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SINGULAR PERTURBATIONS OF DEGENERATE DIFFUSIONS

By CAROL BEZUIDENHOUT

University of Minnesota

Ventsel and Freidlin studied small random perturbations dx(t) =
b(x(t)) dt + Ve o(x%(t)) dp(t) of the dynamical system dx(t) = b(x(t)) dt.
They proved a large deviations theorem for the family {x%(¢)}, and used the
large deviations estimates to prove (among other things) a result about exit
from a bounded domain containing an equilibrium of the unperturbed sys-
tem. Fleming rederived this exit theorem using techniques from stochastic
control theory.

In this paper we study analogous questions for singular perturbations of
degenerate diffusions. We consider the family of processes dx®(t) =
b(x(2)) dt + T(x%(t))° dz(t) + Ve a(x%(t)) dB(t) for & > 0, where the process
x%(t) is degenerate. We show that a large deviations principle need not hold,
but we derive bounds sufficient for obtaining some estimates on probabilities.
We also adapt Fleming’s approach to prove an exit theorem.

1. Introduction. Ventsel and Freidlin [25] begin with a dynamical system
dx? = b(x?) dt, and perturb it by adding a small random noise to obtain the
stochastic differential equation dx; = b(x?) dt + Ve o(x;) dB(t). They show that
for fixed x € R, and fixed T > 0, the family of measures induced on the space
E(x) = C([0, T], ®”, x) by the processes x°|, 7, satisfies a large deviations
principle. They use their large deviations estimates to prove, among other things,
a result about exit from a bounded domain containing a stable equilibrium of the
unperturbed system. Under the assumption that there is a unique point of
“minimal energy” on the boundary of the domain, they show that the exit
measures induced on the boundary of the domain by the processes x¢ converge
weakly to a point mass concentrated at the point of minimal energy. Fleming [5]
has shown how one can derive this exit result using techniques from the theory
of optimal stochastic control. Expositions of the original Ventsel-Friedlin work
appear in [9] and [10].

In this paper, we try to prove analogous results for singular perturbations of
degenerate diffusions. Throughout, we shall assume that the dimension is d > 2.
The case d = 1 was dealt with in another publication [3].

Consider the stochastic differential equation

(1.1) dx) = b(x0) dt + 7(x0) 0 dz(2),
where o denotes the Stratonovich differential. (See [13], Chapter III, Section
1; [14].) For & > 0, we introduce the following perturbation of (1.1):

(1.2) dx; = b(xf) dt + 7(xf) o dz(t) + Veo(x?) dB(t).
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For fixed x € %9, and fixed T > 0, let P? denote the measure induced on the
space E(x) = C([0, T], ¢, x) by the solution of (1.2). For x and v in R define

(13) L(x,v0)= igfé(a_l(x)(v - b(x) + 7(x)w), v — b(x) + 7(x)w),

where a(x) = o(x)o*(x). If g€ E(x) and g is absolutely continuous with
square integrable derivative g’, we define

T
(14) I(g) = [ L(g, g0) at.
Otherwise I(g) = + oo.

REMARK. If o(x) and 7(x) commute for every x € R¢, then L(x, v) has a
simpler form, and hence I(g) has a simpler form. In this case,

(15) L(x,0) = 3| Prorin o~ () (0 = 8(x))] [,

where Pg.,, denotes the orthogonal projection onto the orthogonal comple-
ment in R ¢ of the range of the linear map 7(x).

This paper has two main parts. First, we investigate the problem of whether
the measures {P7} on E(x) = C([0,T], R ¢ x) obey a large deviations principle.
It turns out that this is not true in general. This is demonstrated by means of a
counterexample (Lemma 2.11). It is possible, however, to obtain, under minimal
assumptions, the lower bound on the probabilities of open sets which would be
required to establish a large deviations principle (Proposition 2.1). Two proofs
are given. The first, using Girsanov’s theorem, is similar to the original proof in
[25]. The second uses Schilder’s theorem [16] and ideas related to the “contrac-
tion principle” (see [24], Remark 1, page 5). We also prove an upper bound
(Proposition 2.6) and use this, together with the lower bound to estimate some
probabilities (Lemma 2.8). These results are described in more detail in Section 2,
and proved in Section 4.

The second part of this paper is devoted to proving an exit result (Theorem
3.16). We have had to impose stringent conditions on the matrix 7(x) in order to
do this (see Assumptions 3.2 and 3.3). This exit result has an interpretation in
terms of singular perturbations of degenerate second order elliptic equations
(Corollary 3.19). The lower bound (Proposition 2.1) mentioned in the last
paragraph is used to prove the lower bound (5.2.2) needed in the exit result. The
upper bound (5.2.3) required for the exit result does not, however, follow from
the general upper bound result, Proposition 2.6 (an example is provided demon-
strating this fact; see Section 5.5), and so an additional argument is needed. An
adaptation of Fleming’s technique is used. In a special case, another argument
establishing the upper bound is given; see Section 5.7. The exit result is stated in
Section 3, and proved in Sections 5 and 6.

Although the author was not aware of this while writing this paper, and all
the results here were obtained entirely independently, similar problems had been
studied earlier by Freidlin and Gartner [8], [11]. An exposition of these results
has appeared in Freidlin’s new book [7]. In [8], Freidlin and Gartner indicate
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how one can study the case where = and o are both constant. They advocate the
use of the same approach as in the original work of Ventsel and Freidlin [25],
namely, to prove the lower bound, use Girsanov’s theorem, and to prove the
upper bound, approximate x¢ by some sort of piecewise smooth path. I have not
seen [11]. However, in his book, Freidlin [7] examines the case where ¢ = 77 * has
the special form

ca o
(1.6) [ 0 0 ]
He obtains upper and lower bounds, using techniques similar to the original ones
in [25] (Girsanov’s theorem for the lower bound and piecewise smooth approxi-
mations, which are quite complicated in this case, for the upper bound). The
lower bound, Theorem IV 4.1 in [7], encodes some information about lower order
terms, and thus gives finer information than our bound (2.1). However, it is
proved under a more restrictive hypothesis [namely that ¢ has the form (1.6)].
The upper bound, Theorem IV 4.2 in [7], is better than Proposition 2.6 here.
Freidlin states a result, Theorem IV 5.1, which can be interpreted as a large
deviations theorem for subsets A of E(x) which depend only on those coordi-
nates in which the limiting diffusion has no noise. The exit result (Theorem 3.16)
given here could, in principle, be derived from the results in [7], subject to the
restriction that they would have to be proved for diffusions on a manifold, as
was done in the original work [25]. In [7], Freidlin studies only the case where
the diffusions are on %< If the manifold is “nicely foliated” by the vector fields
making up the noise (as is the case in Theorem 3.16), then, in local coordinates, ¢
has the form (1.6). In fact, in Theorem IV 5.2, Freidlin gives an exit result similar
in spirit to Theorem 3.16 in the special case where d = 2 and the diffusion lives
on circles. (See Example 3.8.)

2. General results.

Assumptions on the coefficients. Suppose T is a d X d matrix-valued func-
tion defined on %< so that for each i, j = 1,...,d, ¥/ is in CA(R?), the space of
continuous bounded real-valued functions defined on %¢ which have continuous
bounded derivatives of first and second orders. For x € %9, let o(x) be a d X d
matrix so that for each i, j=1,...,d, 6" € CA(R?). For x € R, let c(x) =
7(x)7*(x), where 7*(x) denotes the transpose of 7(x). We assume only that c(x)
is nonnegative definite. Let a(x) = o(x)o *(x), where o *(x) denotes the trans-
pose of a(x). Assume that a(x) is uniformly positive definite on %< Suppose
that &: ®¢ —» R is bounded and uniformly Lipschitz continuous.

Let (2,F, P) be a probability space, and {F,},,, an increasing family of
sub-o-algebras of F. Let 2(¢) be an F,adapted d-dimensional Brownian motion.
Consider the stochastic differential equation (1.1). Let B(¢) be an F,adapted
d-dimensional Brownian motion independent of the Brownian motion z(t). For
€ > 0, consider the perturbation (1.2) of (1.1).

Large deviations bounds and examples. Under the preceding hypotheses on
the coefficients, we establish some large deviations bounds for the family of
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measures {Pf} induced by the processes x%|,r; on the space E(x)=
C([0,T], ®% x) of R%valued continuous functions defined on the interval
[0, T'], and taking the value x at time ¢ = 0. Throughout, it is understood that
the space E(x) is endowed with the topology of uniform convergence on [0, T'].
The lower bound is stated as Proposition 2.1, and the upper bound as Proposi-
tion 2.6. The upper bound pertains only to the special case o = I, the d X d
identity matrix, although a similar result could be proved for o in a wider class
by using ideas from [1] to adapt the proof given in Section 4. The upper bound is
not a priori the one which would be needed to establish a large deviations
principle, but in some cases it agrees with the lower bound. We give an example
in which the bounds agree and therefore can be used to show exponential decay
of certain probabilities in the special case where o and 7 are both constant
matrices; see Lemma 2.8. However, by presenting a counterexample, we shall
show that a large deviations principle need not hold for the family of measures
{P¢} with rate function given either by I or its lower semicontinuous regulariza-
tion I*; see Lemma 2.11. Statements of these results follow. Their proofs appear
in Section 4.

PROPOSITION 2.1. Let I(-) denote the rate function on E(x) defined in (1.4).
Then if A is an open subset of E(x),

(2.2) limiglfslog PA) > —inf{I(g): g € A}.

For A c E(x), define TI(A) c E(0) = C([0, T], ®%0) by
(2.3) II(A) = {f€E(0):3p € E(0) > ¢' € L¥([0,T], ®¢) & F(f, ) € A},

where for f € E(0) and ¢ € E(0), f and ¢ absolutely continuous, F( f, ) = g is
defined to be the solution for ¢ € [0, T'] of

24)  g(0) =x+ [[(b(a(s)) + (8(s)9/(s) + o(8(s)1'(5)} d.
Let I, be the rate function for ¢ (Brownian motion), i.e., for f € E(0),

(2.5) W(F) =4[ d

if f is absolutely continuous with square integrable derivative f’, and Io(f) =
+ 00 otherwise. Let A be a closed subset of E(x). For § >0, let A®={ge
C([0, T, ®¢ x): dist(g, A) < 8). Let Cl stand for closure in the space
C([0, T, %¢,0). Then:

PROPOSITION 2.6. In (1.2), let o(x) be the d X d identity matrix. Then if
A C E(x) is closed,

(2.7) limsupe log P¥(A) < —inf{IO( :fe N Cl(H(A")}.

e—0 8>0
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An application of the large deviations bounds. We give an application of the
estimates in Propositions 2.1 and 2.6 to the problem of calculating the probabil-
ity that a certain process hits a set before a prescribed time.

LeMMA 28. In (1.2), take o(x) to be the d X d identity matrix, and (x) to
be a constant d X d matrix of rank strictly less than d. Let A c R¢ be a fixed
closed set which is equal to the closure of its interior. Define A = A(A) C
E(x) = C([0, T],?Rd x) by

(2.9) = {g€ E(x): g, € A forsomet < [0,T]}.
Then
(2.10) -li_{r(l)elog P:(A(A)) = —inf{I(g): g € A(A)).

A counterexample. We shall show that it is not true in general that the
measures P; induced on E(x) by the solution to (1.2) satisfy a large deviations
principle with rate function I [as in (1.4)] or I*, the lower semicontinuous
regularization of I. In fact we shall construct examples of closed subsets A of
E(x) for which P;(A) tends to zero arbitrarily slowly, but for which inf{I*(g):
g € A} is positive, so that, were a large deviations principle to hold, P A)
would have to decrease to zero exponentially fast.

LemMMA 2.11. In (12), taked =2, x=0€ R%, b=0,T=1,0=I,,, and r
constant with 7, =1 and 7,; =0 otherwise. Let H: [0, ) — [0,0) be any
function so that H(e) decreases to zero as ¢ = 0. Then there are sequences
{qn} - (O ) and {a,} C [0, ) so that q,, decreases to zero as n —> o, {a,)} is
increasing, a, = 0 and so that if :

(2.12) V.= {f € E(0):dist(f,C,) = q,},
where C, is as in (4.5) with a = 1 and
(2.13) D, = {9 € £(0): a, <|p(1)] < a,..),
and if A C E(x) is the set
(2.14) A= UDXxV

nx1

then A is closed in E(x), inf{I*(g): g € A} > 1, but P5(A) > H(e).

3. An exit problem. For fixed x € %< and & > 0 let P? denote the measure
induced on E(x) = C([0, o0), RY x) by the solution of (1 2) starting at x at
time ¢t =0. Let D be a bounded region in ®¢ with smooth boundary 3D.
Let T;, denote the time of first exit from D. Suppose that for some x € D,
PX(T), < ) = 0. Since for &> 0, the process x¢ is nondegenerate, a.s. the
trajectories exit from the bounded reglon D in finite time. Let p¢ be the measure
induced on the boundary 3D of D by x* at time Ty(x). For N c 4D,

(3.1) p(N) = PX(x(Tp) € N).
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In this section, we shall show that under certain restrictions on the coefficients
o and r it is possible to prove an exit result analogous to the one proved by
Ventsel and Freidlin. We shall show that for a certain class of processes, if the
region D has the property that there is a unique point of “minimal energy” (in a
sense to be made precise later) on the boundary of D, then the measures p
converge weakly.

In order to prove a result of this kind, it is necessary to derive upper and
lower bounds on probabilities. The lower bound is derived as a consequence of
Proposition 2.1. The upper bound cannot be deduced from Proposition 2.6. This
will be shown in Section 5.5 by means of an example. Therefore, an extra
argument is required. The argument we present here uses techniques from
optimal stochastic control. It is an adaptation of the technique used by Fleming
in [5]. The method used here requires that we consider only processes of a very
special type. A second proof of the upper bound is given in a special case in
Section 5.7.

The main results are stated as Lemma 3.12, Theorem 3.16 and Corollary 3.19.
Proofs are given in Sections 5 and 6. Assumptions 3.2, 3.3, 3.5 and 3.6 are needed
throughout the proof. Assumption 3.15 and the assumption that there is a
unique point of minimal energy are needed to state a nice theorem; see the
statement of Theorem 3.16 and Corollary 3.19.

Assumptions.

ASSUMPTION 3.2. EXISTENCE OF THE “RADIAL FUNCTION” R. We shall
assume that there is a function R: R¢ — R¢ such that:

@ R € CARI\ {0)).

(ii) R(0) = 0; R(x) > 0 for x € R<

(iii) 7 *(x)VR(x) = 0 for x € R<.

(iv) If 0 <8 <R < oo, then there exists a constant 7(d, R) so that
IVR(x)| = (8, R) if 8 < R(x) <R. There is a constant M < oo so that
|[VR(x)| < M whenever R(x) # 0.

(v) For r > 0, the set {x: R(x) < r} is compact. If R(x) = R(y) = r, there is
an absolutely continuous function ¢ on an interval [0, T'] with ¢(0) = x, ¢(T') = y
and R(gp(t))=rfor0<t<T.

(vi) For r,s > 0, define D(r, s) = max{dist(x, {y: R(y)=s}): R(x)=r}.
Then if 0 < 8 < R < o0, there exists a constant K(8, R) so that D(r,s) <
K(8, R)|r — s|if 8§ < R(x) < R.

REMARK. Note that the assumptions that R(0) = 0 and that {R(x) < r} is
compact for every r > 0 imply that R assumes every nonnegative value.

ASSUMPTION 3.3. ASSUMPTIONS ON 7,0. We assume that for every x € R,
o(x) and 7(x) are symmetric, and that o(x) and 7(x) commute. If R(x) # 0,
assume that the rank of the matrix 7(x) is d — 1. Since Pg.,,, and o~ '(x)
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commute, this ensures that for such x,

(3.4) | Pes 00~ H(%)y| =|VR(x)/IVR(x)| - 6 ()|

=|VR(x) - y||o~ (x) VR(x)|/|VR(x)|"

AssSUMPTIONS ON b. We assume that 5(0) = 0 and that the vector field b
points inward along level sets of R(-), i.e., that

(3.5) VR(x) - b(x) <0 whenever R(x) # 0.

ASSUMPTION ON D. D will always denote a bounded open subset of ¢ with
C? boundary dD. Assume in addition that

(3.6) 0€D, min R(y) = r(D) > 0.
ye€dD
This implies, in particular, that {x: R(x) < r(D)} c D.

REMARK 3.7. If x°(¢) satisfies (1.1), then by the chain rule for Stratonovich
differentials [14] and Assumption 3.2(iii), dR(x%(%)) = VR(x°(2)) - b(x%(¢)), so
that Assumption 3.5 implies that a.s. R(x°(¢)) is a nonincreasing function
of ¢ which is strictly decreasing as long as R(x°(t)) # 0. Therefore, a.s.
R(x°(t)) > 0 as t > oo. In particular, if x € D is such that R(x) < r(D), then
PXTp < ) = 0.

Examples.

THE SPHERICAL CASE. One example where Assumption 3.2 holds is the case
where 7(x) = (7%(x)) has the form

(3.8) T(x) =8, — x.x;/|x|%.

In this case R(x) = |x|. Note that 7(x) = P,., the orthogonal projection onto
the orthogonal complement of the subspace of R¢ spanned by x; see [18] and
[14].

THE ELLIPTICAL CASE. A slight generalization of the example just given is
obtained by replacing spheres centered at the origin by ellipsoids: Let A be any
constant symmetric positive definite d X d matrix, and take 7(x) = 7,(x) =
AP, -1,y . Here R(x) = R 4(x) = |A7 x|

NOTATION. The exit time from D of a member ¢ of C([0, ), %¢) will be
denoted by Tp(¢). Thus Tp(¢p) = inf{¢t > 0: ¢(¢) &€ D}.

If A is a subset of D and N a subset of the boundary dA of A, then for x € D,
we define

(3.9) I(x,N) = ;r’lgIO,T(g),

where the infimum is taken over all T'> 0 and all absolutely continuous
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functions g € C([0, T], #% x) for which g(T) € N and g(t) € Cl(A) for 0 <
t<T.
Define K to be the following subset of dD:

(3.10) K = {y€ dD: I,(0,{y}) = I(0, 3D)}.

We shall show below (5.1.3) that if R is the “radial function” of Assumption 3.2
and r(D) is as in (3.6), then

(38.11) K ={ye€ dD: R(y) =r(D)}.
Statement of results.

LEMMA 3.12. Assume that Assumptions 3.2, 3.3 and 3.5,3.6 hold. If N C dD
is any neighbourhood in 3D of K [defined in (3.10)] and if x € D is such that
R(x) < r(D), then

lim P(x(Tp) € N) =1.

Lemma 3.12 deals with those points in D for which R(x) < r(D). In order to
say what happens starting at the other points of D, we need to be sure that the
unperturbed process x° does not hit irregular boundary points with positive
probability. Thus it is necessary to make another assumption. To state the
assumption we need some definitions.

NOTATION. If G C R¢ is any open set and g € C([0, c0), <), we shall define
Ts(g) = inf{t > 0: g(¢) & G},
(3.13) . _
T4(g) = inf{t > 0: g(¢) € G}.
DEFINITION 3.14. Let D and r(D) be as in (3.6). Define D* by
D* = {x € D: R(x) > r(D)}.
For x € D*, let p* denote the measure induced on dD* by x°

For fixed x € R¢, let P? be the measure induced on C([0, ), R?) by the
solution of (1.1).

AssUMPTION 3.15. We shall assume that for every x € D*,
PY[Tp.(x(+)) = Tpa(x(-))] = 1.

The statement of the main result follows. As in Ventsel and Freidlin’s work, in
order to state a nice result, we assume that there is a unique point of minimal
energy on the boundary of D, i.e., that K [defined in (3.10)] consists of a single
point.

THEOREM 3.16. Suppose that Assumptions 3.2, 3.3 and (3.5), (3.6) and, in
addition, Assumption 3.15 hold. Suppose also that K = {y,}, where K is as in
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(3.10). Let pi, and p} be as in (3.1) and Definition 3.14, respectively. Then for
everyx € D, as e = 0,

ps = pilop + pi({y: R(y) = r(D)})8, .

Theorem 3.16 can be interpreted as a statement about convergence of solu-
tions of certain boundary value problems. Let L be the differential generator of
the process x9, i.e.,

(3.17) L=b7(x) v + 3 Y¢;(x)3%/ dx, 0x;,

where, for x € % b~ (x) = b(x) + 17'7(x) and 7'7(x) € R? has ith compo-
nent (d/9x,, 7Y(x))(7*/(x)) (summing over repeated indices). (See [13, page 235].)
Let L be the differential generator of the perturbed process. So

(3.18) L*=L+¢/2) a;i(x)3%/dx; 0x;.

COROLLARY 3.19 (Analytical interpretation). Let D* be as in Definition 3.14.
Suppose that Assumptions 3.2, 3.3, and (3.5), (3.6) and, in addition, Assumption
3.15 hold. Suppose also that K = {y,}, where K is as in (3.10).- Let g be a
continuous function defined on dD. Define g* € C(dD*, R) by g*|,0 = &lsp
and g*(y) = 8(%) if R(y) = r(D). Then the problem Lu* = 0 in D*; u*|,p. =
g% has a solution. For ¢ > 0 define

(3.20) ut(x) = E,[g(x*(Tp))].

Then u*® solves the boundary value problem: Léu® = 0 in D; u®|,;, = g. For every
x € D,

(3.21) u(x) > u*(x) ase— 0.

4. The rate function, proofs of large deviations bounds and examples.

The rate function. In the case where ¢ and 7 are constant matrices, the
function F in (2.4) is well defined for all f and ¢ in E(0) and defines a
continuous function from E(0) X E(0) - E(x). A result analogous to the “con-
traction principle” (see [4]) suggests that the “correct” formula for the rate
function is

I'(g) = inf{I(f): f€ E(0)&3p € E(0) > ¢’
(4.1) € L([0,T], %) & F(f,9) = g}
= inf 3 ["]o""g) (g ~ b(g,) — (e[ ot

From the second expression, it is clear that I'(g) > I(g), where I(g) is as in
(1.4). To see that these two quantities are actually equal, assume that I(g) < oo.
Then g’ is in L2. Define

L,(x,v) = Iu%}lsfﬁ(a‘l(x)(v — b(x) + m(x)w), v — b(x) + 7(x)w).

Then I(g) = lim, , (L (g, &/)dt = lim I(g) [by Lebesgue’s dominated

n — oo
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convergence theorem, because L,(g,, g&/) tends pointwise to L(g,, g/), and is
bounded by L(g,, g/), which is integrable because g’ is in L?]. By taking a
measurable selection ¥, from the set {w: |w| <n, (a”'(g)g/ — bg,) +
T(8)w), 8 — b(8&,) + 7(8)w) = 2L, (8, 8/)}, one sees that I'(g) < I,(g). So
I'(g) < I(8)-

Two proofs of the lower bound of Proposition 2.1. We give two proofs of the
lower bound stated as Proposition 2.1. The first uses the same technique as
Ventsel and Freidlin used in their context, namely Girsanov’s theorem. Freidlin
and Gartner also use this method in [8]. In the second proof, one thinks of (1.2)
as defining a random measure on E(x). With this idea it is easy to deduce the
lower bound from the corresponding lower bound for eB8 (Schilder’s theorem
[16]). This proof is given only in the special case o = I, but Azencott’s ideas [1]
can be used to deduce the result for more general o.

REMARK. In both proofs, the coefficients can be allowed to depend on ¢ as
well as on x, as long as they are assumed to be jointly measurable in ¢ and x, and
sufficiently smooth in ¢.

PROOF 1: PROOF BY ABSOLUTELY CONTINUOUS SUBSTITUTION OF MEASURES.
The equation (1.2) can be written in It6 form as

(4.2) dxt = b~ (xf) dt + 7(x) dz, + Veo(xf) dp,,

where b~ (x) was defined after (3.17).

In order to prove (2.2) for an arbitrary open subset of E(x) = C([0, T'], R x),
it is enough to show that if g € E(x) is twice continuously differentiable, and
8 > 0, then liminf, _ oelog P(||x* — gl < 8) = —I(g), where ||-|| denotes the
supremum norm.

Let & =x;— g, for t €[0,T]. Then £ =0, and & satisfies the stochastic
differential equation d¢i=[b" (& +g,) —g/ldt + 7(&;+ g8,)dz, + Vea(&s +
&,) dB,. By Girsanov’s theorem [12], the measure p.¢ induced on E(0) by £¢ is
absolutely continuous with respect to the measure p e induced on this space by
the solution {¢ starting at 0 € R¢ at time ¢ =0 of d{; = 37'7(§; + g,) dt +
7§ + &) dz, + Veo(§; + g,) dB,, and

T
dpge/dpge = exp[[) Y, dz, + e 20(t, §7 + g,) dB, — 31 dt

—%e‘lld)(t, f: + gt)|2 dt ’

where ®(¢,x) = o Y(x)[b(x) — g/ — 7(x)¥,] and ¥, € L? is chosen so that
1(T\®(t, g,)|? dt < I(g) + m, where 7 is some small preassigned number [see
“&.1)].
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One can choose 0 <8 <8 so that on "§e" < 8', 2/0 lq)(t §t +gt)|2 dt <
3/51®(t, g,)I1* dt + u. Then

P(llx* — gll < 8) = Py(ligN < 8) = Py(lIg°ll < &)

B f||§°||<s'[d”€ e/dpge(8°)] dpge
> exp( —1/8[I(g) + 4n]}P(||§e" <&, LT‘IQ do,> —n/e,

[fot.5 + &) dp,> —e/).
0

The result follows from the

Cram. If &’ and 7 are fixed, and e > 0 is sufficiently small, then
Pl <8, [z, > —a/e,["0(t, 85 + £) dB> —en) 22> 0.

Proor oF CrLaIM. Define §{, to be the solution of the equatlon d¢, =
s7'7(§, + &) dt + 7(§$, + g,) dz,. By a standard argument using Gronwall’s in-
equality, there is a constant K so that E(]|$¢ — ¢||?) < Ke. So, by Chebyshev’s
inequality, P(||¢7| > 8") < P(||¢|| > 8'/2) + 4Ke/(8")% But P(||¢|| > &'/2) < 1.
[For example, by Stroock and Varadhan’s support theorem, [21], 0 €
Support(2(-)).] Therefore, for sufficiently small ¢> 0 (and fixed & > 0),
P(||$e)| < ") = py > 0. Now

P( [T¥,dz, < —'q/s) < (/) ["1%(2)? dt < const. e2/n”
0 0
Further,
T
P(/ (I)(t, §i + gt) dp, < _5_1/2"7)
0

< (e/'qZ)E(led)(t, $E+ 8,12 dt) < const. ¢/7°.
0
So for sufficiently small ¢ > 0,

T T
P(Il <8, ["Hde,> —n/e, ["0(6,85 + ) B> — ) = py/2. O

PROOF 2: USING SCHILDER’S THEOREM. Assume ¢ = I. For more general o,
one can use Azencott’s ideas [1] to modify the proof given here. The solution to
(1.2) can be realised on a product probability space (2 X @',F X F’, P X P"),
where 2(¢) and B(t) are Brownian motions on (2, F, P) and (%', F’, P’), respec-
tively. For fixed x € R, let x¢ be the solution starting at x of

(4.3) dxi(w, ) = b(xi(w,w)) dt + 7(xi(w, )0 dz,(w) + Ve dB,(«).

Define I(-) on E(x)= C([0,T], ®¢ x) as in (1.4). Let Pf be the measure
induced on E(x) by x°, r;. We shall show that for every open set A C
C([0, T, %4, x), the conclusmn (2.2) of Proposition 2.1 holds.
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For f € E(0), f absolutely continuous, let x/ be the solution starting at x at
time £ = 0 of

(4.4) dxl(w) = [b(x](w)) + f] dt + 7(x/(w))° dz,(w).

Then x /()| fo, ] is an element of the space L*(Q, E(x), P) of random variables X
defined on Q, taking values in E(x) and satisfying ||| X||| = [E”||X||3 7]*/2 < co.
For fixed w’, x°|; 1(, ') is also an element of L*(Q, E(x), P). By standard
arguments using Gronwall’s inequality, it follows that with

(4.5) C,= {f € E(0): f is absolutely continuous and I( ) < a}
[I, was defined in (2.5)], if f € C,, then

(4.6) EP|x* - x!|3 7 < K(a)|| f - VeB.[; 1

where K(a) is a constant which depends only on a, T, x, d and on the bounds
on 7, band '7. So ||x° — x/|| < K(a)||f — Ve B2 -

Define a function ¥ on L2%(Q, E(x), P) by I(X) =inf{I(f): X =x'},
where the infimum is taken to be + oo if the set is empty. Let A ¢ L%Q, E(x), P)
be open. If X € A, Y(X) <a < 0, and X = x/, with f € C,, then for some
8> 0, P'(xf € A) > P(||lx* — x/||2 < 8) = P'(|| f — Ve B3 ¢ < 8/K()). It now
follows from Schilder’s theorem [16, 19] and the fact that this holds for every
X € A and every corresponding f that

liminfelog P'(x¢ € A) > —inf{J(X): X € A}.
e—0

Let P denote the product measure P X P’. We really want estimates on
probabilities of the form P(x® € A), where A C E(x) is open. Note that

P(xf € A) = EP[P(x%(-, ') € A)] = EFP[®(x°)],

where for X € L%, E(x), P), ®(X) = P(X € A).
We shall need the results of the following two easy lemmas.

LEMMA 4.7. If A C E(x) is open, and ®: L%(Q, E(x), P) > R is defined by
®(X) = P(X € A), then ® is lower semicontinuous.

PrOOF. It must be shown that if X,—> X in L%, E(x), P), then
liminf, , ®(X,) > ®(X). Since X, » X in L%Q, E(x), P), the measures in-
duced on E(x) by X, converge weakly to the measure induced by X. By a
general result on weak convergence of measures on separable metric spaces [22,
Theorem 1.1.1], the result follows. O

LEMMA 4.8. Suppose that {P¢} is a family of probability measures on a

Polish space E which satisfies a large deviations principle with rate function I.
Suppose ®: E —» R is nonnegative and lower semicontinuous. Then

liminfelog f@ dP® > —inf{I(x): ®(x) > 0}.
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ProoF. By lower semicontinuity, for every n > 0, the set {x € E: ®(x) > 3}
is open. Clearly [® dP® > nP%({x € E: ®(x) > n}). Since, by assumption, the
family {P*°} obeys a large deviations principle with rate I, this implies that
liminf ¢ log [® dP® > —inf{I(x): ®(x) > n}. Letting n — 0, we get the result. O

From Lemmas 4.7 and 4.8, it follows that if A c E(x) is open, then
(4.9) limiglfslogP(x" € A) > —inf{J(X): P(X € A) > 0}.

For A c E(x) define II(A) c E(0) as in (2.3). One can show that if g € E(x),
and I is the rate function defined in (1.4), then I(g) = inf{I(f): f € I({g})}.
From this, it follows easily that for A ¢ E(x),

(4.10) inf{I(g): g€ A} = inf{I,(f): f e II(A)}.
The assertion of Proposition 2.1 will follow from (4.9) once we have established

LEMMA 4.11. Suppose A ¢ C([0, T], K¢, x) is open. Then
inf(J(X): P(X € A) >0} = inf{I,(f): f € TI(A)}:

Proor. If X € L%Q, E(x), P), P(X € A)>0 and ¥(X) < oo, then for
some f € E@0), X =x/ and J(X)=1I(f). Since (X €A)>0, AN
Support(X) is nonempty. By the support theorem of Stroock and Varadhan
[21], Support(x /) is the closure in E(x) of the set {8 € E(x): g = F(f, p), some
¢}. Hence, since A is open, we can find ¢ so that F( f,p) € A. So f € II(A), and
hence inf{I(h): h € II(A)} < I(f) = J(X). This establishes that the right
hand side does not exceed the left hand side. For the opposite inequality, suppose
that f € II(A). Then F(f, p) € A for some ¢. So by the support theorem [21],
since A is open, P(x/ € A)>0, and hence inf(J(X): P(X € A)> 0} <
Y(x7) < Iy(f). The result follows. O

Proof of the upper bound of Proposition 2.6. As noted earlier, the upper
bound of Proposition 2.6 is not the one needed to establish a large deviations
principle for the family of measures { Pf}. However, since it agrees with the lower
bound established in Proposition 2.1 in some situations, it can be used to derive
some results about exponential rates of convergence.

PROOF. Assume o = I. Let x/ be as in (4.4). By the support theorem of
Stroock and Varadhan [21], the support of the measure induced on E(x) by x/
is the closure in E(x) of S(f) = {g € E(x): 3p © g = F({, ¢)}. See (2.4) for the
definition of F. Suppose the quantity on the right hand side of (2.7) is < —a.
Then for some 6 > 0, inf(I)(f): fe€ CIII(A%)} > a. Fix f € C, [defined in
(4.5)]. Then S(f)NA®=g. So if he A, S(f)NB(h,8)=2 and so
P(|x! — h||<8)=0.If f€C,, ||¢B—f||<m, and if x° satisfies (4.3), then
E¥(||lx" = x*|?) < K(a)n? by (4.6). So P(||x/ — x| > 8) < K(a)n?/82 < 1if qis
small enough. So x°¢ A. Hence P(x* <€ A) < P(d(¢8,C,) = 7), and so by
Schilder’s theorem [16], the left hand side of (2.7)is < —a.O
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An application of the bounds.

PrOOF OF LEMMA 2.8. In order to establish (2.10), it suffices, by Propositions
2.1 and 2.6, to show that

(412) int{I(g): g € A(A)} = inf{IO(f): fe 8n001[n((A(A))8)]}.

For notational convenience, write B = ;. (CI[II(A?%)]. Since II(A) C B, it
follows from (4.10) that the right hand side of (4.12) does not exceed the left
hand side.

To prove the opposite inequality, suppose that f € B. Then for n > 1, we can
find f, € C([0,T], %%0) so that ||f — f,|| < 1/Kn, where K is a constant
depending on the Lipschitz constant for b, and ¢, absolutely continuous with ¢,
in L3[0, T], ®9) so that g, = F(f,, 9,) is in A" Let g* = F(f,,). By the
usual argument using Gronwall’s inequality, ||g, — g¥|| < 1/n. (Note that this
bound depends on the fact that o and 7 are assumed to be constants. Otherwise
we could conclude only that ||g, — g*|| < K,|| f — f,|, where K, may depend on
the L? norms of ¢, and f,.) So g* € A¥™. Let t, = inf{t > 0: g,(t) € A¥™"}.
Choose x, € A¥™ so that |g,(¢,) — x,| = 2/n.

Note that, since ¢ and 7 commute (¢ = I;,;), L(x,v) in the definition of
I(g) has the form (1.5).

Consider two cases:

CasE 1. t, < T — 1/n infinitely often. We may assume by taking a subse-
quence if necessary, that ¢, < T — 1/n for every n. Define &, € A as

gx(t), 0<t<t,
g:(tn) +n(t_ tn)(xn_g;:(tn))’ tnS t< tn+ l/n’
g'(t) = b(g(2)),
g(t,+1/n) =x,,
Then inf{I(g): g € A} < I(h,), which equals

371 Pas(832(s) = b(g2(s)) [ ds
3 [ Pyl ~ £2(6) = b(Ro(s) [ ds

<1 [11(6) ds+1/m2 + )",

h,(t) =

the solution of { t,+1/n<t<T.

where M is the L® norm of b. Letting n — oo, we deduce that inf{I(g):
g €A}y <I(f). .

CASE 2. t,> T — 1/n eventually. Assume this happens for every n. Here,
we define &, € A by

h(f) gx(c,t), 0<t<T-1/n,
() = gx(t,) +n(t=T+1/n)(x,—gx(t,), T—-1/n<t<T,
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where ¢, = t,/(T — 1/n). Then

. t ’ -
inf{I(g): g€ A} < I(h,) < %j(; | P, [eaf/(s) + (¢, — 1)b(g*(s))] ezt ds

+1/n[2 + M)

Since f’ is square integrable and b is bounded, one can use Lebesgue’s dominated
convergence theorem to conclude that, as n — o, the expression on the right
approaches

T , 2
31 [ £(s)] [ s,
0
which is not greater than Iy( f). The result follows. O

A counterexample.

Proor or LEMMA 2.11. Under the hypotheses of Lemma 2.11, x¢ has the
same distribution as £ = ((1 + €)'/2B(¢), eBy(t)), where B,(t) and By(t) are
independent one-dimensional Brownian motions. Define V, and D;, as in (2.12)
and (2.13), respectively, where {q,} will be chosen later and {a,)} is such that
a,=0and forn>1,

@)™ ["exp( —£2/2} dt = }p,,
and p, >0, ¥p, =1 and p, > O infinitely often. Define A C E(x) as in (2.14).
Then A is closed in E(x). Using (4.9), it is easy to see that inf{I*(g):
g € A} > 1. However,

Pi(A) = P € A) = 2% (27) " [* exp{-t*/2) dtP(eB, € V,)

>(1+e) >Yp,P(eB, € V,).

In the integral, a = (1 + ¢)~/2a,. By choosing g, appropriately, one can
ensure that Yp,P(¢B, € V,) tends to zero as slowly as desired. This is a
consequence of the following lemma, which is given here without proof. For a
proof see [2] or [4].

LEMMA. Let {p,} be a sequence of nonnegative numbers with p, > 0 in-
finitely often and Lp, = 1. Let H: [0, 00) — [0, ) be any function so that H(¢)
decreases to zero as ¢ — 0. Then there exists a decreasing sequence of strictly
positive numbers {q,} so that for sufficiently small ¢, ¥ p, P{dist(¢B,, C(1)) > q,,}
> H(t), where B, is a one-dimensional Brownian motion. 0

5. Proof of Lemma 3.12. The hard part of the proof of Theorem 3.16 is to
prove Lemma 3.12. This lemma deals with those points x in D for which
R(x) < r(D), where R is the radial funetion of Assumption 3.2 and r(D) was
defined in (3.6). Afterwards, in Section 6, we shall take care of the points for
which R(x) > r(D). This amounts to taking care of some technicalities. This
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section is devoted to the proof of Lemma 3.12. To facilitate the reading of this
section, a list of its contents follows.

5.1. Definitions and preliminary results.

5.2. Outline of the proof.

5.3. Technical lemmas.

5.4. Proof of the lower bound.

5.5. An example motivating the introduction of a new technique for proving the
upper bound.

5.6. Proof of the upper bound using stochastic control.

5.7. An easier proof of the upper bound in the spherical case.

5.1. Definitions and preliminary results. To outline the proof of Lemma
3.12, we need some definitions. We also give an expression, in (5.1.3), for
1,0, dD) [see (3.9) and (3.10)], from which it is clear that (3.11) holds.

For x € R¢ such that R(x) # 0, define

(5.1.1) B(x) = —VR(x) - b(x)|o(x) "'VR(x)/IVR(x)?| .
For r > 0 in R, define
(5.1.2) B(r) = min{B(x): R(x) = r}.

It will follow from Lemma 5.3.5 that if K, r(D) and I are as defined in (3.10),
(3.6) and (3.9), respectively, then

(5.1.3) I,(0, D) = 2 fo

r(D)

B(s) ds.
(5.1.3) obviously implies (3.11).

5.2. Qutline of the proof of Lemma 3.12. In order to establish Lemma 3.12,
we shall prove upper and lower bounds. To be more precise, we shall establish
the following facts.

Fix & < r(D), where r(D) was defined in (3.6), and let A be the set {x € D:
R(x) > 8}. Let T\(¢) denote the first exit time of ¢ € C([0, x0), R¢) from A. If
N is an open subset of 3D, define
(5.2.1) r(N) =inf{R(y): y€ N}.

Lower bound. If N c 3dD is a neighbourhood of K [see (3.10)], then we shall
show that

(5.2.2) liminfelog P:(x(T,) € N) > —2["”’B(r) dr.
e R(x)

We shall show in Section 5.4 how this follows from Proposition 2.1.
Upper bound. If N is any open subset of dD,

(5.2.3) lim sup e log P(x(T}) € N) < —2["N’p(r) dr.
R(x)

e—0

This will be proved in Section 5.6 by an adaptation of Fleming’s technique. A
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second proof, which does not use the machinery of stochastic control theory, will
be given in Section 5.7 in the case where 7 has the special form (3.8). An example
is given in Section 5.5 to show that (5.2.3) does not follow from the upper bound
in Proposition 2.6.

ProoF oF LEMMA 3.12 FROM (5.2.2) AND (5.2.3). The proof of this statement
is exactly the same as that of the corresponding result in Fleming’s treatment of
the Ventsel-Freidlin exit result [5, page 339]. Choose 8 > 0 so that 28 < r(D).
As before, let A = {x € D: R(x) > 8}. Since dD\ N is compact, and for fixed
y € dD\ N, R(y)> r(D), there exists p > 0 so that R(y) > r(D) + p for
y € D\ N. It follows from (3.5) that the function B is strictly positive on
(0, o0). Therefore, it follows from the estimates (5.2.2) and (5.2.3) that

" P:(x(T,) € 9D\ N) 0
m su =0,
en0oan  P(x(Ty) € N)

where T' = {2: R(z) = 28}. The result follows from a standard stopping time
argument; see [5] and [23]. O

5.3. Technical lemmas.

LEMMA 5.3.1. Let B(x) be defined for x € ¢ such that R(x) # 0 by (5.1.1).
Then B is uniformly Lipschitz continuous on {x: 8§ < R(x) < R} whenever
8 <R < oo.

Proor. This is an easy consequence of the assumptions on b and o (Section
2) and Assumptions 3.2(i) and (iv). O

LEMMA 5.3.2. Let B(r) be defined for r > 0 by (5.1.2). Then B is uniformly
Lipschitz continuous on [8, R] whenever § < R < oo.

ProoF. This follows from Lemma 5.3.1 and Assumption 3.2(vi). O

LEMMA 5.3.3. Suppose ¢ € C([0, T'], R?) is absolutely continuous. If r(p) =
max{R(@(t)): t €[0,T]} and I is as in (1.4), then

(5.3.4) I(9) > 2 fR’(‘:(’O»B(r) dr.

Proor. Fix n>1. For k=1,...,n, let r,=R(p(0)) + (k/n)r(p) —
R((0))). Let t, be the first time that R(¢@(¢)) equals r,. Let s, be the last time
before ¢, that ¢(t) equals r,_,. Then

D ¢
ro= i1 = ["VR(9(2)) - 9'(t) dt < [*VR((t)) - o/(x)xs(t) dt,
Sp, Sp

where S = {t € [0, T]: VR(¢(2)) - ¢ 2 (¢) > 0}. Hence, from (3.4) and (1.5), we
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get that I(¢) is at least

M RICORZOL

k=1"%:

21 X [H{vR(e() - [9/(2) = b(o(2))]

k=1

x|o~(o() VR(o()|[ITR((D) ') xs(2) d

223 ["B@O)VR(5(0) - ¢ (] xs(0)

22) min B(r)(r, — 1)
k=1 Ty 1ST<r,
The continuity of 8 ensures that the last expression approaches the right hand
side of (5.3.4) as n — o0. 0O

LEMMA 5.3.5. Suppose that R(x) < R(y). Then

(5.3.6) inf I(g) = 2" VB(r) dr,

T,¢ R(x)
where the infimum is taken over all T >0 and all absolutely continuous ¢
defined on [0, T'] so that ¢(0) = x and o(T) = y.

ProoF. That the left hand side is at least as big as the right side follows
from Lemma 5.3.3. To prove the opposite inequality it suffices to construct a
sequence of absolutely continuous functions {g,} so that ¢, is defined on an
interval [0, T,], ¢,(0) = x, ¢,(T,) =y and I(p,) approaches the right side of
(5.36) as n— . Fix n>1. For k=1,...,n let r,= R(x) + k/n(R(y) -
R(x)). Choose x,, so that R(x,) = r, and B(x;) = B(r;). Assume for simplicity
that R(x) # 0. A simple modification of the argument given below can be used if
R(x) = 0. Let ¥, be an absolutely continuous function defined on an interval
[0, ¢,] with ¢, < 1/n? so that R(¥(#)) = r, for 0 < ¢ < ¢,, ¥(0) = x, ¥(Z,) = *x,.
[See Assumption 3.2(v)—the time parameter can be changed to make the
interval of definition as short as desired.] Let y, be a function satisfying the
equation

637)  v(t) = [-b(x(2)) - VR((£)]|VR(¥(£))| " VR(¥(¢))

with the initial condition yy(0) = x,, and let s, = inf{t > 0: R(yy(¢)) = ri}-
Proceed by induction. For 2 =1,...,n — 1, let ¥, be an absolutely continuous
function defined on an interval [0, £,] with ¢, < 1/n? so that R(¥(¢)) = r;, for
0 <t<t, ¥0)=1v,_(sk_1), ¥(t;) = x,. Let v, be a function satisfying (5.3.7)
with initial condition v,(0) = x,, and let s, =inf{(f> 0: R(yx(?)) = Ix41}-
Finally, let ¥, be an absolutely continuous function defined on an interval
[0, ¢,] with ¢, < 1/n? so that R(¥(¢)) =r, for 0 < ¢t <t,, ¥(0) = v,_1(S,-1)s
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¥(t,) = y. Define @, on [0,7,] where T, = X(t, + s,) + t,, where & ranges
from 0 to n — 1. We define ¢, by joining up the pieces previously defined:
@,(t) equals ¥y (¢) for 0 < ¢ < ¢, yo(t — t,) for t, < t < t, + so, W i(¢ — Ly — 8;)
for t, + so <t <ty + sy + t, etc.

Clearly I(¢,) = XI(¥,) + XI(v;) where, in the first sum, % ranges from 0 to
n, and in the second, from 1 to n — 1. Since R(¥y(¢)) = r, on [0, t,], Prs .y
¥/(t) = 0 for 0 < t < ¢,. Therefore, I(¥,) < (M/n)?, where M is a bound on b.
Using (5.3.7), the definition (1.4) of I and (3.4), it is easy to show that

(5:3.8) I(v) = 2 [ "B(v(t) d/dt( R(vi(1))) dt.

Since B(v,(0)) = B(x,) = B(r;,) = B(R(v,(0))), and since B and R are Lipschitz
continuous on {z: R(x) < R(z) < R(y)}, and b is Lipschitz on [ R(x), R(y)],

B(v,(t)) < B(R(v(2))) +|B(R((2))) — B(R(7:(0)))]
(5.3.9) +|B(74(0)) — B(vx(2))]|

< B(R(vi(2))) + K|v(2) = v:(0)],
where K is a constant. It follows from the equation satisfied by v,(¢) [(5.3.8)],
the Assumption 3.2(iv) that |[VR(z)| is bounded below on {z: R(x) < R(2) <
R(y)}, and the Lipschitz continuity of R on this set, that |y,(¢) — v,(0)| <
K(ry,, — 1) for 0 < t < s,, where K is a (different) constant independent of n.
So from (5.3.8) and (5.3.9) it follows that

T 100 2% ["BROu) /(R (0) e
K S (ress = ) [ 8/ R (1) e

n—1 Fee1 n—1 2
=2% ["B(r)dr+ K Y (rewy - 1)
k=0T k=0
K is a constant independent of n whose value may change from line to line.
From this it follows easily that limsup, _, . I(¢,) does not exceed the right hand

side of (5.3.6) and the result follows. I

5.4. Proof of the lower bound (5.2.2). From Proposition 2.1 it follows that it
suffices to construct a sequence of functions {g,},., so that ¢, lies in the
interior of the set A(T,) = {g € C([0, T, ], R x): Ty(p) < T,; o(Ty(9)) € N},
and so that as n — o0, —I(¢,) approaches the quantity on the right hand side of
(5.2.2).

Choose y, in the interior of N so that R(y,) = r(N) as n - c0. By Lemma
5.3.5 one can construct a function ¢, on an interval [0, S,] so that

R(3,)
IO,Sn((pn) - L(: B(S)dS{ -0 asn— .
x

Extend the definition of ¢, to an interval [0, T,,] with 7, > S, in such a way that
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¢, penetrates a positive distance into the complement of the closure of A during
the interval [S,, 7,,]. Then any path sufficiently close to ¢, in the topology of
uniform convergence on [0, 7,,] will also leave A during [0, T,] and will do so
through N. So ¢, will lie in the interior of A(T,). By making T, — S, and the
distance travelled by ¢, during the interval [S,, T,,] small, one can ensure that
Is r(9,) >0asn— 0.0

5.5. An example motivating the introduction of a new technique for proving
the upper bound. In this section we give an example showing that the upper
bound (2.6) is not good enough to yield the upper estimate (5.2.3) which we need
to prove the exit result, even in the “spherical case” (3.8). The details are given
in [2].

In (3.8) with ¢ = I, ,, take d = 2, and, for x € R2, define b(x) = —x. Then
x - b(x) = —|x|2 < 0 for every x # 0. Let A C E(0) be the set of functions

A= {g:g(0)=0,|g(¢t)| = Lforsome t € [0,1]}.

We shall show that

(5.5.1) inf{I(f): f € C(II(A))} =0,

which clearly implies that the expression on the right hand side of (2.7) equals

zero, so that Proposition 2.6 says nothing. To show (5.5.1), it suffices to construct

sequences { f,}, {¢,} and {g,,} in E(0) so that g, € A and F(f,, ¢,) = &, and

so that || f,,|| = 0. This implies that 0 € CI(II(A)), which clearly implies (5.5.1).
Define, for ¢t € [0,1],

&n(t) = t(cos mt,sin mt),
fn(t) = m~2%(cos mt + m(1 + ¢t)sin m¢ — 1,sin mt — m(1 + t)cos mt + m),
@,,(t) = (tcos mt — m~1sin mt, tsin mt + m~cos mt — m™1).

An elementary computation shows that these sequences have the desired proper-

ties.

5.6. Proof of the upper bound using stochastic control. This section is
devoted to proving the estimate (5.2.3). The technique is a modification of
Fleming’s. Note that until after Remark 5.6.18, we do not make use of the special
assumptions introduced in Section 3, except Assumption 3.3.

Let ® be any function satisfying

(56.1) ® € C3(R?); @(x)=0, xe€N; &x)>0, x¢&N.
For x € A, define

g%(x) = E,[exp{ —®(x%(T0))/¢}],

J(x) = —elog(g%(x)).

(5.6.2)

Then for x € A, ‘
(5.6.3) limsupelog Pi(x(T,) € N) < — liminfJ*(x).

e—0 e=0
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We shall take a sequence {®*} of functions satisfying (5.6.1) so that

(5.6.4) PM(x) >0 as M —> oo forx & N.

Letting J%™ denote the function obtained from ® using the definition (5.6.2),
we shall show

(5.6.5) liminf liminfJ* M(x) > 2 [" B(r) dr.
M- R(x)

=0

This, together with (5.6.3), will give the desired estimate (5.2.3).

It follows by standard results that g° solves the boundary value problem:
Lg®=0 in A; g%(x) = exp{—®(x)/e} for x € JA. L* was defined in (3.18).
Therefore, from the definition (5.6.2) of J* it follows that J* solves the nonlinear
equation

32 (e(%) + eayy(x) " Ig(x) + (=) - b (x)
—e71/2J(x) - (e(x) + ea(x))I3(x) = 0,

where J%(x) = 9%/9x; dx(J*(x)) and Jf(x) = vJ%(x), with boundary condi-
tion

(5.6.6) JY(x) = ®(x) forx € dA.
For x € %% and p € R¢, define
(5.6.7) Hi(x,p)=—1ip-e Yc(x) + eé(x))p +p-b(x).
Then J° satisfies
(568) X (cylx) +eay(x)) " I5(x) + He(=, Ji(x)) = 0.

H*(x, -) is dual in the sense of duality for convex and concave functions to
L~ %x, -), defined by

(5.6.9) L~ *(x,0) = 3(b™(x) — v) - e(c(x) + ea(x)) (b~ (x) — v)
for x € R and v € R This means that
(5.6.10) H%x,p) = :Ieligl;ld{L~e(x’ v) +p - v}.

The minimum in (5.6.10) is attained when

(5.6.11) v=>b7(x) — e Y(c(x) + ea(x))p.

The equation (5.6.8) is the dynamic programming equation for the following
stochastic control problem. In the notation of Section 1, let v(¢) be a control
which is Fradapted and bounded. The corresponding state of the controlled
system, n(?), is the solution of

(5.6.12) dn(t) = v(t) dt + 7(n(t)) o dz(t) + Veo(n(t)) dB(2).

The problem is to minimize

(5618)  3(x,v) = B ["LIn(e),v(0)] dt + B(a(1)))
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over all such controls v, for fixed initial state x, where for x € #¢ and v € R¢,
(5.6.14) Le(x,0) = L™¥(x, 0 + ir'7(x)).
So L is defined analogously to (5.6.9) with b~ (x) replaced by b(x).

LEMMA 5.6.15. J*(x) is the infimum over all controls v of JI%(x,v). More-
over, there is an optimal feedback control v¥(t) = V(n*(t)), where n%(t) satisfies
the control equation (5.6.12) with v(t) replaced by v(t), and V¥(x) is defined
for x € R¢ by

(5.6.16) Ve(x) = b(x) — e Y(e(x) + ea(x))JE(x).
ProoF. This follows from a standard argument using Itd’s formula, the

equation and boundary condition satisfied by J°¢ (5.6.6), (5.6.8), and the duality
between L~ ¢ and H¢; see [5] and [6]. O

We now give the connection between the functions L and L*® defined in (1.5) and
(5.6.14).

LEMMA 5.6.17. For fixed x € R¢ and v € R¢, L%(x,v)| L(x, v) as €|0.
ProoF. This follows from the following fact:

LEMMA. Suppose T and ¢ are constant symmetric d X d matrices which
commute, and let a = o2 and ¢ = 2. Suppose that a is strictly positive definite.
Then for any w € R¢, as €0,

ew- (¢ +ea) 'w | |Pp.,0 w2

Proor. This follows by an elementary argument, using the fact that if = and
o commute, they can be simultaneously diagonalized. O

REMARK 5.6.18. Note that so far in Section 5.6 we have not used any of the
special assumptions introduced in Section 3, except Assumption 3.3. From this
point on, however, we shall assume that all the assumptions imposed in that
section hold.

Let v¥(¢) and 7n%(t) be as in Lemma 5.6.15. Applying Itd’s formula to the
process n%(t) and the function R in (3.2), one obtains

dR(7(t)) = {VR(n'(2)) - v¥(t) + (e/2) LR;;(n(2))a;;(n*(2))} de
+Ve VR(n%(2)) - o(n°(t)) dB(2).
Define a process R%(t) by

(5.6.20) R (t) = R(n%(¢t)).
Define R} by

(5.6.21) R*(t) = R(0) + jo 'YR(7(s)) - v°(s) ds.

(5.6.19)
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In order to demonstrate (5.6.5) and hence (5.2.3), it suffices to show that for
every r < r(N), the left hand side of (5.6.5) is not less than the integral from
R(x) to r of 2B(r). Let r be an arbitrary number with R(x) < r < r(N). Fix
n2>1, and for k=1,...,n, let r, = R(x) + (k/n)(r — R(x)). Define random
times T}, and S, by

=inf{t > 0: R*(t) = r,}, k=0,...,n,
(5.6.22) Sy=sup{t < T): R*(¢t)=r,_,}, k=1,...,n.
Then
(5.6.23) Ty = Ppy < /S Teasdt(R(8))x 5(t) dt,
k

where B is the random set of times {¢: d/dt(R*(t)) > 0}. By Lemma 5.6.15,
J%(x) = J%(x, v°). Using this, the fact that for x € ¢ and v € R?, L¥(x, v) >
L(x, v) (see Lemma 5.6.17) and (3.4), we deduce from (5.6.23) that

5w 2 B £ [P EEROO) - (00 - b(x(0)
o™ r(O) PR [V ROE)] ™ xale) |
25| £ (M Sanro)a arz ot

>2 Z E,| min B(x)|(r, — ry_,),
xE€A,
where 4, is the random subset of R A, = (n5(¢): t €[S, A Ty, T, A To1}. If
sup{|R(t) — R¥(t): t€[0,T]} <p, and if T, < TA, then A, C {x € R
re1—pP<R(x)<r,+p}.Since T, <T, ,fork=1,...,n—1,
Ex[ min B(x)] > min B(x)
XEA,

N1~ P<R(x)<r,+p .
XP[T,- < Ty sup{IR () - RX(2)I: t € [0, T,1} < o].
On the set where sup{|R(t) — R*(¢)|: ¢t € [0,T;]} < p and R(n%(T})) > r, we

have R¥(T,) >r—p=r,—p,and so if p <7, —r,_,, then T,_, < T, on this
set. Therefore,

J4(x) 2 28(n) P(R(1(13)) > 7;

(5.6.24)

sup{|R(¢) — R¥(¢)|: t € [0, T,]} < p}),
where
(5.6.25) Sy =%  min  BU)(r—roy).

k=1Tr-17PST=Thy,

Using the definitions (5.6.20) and (5.6.21) of R, and R*, equation (5.6.19), and
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Assumption 3.2(1) and (iv) and standard arguments using Doob’s martingale
theorem, we get that there is a constant K so that for any T > 0,

P(sup{|R(t) — RX(¢)l: t € [0, T,]} = p)
<K(1/T + ¢/p)E(T,) + eKT/p*.
We shall show in the following that there is a constant C independent of
e > 0 and of M > 1 so that
(5.6.27) E(T,) < C[1 + J=M(x)].

To prove (5.6.5), we may assume that the left side of (5.6.5) is finite and that
there are sequences {M(k)}, ., and, for each k& > 1 {e(k, m)},, ., so that the left
side of (5.6.5) equals

(5.6.28) lim Lim JM®. ek m)(x)

k— o0 m— oo

(5.6.26)

In particular, J¥®: &% m g hounded independently of % and of m. Restricting
(M, ¢) to lie in the set {(M(k), e(k, m)): k > 1, m > 1}, we may assume, by
(5.6.27), that E(T,) is bounded independently of ¢ and M. This, together with
(5.6.26) implies that for any A > 0,

lim inf lim inf P,( R(n°® ™(T,)) > r;

k=0 m—w
SUP{|Re(k,m)(t) - Re(k,m)*(t)h te[o, TA]} < P)
>(1- A)li,:ninf liminf P,( R(7*® ™(T,)) > r).
This, together with (5.6.24) and (5.6.28) implies that the left side of (5.6.5) is not
less than
28(n)(1 - A)li;ninf lim inf 2,( R(n°® ™(T,)) > r).
The continuity of B8 implies that, as n — oo, S(n) approaches the integral from
R(x) to r of B(s) ds. (5.6.5) will follow if we show that for every r € (R(x), r(N)),
lim inf lim inf P,( R(n**™(T,)) > r) = 1.

k— o0

This follows from (5.6.4) because {JM*:e*k:m):; k> 1 m > 1} is bounded and
because for any e > 0and M > 1,

JM(x) > inf{®M(y): R(y) <1,y € D}P(R(n(T})) <r).
To complete the proof, we must show that the inequality (5.6.27) holds.

PROOF OF (5.6.27). From (5.6.20) and (5.6.19), it follows that
dR (t) = VR(n(t)) - (v%(¢) — b(n(¢))) dt
+[VR(n(2)) - b(n(2)) + (e/2) LR, (n(£))a;;(n%(2))] dt

+Ve VR(n(t)) - o(n(2)) dB(t).
Since D is bounded, and A = {x € D: § < R(x)}, it follows from (3.5) and
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Assumption 3.2(i) and (iv) that if e is sufficiently small and ¢ < T, VR(n(?)) -
b(n°(?)) + (¢/2)XR;(n(t)a;(n(t)) < —C < 0, where C is a constant. Using this
and Assumption 3.2, we get that there is a constant M so that if R(D) =
sup{R(y): y€ D}and T < T,

§<R(D)-CT+M|
0

T AT
4| [*TOR(a(8)) - o(n(2)) dB(2)|.
If T is large enough to ensure that R(D) — CT < 0, this implies that

BTL [ne(e), ve(2)] dt

P(T,<T)< g[jOT“TML[nS(t),vf(t)] dt > 8/2]

T
+2| [OR((0) - o(a() dB(o)| > 825k |
This implies by Chebyshev’s inequality that if a € (0,1) is fixed and if R(D) —
CT < 0, then there is a constant A so that for sufficiently small ¢ and every
x €A,

(5.6.29) P(T,<T) < AE,,[ /0 BATL [¥(e), ve(2)] dt] + a.

From this, it follows by a straightforward induction argument using the strong
Markov property that for every n > 1,

n
P(T,>nT)<a" P(T,>T)+A Y an-kEx[fT“AkT Ln(t),ve(¢)] dt|.
k=2 TaA(k-1)T
We use this to estimate E (T):

E(T) = ["R(T,> t) dt

<TY P(T, > nT)

n=0
<T+T1-a) 'P(Ty>T)
+ATY Y a"‘kEx[ / AT OR &) dt].
k=2 n=Fk TaA(k-1)T

Interchanging the order of summation and using (5.6.29) again to estimate
P(T, > T), we deduce from this that for x € A,

TyANRT

E(T,) < T(1 —a)_l{l +A§2Ex[ [T Ll (o) dt]}

=TQ1 - a)_l{l + AEx[fTAL[n‘(t),v‘(t)] dt]}.
0
This clearly implies (5.6.27) since ® > 0 and L*%(-,-) > L(-,-).0O
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5.7. An easier proof of the upper bound in the spherical case. In this
section, we give an easier proof of the estimate (5.2.3) in the case where 7 has the
special form (3.8) and ¢ = I,. In this case, R(x) = |x|. Since we are interested
only in what happens until the exit time 7, from A, we can redefine 7 in {y:
R(y) < 8/4} in such a way as to remove the singularity at the origin, without
affecting the process up to time T: By It6’s formula, if R%(¢) = R(x%(¢)), then
dR%(t) = [(R%(2))"x(¢) - b(x%(t)) + e(d — 1)2R(¢t))" '] dt + Ve dw(t), where
w(t) is a one-dimensional Brownian motion. For s € R, define b*(s) = —B(s A
8/2) + &(d — 1)(2s A 8) . Compare R*(t) with the solution of

dre(t) = bX*(r(t)) dt + Vedw(t).

Since, if |x| > §/2, |x|"x - b(x) + &(d — 1)2|x)~* < b*(]x)), it follows by the
comparison theorem for one-dimensional diffusions [13, Chapter VI, Theorem
1.1] that for t < Ty , = inf{t > 0: |x%(¢)| < §/2}, R%(¢) < r(¢). Now b*(s) —
b*(r) = —B(s A 8/2) uniformly for s € R, and b*(-) is bounded and uniformly
Lipschitz on R. Therefore, by Ventsel and Freidlin’s result [25], if A is a closed
subset of C([0,T], R, r), where T'> 0 and r € R are fixed, then

(5.7.1) limsupelog P(r¢|;, 7} € A) < —inf{I,(g): g € A},
e—>0
where if g € C([0, T], R, r) and g is absolutely continuous, then
T
(5.7:2) I(g) = 1 [ [&'(5) - b*(e()]" dt

and otherwise I,(g) = + 0. If Ty and T, y, denote the hitting times of § and
r(N), respectively,

Pi(x(T,) € N) < P. (To(R*) > T,ny(R"))
|(Ts(" ) > (N)("s))
< P|x|( r(N)(" ) < T) |x|( r(N)(re) > T; Ty(re) = T)

< P|x|(" lo, 71 € AI(T)) + P|x|("£|[o,T] € Az(T)),

where A,(T) and Ay(T) c C([0, T'], R, |x|) are the sets A,(T') = {g: sup{|g(¢)|:
0<t<T}>r(N)} and Ay(T) = {g: 6 < g(t) <r(N),0 <t < T}. Therefore,
the estimate (5.2.3) will follow from (5.7.1) once we have established the two
estimates ,

(573)  inf(I(g):2€ A(T)) =2 [ " B(s)ds, forevery T>0,
x|
(56.74) inf{I(g):g€A(T)} > +0, asT > +oo.

Proor oF (5.7.3). By Ventsel and Freidlin’s argument [25, Lemma 4.1, page
30], inf(I(g): & € A(T)) equals inf(I(g): g(0) = Jaf; &(T) = r(N), g'(t) =
—b*(g(t))}. For g in this set, substituting into (5.7.2), using the fact that
1[g'(t) — b*(g(t)]? = 2B(g(t))g’(t) and making a change of variables, one sees
that I,(g) is equal to the right hand side of (5.7.3). O
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PRrOOF OF (5.74). Since {y: d < R(y) < r(N)} is compact and does not
contain any w-limit points of the dynamical system x’(¢) = b*(x(¢)), this follows
from [25, Lemma 3.2, page 24]. O

6. Proof of the exit result. In this section we shall complete the proofs of
Theorem 3.16 and Corollary 3.19.

REMARK. [See (3.13), Definition 3.14, Assumption 3.15, and Theorem 3.16 for
notation.] Since it follows from Remark 3.7 that for x € {y: R(y) = r(D)},
PO[T}«(x(+)) = 0] = 1, Assumption 3.15 is the same as, for x € D,

(6.1) P[T3(x(+)) = Tp(x(+)); Tp(x(+)) < o] = P[Tp(x(+)) < o].
A sufficient condition under which this holds will be given at the end of this
section.

We show first

PROPOSITION 6.2. Let D* be as in Definition 3.14. If x € D* and p*® and
p* denote, respectively, the measures induced on dD* by x*(-) and x°(-), then
for every x € D*,

prt=p¥ ase—0.
The following lemmas are needed in the proof of Proposition 6.2.

LEMMA 6.3. For fixedx € R?, let P® be the measure induced on C([0, ), #¢)
by the solution of (1.1). There exists a constant T(D) so that for every x in the
closure of D*,

PY(Tpe(x) < (D)) = 1.
PROOF. See Remark 3.7. O
The proofs of the following two lemmas are elementary.

LEMMA 6.4. Suppose G C R¢ is open. Suppose that g, — g in C([0, T], ®9).
Then

lirfl_l)ingG(gn) > To(g)-
If also T4(8) < T, )
limsup T§(£,) < T5(2).

n—oo

LEMMA 6.5. Suppose G C R¢ is open. Suppose g € C([0,T], %) and
Ti(8) = Te(g) < T. Then if g, - g in C([0, T1, R?), g,(Ts(8,)) — 8(Tx(8)) as

n — oo.

The next result follows by the standard argument using Gronwall’s inequality.
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LEMMA 6.6. Suppose T > 0. Let x°(+) and x%(-) denote the solutions of (1.1)
and (1.3), respectively. Then for any x € R?,

Ex[{sup{lx‘(t) —x%)):0<t< 2T}}2] -0 ase—0.

PROOF OF PROPOSITION 6.2. From Lemma 6.6 and Skorohod’s theorem, it
follows that one can construct random variables x ~%(-) and x ~ °(-) taking values
in C([0,2T(D)], ®?) so that a.s. x ~%(-) = x ~°() in C([0,2T(D)], %) as £ — 0.
From this and Lemmas 6.3 and 6.5, it follows that as. x~%(Tph«(x~%)) —
x " OTp.(x~°)) as ¢ — 0. Since x°(-) and x°(-) have the same distribution as
x~%(-) and x ~°(-), this implies that if x € D*, P,[x%(Tp.(x%)) = x%(Tp«(x°)) as
¢ = 0] = 1. From this, the result of Proposition 6.2 follows. O

PrOOF OF THEOREM 3.16. From (3.11) and Remark 3.7, it follows that if
y € K, PX(Tj(x(-)) > 0) = 1. Hence it is implicit in Assumption 3.15 [(6.1)] that
if x € D, then PX(x(Tp) € K) = 0.

If N c 4D, and x € D*, then by conditioning on Fr, and using the strong
Markov property, one can show that

!‘i(N) = #:E(N) + Ex[X(y: R(y)=r(D))(xe(TD*))Px'(TD*)(xa(TD) € N)]

Lemma 3.12 enables us to handle the second term if either N N K is empty
or if Kc N°: Pi(x(Tp) € N) approaches 0 or 1 as ¢ >0 uniformly over
{y: R(y) = r(D)} according as NN K = @ or K C N°. Therefore, using Pro-
position 6.2, we deduce that for x € D*,

(6.7) if NN K= &,then pi(N) » p*(N) ase— 0,
(6.8) if K C N°, then p&(N) - px(N) + p({y: R(y) = (D)}) ase—0.
In particular, if K consists of a single point j,, then (6.7) and (6.8) imply that

for x € D*, as € = 0, p2(N) approaches p¥(N) + px({y: B(y) = r(D)Dx n(%)-
Therefore, as ¢ = 0,

ps = pi + pi({y: R(y) = r(D)})3,,.
This proves Theorem 3.16 for x € D*. If x € D and R(x) = r(D), then

p* =38, 50 p*|,p = 0. If R(x) < r(D), then P(Tp.(x(-)) < ) =0, p3 = 0. In
both cases the result follows from Lemma 3.12. O

ProoF oF COROLLARY 3.19. It follows from Lemma 6.3 that the Dirichlet
problem Lu* = 0in D*; u*|,,. = g* has a solution. For ¢ > 0, define u*(x) as
in (3.20). It follows from standard results that u® solves the boundary value
problem: Lfu® = 0 in D; u®|,p = g. The solution to this Dirichlet problem need
not be unique (see [15, page 28]). However, the process x%(-) hits zero with
probability zero so the singularity of 7 at zero makes no difference. (3.21) follows
immediately from Theorem 3.16. O

A sufficient condition for (6.1). As in (3.13), T, and T denote the exit times
from D and D, respectively.
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DEFINITION 6.9. If y € D, then y is a regular point of 4D if PY(T} > 0) =
0. Otherwise y is an irregular point.

If y € 9D, let n(y) be the exterior normal to D at y, and let n*(y) denote
the exterior normal to {x: R(x) < R(y)}. Under the assumptions of Section 3,
for y € 4D, n*(y) = VR(y)/|VR(y)I.

In [20], Stroock and Varadhan gave necessary conditions for a boundary point
to be irregular. It follows from their results that in the present setting all
boundary points y are regular except perhaps if n(y) = n*(y). Depending on
the relative curvatures of the two surfaces dD and d{x: R(x) = R( ¥)}, such
points may be irregular. In particular, all the points of the set K are irregular.

If we can show that starting from any point x € R, the probability of hitting
any other point y € R? is zero, then under the following hypothesis, it will
follow that (6.1) holds.

HYPOTHESIS 6.10. The set {y € dD: n(y) = n*(y)} is countable.
We need to make one further assumption:

AsSUMPTION 6.11. Assumption on ¢(-). From now on we shall assume that
the following condition is satisfied. For x € ®¢, let P(x) denote the orthogonal
projection onto the range of ¢(x). Assume that there is a constant A > 0 so that
for every x € R? and every £ € R¢,

N P(x)¢]” < e(x)P(x)¢ - P(x)¢ < A~Y P(x)¢]"

LEMMA 6.12. For y € R¢, define T, = inf(t > 0: x(¢) = y}. Under Assump-
tion 6.11, if x + y, then

PX(T, < ) = 0.

PRrROOF. The proof, which we omit, follows standard lines: It involves the
construction of functions g,(x, t) such that if L, = L + 3/3¢, then L,g,(x, t) < 0
outside a neighbourhood of y, and g,(x,¢) > c0oasx > yand n - 0.0
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