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ON THE MEANS OF APPROACH TO THE BOUNDARY OF
BROWNIAN MOTION!

By M. CRANSTON

University of Minnesota

For a simply connected plane Greenian domain D we give a natural
description of the means of exit of a Brownian path from D. We give a
related discussion of the connection between classical and probabilistic Fatou
theorems.

In this paper we discuss the means of approach of Brownian motion in a
simply connected plane Greenian domain D to the boundary. One motivation for
this is to compare classical and probabilistic Fatou results.

The classical Fatou theorem on D = {z: |z| < 1} is the following. Given
1 > o > 0, define I'(s; e*) to be the convex hull of {z: |z| < ¢} and {e%}. Then
given any bounded harmonic function A on D,

lim h(z)
z— 9D, zeT(o; %)
exists for a.e. § € [0,2). This was proved by Fatou (1906). In Littlewood (1927)
this was supplemented by showing that given any tangential means of approach,
there is a bounded harmonic function on D for which that tangential approach
fails to give a limit at a.e. boundary point. This will be discussed in more detail
later.

Doob (1957) provided a probabilistic version of Fatou’s theorem. Suppose
(W, P,) is Brownian motion killed on exiting D, with 7, = inf{¢ > 0: W, & D}.
Then lim,, , h(W,) exists P, a.s. for any bounded harmonic function 4. More can
be said when W is conditioned on the value of lim,, W, ie., by looking at
conditioned Brownian motion. If p(¢, z, w) is the transition density for W under
P, and u is the Poisson kernel with pole at e®, then p%(t, 2z, w)=
u(z) p(t 2, w)u(w) is the transition density for Wcondltloned to exit D at the
point e?. It is easy to see that this is a diffusion on D with generator
1A+ Vu/ u - V. This diffusion solves the equation dX, = dW, + vu/u(X,) dt.
Then we have that for a.e. § € [0,27), lim,,, h(X,) exists and is equal to

lim & P, as.
y—aD, ( y) z
y€l'(o; ew)
This motivates studying the means of approach of Brownian motion in D to
dD. In what follows D will be a simply connected plane Greenian domain and u
will be the Martin kernel associated to a point ¢ in the Martin boundary. By X
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we denote the u-process. It was shown in Cranston and McConnell (1983) that
u(X,) > o as t1 7p. Also keep in mind that X, — ¢ in the Martin topology as
t11p. Applying Itd’s formula, u?(X,) = u*(X,) + 3f{|lvu(X,)|® ds +
2 [gu(X,)Vu(X,)dW,, for 0 < t < 7,. We now claim that [{|vu(X,)|?ds = o
as t —> 7p. Since u(X,) > o0 as t - 7, and [{|[vu(X,)|>ds is increasing, the
claim hinges on the behavior of the martingale term M, = 2 [fu(X,)v u(X,) dW..
Define n = 4/jru?(X,)|vu(X,)|?> ds. On {n < 0}, M, =lim,_ M, is finite and
thus [{|vu(X,)|>ds = o as ¢t > 7, 0on {n < 00}. On {n = 0}, M, can be time
changed to a Brownian motion run up to n = co. Thus M, = 0 infinitely often as
t = 75, where by “infinitely often as ¢ — 7,” we mean for every ¢ < 7;, there is
an s, ¢t <s <y, such that M, = 0. Consequently, on {n = 0}, u*X,) =
u*(X,) + 3/{|vu(X,)|* ds infinitely often as ¢ — 7, and since it is increasing, it
follows that 3/¢|vu(X,)|®ds > o on {n = co}. This establishes the claim which
will be useful later. Also, 7 = oo a.s. now follows since [J?|Vu(X,)|? ds = oo and
u(X,) - oo as s = 1,. Now let v be the harmonic conjugate to u, so that u + iv
is analytic, or u and v satisfy the Cauchy-Riemann equations, u, = v,, u, =
—v,. For example, when D = {z: |z] < 1} and ¢ = e then

u(re) = (1 - r2)(1 —2rcos(6 — ¢) + "2)_1

and
v(re¥) = —2rsin(6 — ¢)(1 — 2rcos(8 — ¢) + r2) .
In the case when D = {z: Im z > 0} and £ = (¢,0) then

u(x, ) =y(y*+ (x=0)°) " and o(x,5) = x(y?+ (x - 1)) "
This example will eventually be discussed in more detail. When D is simply
connected, u and v give an orthogonal coordinate system on D. In the first
example mentioned above, D = {z: |z| < 1}, the u-level curves are circles inter-
nally tangent to dD at £ The v-level curves are the orthogonal circles with
center on the tangent to dD at ¢ and touching £. The positive v-circles are on
one side of £, the negative on the other. For general simply connected Greenian
domains just use conformal mapping to conclude that the functions u and v
provide a coordinate system. When the generator for the u-process is written in
(u, v)-coordinates something nice happens and this is used to prove the main
result.

THEOREM 1. Suppose D is a simply connected plane Greenian domain and
let £ be any point in its Martin boundary. Denote by u, v and X the Martin
kernel with pole at §, its harmonic conjugate and the u-process, respectively. Let
&: [0, 00) — [0, 00) be such that g(t) |0 as t 1 oo and F be an increasing function.
If [“g(t)t™ ' dt < oo and limsup,, ./t loglog ¢ (F(Vtg(t)))™! = 0, then

O(Xt)

lim ———= =0, P, a.s.
tTp F(u(Xt))

Proor. The process (U, V,) = (u(X,), v(X,)), for 0 < ¢ < 7y, tells on which
(u, v)-level the process X, is sitting. Writing the generator for X in (u, v)-coordi-
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Here [|V u|%] has been expressed as a function, H(u, v), of the new coordinates.
Thus (u,, v,), whose generator is 19%2/du®+ 1/ud/du + 13%/3v% is a time
change of (U,, V,). Furthermore the time change is the inverse of the additional
functional [{|vu(X,)|?ds and as previously observed this tends to infinity P,
a.s. as t 1 7p. Thus (U,, V) traces out the same path as ¢ 1 7, as does (u,, v,) when
t 1 00. One sees from the generator of (u,, v,) that the coordinate processes are
independent, the first is Bess (3), the radial part of a three-dimensional Brownian
motion, and the second is one-dimensional Brownian motion.

It is known, Itd and McKean (1974), page 164, that if g(¢)|0 as ¢ 1 o0 and
[2g(t)t ' dt < oo, then P(u(t) > Vtg(t) eventually) = 1. Thus, if F and g are

as assumed

lim sup
tT1p

COROLLARY 2.

and

lo(X,)] |0

Fu(X)) - n Fu,)

. A V2tloglog ¢
lim sup

t10  V2tloglogt  F(u,)
. |o V2tloglog ¢
< limsup

110 V2tloglogt F(Vtg(t))

=0 as.
For every 8 > 0
lim sup [o(X,)| 1+s
i1 u(X,)(logu(X,))

limsup—lt)% = 0
t1p u(X,)log u(X,) ’

2

X
limint —— 0]

————5-=0, P,a.s.
trrp u(X,)logu(X,)

Proor. The first statement follows from Theorem 1 by selecting g(¢) =
(log t)~*%) with any 0 < 8’ < 6 and F(u) = u(log u)' .
For the second claim we will show limsup,,, |0(X,)|/u(X,)log u(X,) > M as.
for any M > 0. We will abuse notation slightly and let the subscript on P,,
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2, =1+ 0i, denote the starting position of the process u(¢) + iv(¢) and then
drop the subscript and write only P, u and v will still be independent Bess (3)
and one-dimensional Brownian motion, respectively.

Now P(u(t) < Vt /log ti.o. t1o0) = 1since [*1/tlog tdt = co. Thus let o, be
a set of times o, 1 00 such that u(o,) < ‘/; /log o,. The process v is independent
of the times {0,}. Thus if A, = {|v(c,)| > Mo, }, then

P(4,) = ["P(lo(t)| = }4¢)P(o, € dt)

= c(M),

where c¢(M) is a positive constant depending on M. In order to show
P(A, i.0.) =1 it is convenient to apply a version of the Borel-Cantelli lemma
due to Kochen and Stone (1964). This says if “P(A,) = c and for some positive
¢, P(A,NA,)<cP(A,XP(A,) + P(A,,_,) for m > n, then it follows that
P(A, io.) > 0. Since {A, io.} is in the tail o-field for a four-dimensional
Brownian motion, which is trivial, we would then conclude that P(A, i.0.) = 1.
The conditions are easy to verify, ZP(A,) = o is obvious and P(A, N A,,) <
1=cP(A,XP(A,,)+ P(A,,_,)if ¢ =1/2¢(M)* Thus P(A, i.0.) =1 and

RN ¢ 4 T T
t1 u(Xt)IOgu(Xt) t1oo u(t)IOgu(t)
|o(,)]
> limsup —————
= SR (o, )log u(a,)
M
> lim 2 ‘/a

nto (‘/a/log an)log(\/a/log a,,)

=M, P as., asdesired.
The liminf result is obvious since v(X,) = 0i.0. as £1 7, and w(X,) > . O

The behavior of the time change transforming (U,, V,) into (u,, v,) has interest
of its own. This time change is the inverse of the additive functional
Jélvu(X,)|* ds which as we have already noted tends to infinity as 1 7.
Writing the It6 formula for v(X,) we see v(X,) = v(X,) + [{vo(X,)dW,, for
0 < t < p, since Vu - vo = 0. Thus, v(X,) is a local martingale and the inverse
of the additive functional [f|[vu(X,)|®ds takes v(X,) into a one-dimensional
Brownian motion. Thus we have the following easy consequence of the law of the
iterated logarithm.

ProposITION 3. If A, = [{IVu(X,)|% ds, then
o(X
limsup# =+1, a.s.
t1r, y2A]loglog A,
ExAMPLE. Consider the domain D = {z: Im z > 0} and take the Poisson

kernel with pole at (0,0), u(x, y) = »(x% + y2)~! together with its harmonic
conjugate v(x, y) = x(x% + y%)~ . Corollary 2 says that if the Brownian motion
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exits D at (0, 0) it will hit the curve C: |x| = y log[ (x2 + y*)"']i.0. as ¢ 1 7 but
will ultimately lie “inside” any curve C? |x|= cy(log(y(x% + y%)~1)!*?
whenever ¢ and & are positive. An easy computation shows that C is tangential
to Im z = 0 at 0. Conformal mapping shows the curve |v| = u log u is tangential
in the disc D = {2: |2| < 1} where u and v are the Poisson kernel with pole at
(1,0) and its conjugate, respectively. Thus by Corollary 2 the Brownian path in
D0= {z: |2| < 1) which exits at e will spill out of I'(s; ™) arbitrarily close to
e’ as.

We now return to the classical result of Littlewood (1927) in the disc D =
{2: |2| < 1}. Given C: v = ulog u, with u, v as above, Littlewood showed there
exists a bounded harmonic function A with the following property. Define C, to
be C rotated through an angle ¥. Thus for each ¢ we have a tangential means of
approach to e*. Then for a.e. ¢ € [0,27), lim, ze%h(z) does not exist. On
the other hand, 2 has limits along Brownian paths and a typical Brownian path
exiting D at e™ will hit C, infinitely often on the way to the boundary. Again
by infinitely often we mean for each ¢ < 7, the Brownian path hits C, after ¢.
This follows from Corollary 2. The upshot is that the set of C, where A oscillates
is too small for the Brownian path to hit infinitely often. In potential theoretic
terms we can say that if H(y) = im,,_,; , cr(; ci+)7(2) and

C(y,e) = {z€Cp: h(z) > H(Y) + eor h(2z) <H(Y) - e},

then C(y, ¢) is minimal thin at e®. A good discussion of minimal thinness is
given in Doob (1983). Also the paper of Brelot and Doob (1963) discusses the
connection between fine limits and nontangential convergence. Burdzy (1986) has
obtained results similar in flavor to Corollary 2 for Brownian excursions from
smooth surfaces.
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