x?)?(y+)”", (2 ) €[0,00) x [0,).
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Notice on [0, o0) X [0, 0), by (2.7)
d%u, N du, N du,
dy? * dy at
> 2£,(£; - 1)(y +&)” T Nt + e+ x2)P?
q\q
+a-;i,(y + &) Nt 4+ e+ x2)P 0+ %(t +e+x2) T y+e)”7

+ € p/q'—1
=(t+e+t xz)""{f;(—y—;) [2(2; - 1) + a]
qg’'\t+e+x q
+ & p/q’
+£(_y__2) .
g\t+e+x

Since p/q’ — 1 <0and 2(p/q’ — 1) + a > 0 [by (2.5) and p > (2 — @)/2],

2y

ﬁ,sp/f-l(z[ﬁ, - 1] + a) + Psp/a s inf (") A int ()
q q q s<1 s>1
2.8
28) 2[4(2[4_1]+a)]A£
q q q
= C; > 0.
Thus on [0, o0) X [0, o0)
%u du du

. ——Sta—+ —— > C(t+e+ 22",

(2.9) 2y 35 o 3y Fy (t+ e+ x?%)

where C, is independent of & > 0.
Hence by Itd’s formula and optional stopping,

E[tAnr+e+ xz]p/q[l/:i‘z(t/\ T) + s]p/ql
= Eu(t A7, Y (¢ A 7))
(e+x2)P + EftMCl(s +e+x2)” 'ds
0

\%

C
= ;‘-E[(T At+e+x2)’ — (22 + €] + (e +22)°

v

C
;IE('T At+e+x?)? [since C < % < p by (2.8)],
and using Hélder’s inequality we end up with
C ’
?IE('T ANt+e+x?)P <{E[rAnt+e+ xz]p}l/q{E[sz(t AT)+ s]p}l/q .

Letting ¢ — 0,
E(rAt+ x2)’ < C, E[Y (e A 1)]".
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~ Since ET? < oo, (2.3) gives E[Y*(7)*]? < 0. So by dominated convergence
and the fact that 7 A t17as t - oo,
E(r+2%)" < C, ,E[Y:(7)]" = ¢, ,E[Xx()]*,
as desired. O
ProOF OF THEOREM 1.2(i). Let 0 < a < 2 and consider any x > 0. Define
7. = inf{t > 0: X3(¢) = 0}. Below we show that for some finite positive C, ,

AT 2-a
Cp,ar(l—p—g)x , for0<p< g

p =
(2.10) Eq} 9— o

o, for p >

Then wehave 0 < E7? < oo for p < (2 — @)/2, E1? = oo for p > (2 — @)/2 and
E[X*(1,)]?P = 0 as desired.
If x =0, let

o = inf{¢>0: X2(¢t) =1},
= inf{¢ > o: X2(¢) = 0}.
Then by the strong Markov property and the case x > 0 (above), we have for
P<2-a)/2
Et?>E(7 - o)p = E('rl)p >0,
and
E(r—0)"=Erf < .
Since E[ X%(0)*]2P = 1, (2.3) gives that Eo” < . Thus
Er?=E[(r - o) + ¢]”
<C,E(r-0)"+ C,Eo”
< 00.

By (2.10), for p > (2 — @)/2, E1P > E7f = co. Finally since EX?()?? = 0, this
case is complete. O

PROOF THAT E7? = C, ,T(1 — p — a/2)x?P FOR x > 0. Define

0
p1= f w212 dy < o (since 0 < a < 2)
0

and
u(t, y) = 1 - B [Pute=9/2"1/2 gy,
0
Then
2yu,, +tau,—u,=0 for yand ¢ > 0,
(2.11)

u € C*((0,0) X (0, 00)).
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Noting that also 7, = inf{ > 0: Y*(t) = 0}, we see that u(t, x%) should be
P(r, > t). However, the differential equation in (2.11) is degenerate and the
boundary data is not continuous, so the equality u(t, x?) = P(7, > t) is not
quite trivial.

Let T > ¢ > 0. Let w(¢, y) € C*R X R) such that

w(t,y)=u(T—t—¢y+e) for_Te <y and —-e<t<T- 2.
See that for y > —¢/2and —e <t < T — 2¢
2yw,, + aw, + u, = 0.
Then by It&’s formula, optional stopping and (2.11),
Ew((T - 2¢) A 7, YZ((T - 2¢) A 7)) — w(0,2%) =0,
ie.,
0= Ew('rx, Ki‘z(fx))l(rx < T - 2¢)
+ Ew(T — 2¢, Y7 (T - 2¢))I(7, > T — 2¢) — w(0, x?)
=Eu(T -1, — ¢, e)I(1, < T — 2¢)
+Eu(e, YT - 2¢) + ¢)I(7,> T — 2¢) — u(T — &, x% + ¢)
=D+@-0, say.

Note u is bounded, so @) — 0 as ¢ — 0. Since u is continuous on (0, ©0) X (0, 0),
® - u(T, x?) as e > 0. Now

@ = Eule, YT - 2¢) + ¢)I(r, > T — 2e)I[(YZ(T) # 0)
[since P(Y:z(T ) = O) =0and uis bounded]
> P(1,>T) ase—0
since u(e, Y*(T — 2¢) + &) = 1 on {Y*(T) # 0). Thus
u(T,x?) = P(r,> T).

An easy calculation shows

o
E(7)’ = 2(““")/2“"1[3x2"1‘(1 -3 —p). m]

PROOF OF THEOREM 1.2(ii). Let 0 < a < 2 and x > 0. For convenience write
p = (2 — a)/2 and define

(2.12) 0, . =inf{t>0: X3(t) <n™'}, nx=1

Then as n 1 o0, E(o, )P 1 E7? where 7, is as in the proof of Theorem 1.2(i). But
by (2.10), E7? = o0, s0 as n 1 0,

E(o, )" 1.
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Thus for each fixed x and M, there is an n = N(x, M) which is greater than 1 /x
and such that for each n > N we have

(2.13) E[o, .17 > (M + 1)x|?.
Then choose ¢, := t, (M, x) > 0 such that
(2.14) E[t, A0, 17> Mx|??, n> N(x, M).

Suppose u,, € C*(R) satisfies u, > 0, u,(y) = y? for y > 1/2n2 and u(y) <
(2n?)™? for y <1/2n% Then by Itd’s formula and optional stopping, for
n > N(x, M)

Eun(Y::2(tn A on,x)) - un(xz) = O’

since 2yu/(y) + au(y) =0on y > 1/2n% and Y*(s) > 1/n% for 0 < s < Op, x-
But this is none other than

(2.15) E[X%(t, Ao, ,)]?" =x% [since n > N(x, M) > 1/x].
Then if 7 = ¢ty iy A Onge, a0 M = 1,2,3,... we see that
Etl <
and by (2.14)~(2.15)
E(n,)?  Mx?
EX:("'M)ZP X%
For x = 0 let
o =inf{t>0: X)(t) =1}, o, =inf(t>0: X2(¢) <n”Y}.

=M-> o0 asM - .

Then
Eo? > E[o,— 0]”
= E[0,,]” [0, 8sin (212)]
2M+1 forn> N(1, M) [by (2.13)].

Since t A o,>tA (0,— 0) and Law(¢ A (0, — ¢)) = Law(¢ A 0,1), by (2.14)
there are ¢, with '

(2.16) E[t,A0,]?>M, n>=NQ1,M).
For u, as before, Ito’s formula and optional stopping give for m > n > N(1, M)
Eu,(Y(t, A 6,)) — Eu,(Y2(¢, A o))

=E[} e +an )| ds
n /o y="Y(s)

. 11
=0 since Y)(s)> — > = fors € [o,0,].

n
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Thus
1> Eu,(Y2(t, A 0))
= Eu,(YX(t, A o,))
= E[Y2(t, A 0,)] "I(Y2(t, A 0,) > (2m?) ")
+ Eu, (Y22, A 0,)) (Y2, A 0,) < (2m?) 7).

Recalling that u,, < (2m?)™? on [0, (2m?)~!] we see that as m — oo,
(2.17) 1> EY (¢, A o,)”.
Let 7 = tna, my A Ong, m and see

Ery<
and by (2.16)-(2.17)

Ery,
oo wp =7 7 ® as M — o
EXo?(TM) 1

as desired. O
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