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ASYMPTOTIC PROPERTIES OF SOME
MULTIDIMENSIONAL DIFFUSIONS

By CHARLES R. CLARK
University of California, Los Angeles
Let X, € R? be the solution to the stochastic differential equation

dX,=a(X,)dB, + b(X,)dt, X,<€R,

where B, is a Brownian motion in R?. The aim of this paper is to make the
following statement precise: “Let x, be a solution of % = b(x). If |x,| — oo
as t - oo and the drift vector field b(x) is well behaved near x, then with
positive probability, X, — oo, and does so asymptotically like x,.” Examples
are provided to illustrate the situations in which this theorem may be
applied.

1. Introduction. Let X, be the diffusion in R? given by

(1.1) X, =X, + j‘o(xs)st+f‘b(Xs)¢s,
0 0

where X, is a point in R? and B, a standard Brownian motion in R? We
suppose that ¢ and b are Lipschitz continuous with

lxTo(x)| + trace(o(x)o(x)T) < K(x2+1)

so that (1.1) has a unique solution for which |X,| < co for all ¢ > 0; see Durrett
(1984) for this and the other facts about stochastic integrals that we shall use
below.

Define the flowline {x,,t > 0} as the solution to the ordinary differential
equation x = b(x) given by

(1.2) X, =%y + ftb(xs) ds,
0

where x, is some point in R?, i.e., the process which results when we take ¢ = 0
and X, = x, in (1.1). Our objective is to give conditions on b(x) so that X, — oo
like x, as t > 0.

The first result treats the case d = 1 with ¢(X,) replaced by o,, a bounded
predictable process, in (1.1). The result for non-Markov X, is required in the
proof of Theorem 2. Here and throughout, P, refers to the probability measure
induced on the space of continuous paths by the process X, in (1.1) started at
X,=nx.
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986 C.R.CLARK
THEOREM 1. Let
X, =x,+ [0,dB, + [b(X,)ds,
0 0

a diffusion on R, where B, is a standard Brownian motion on R, o, is a bounded
predictable process, and

(i) 62<C foralls >0,
(i) b(x) >0 forx large,
b))
(iii) x_)wT(-;)—=c for some —1 <8 < 1.

Let
x(t,x,) = %o + fo ‘b(x(s)) ds,

a solution of % = b(x). Then

X
P, —L 1| <e forallt >0} > 1 asxy,— oo
o\ | x(t, x,)
and consequently, on {X, » oo}, with X, = x,,
X,
-1 a.s.
x(t, x4)

Condition (iii) says that b is regularly varying with index 8. (See Feller (1971),
Section VIIIL.8 for facts about such functions.) If d(x) > ¢ > 0 then the above
result is a consequence of the proof of Theorem 2 in Chapter 4, Section 17 of
Gihman and Skorohod (1972).

To see what the theorem says we consider the special case o, =1 and
b(x) = x° for x > 1. We can calculate (1.2) for x, > 1, § < 1,

1.3 x(t) = ((1 - 8)¢ + x572) 47V ~ gupr/a-d,
0

When —1 < 8§ < 1 we can use Theorem 1 to conclude that as ¢t — oo,
Xt

(1.4) m - Cs a.s.

‘and as we shall see below, this is (almost) the largest range for § for which such a
result can hold.

When § < —1, X, is recurrent although x, = co. If we notice that the power
1/(1 — 8) < 3 in this case this should not be surprising because B, has standard
deviation #*/2 while x, grows more slowly. For & > 1, (1.3) holds but x(¢) —» o
as t > t* = x}7%/(8 — 1). The process X, has the same behavior; there is a
finite random explosion time 7* such that X, - co as t = 7*.

To treat dimensions d > 2 we must first quantify the statement “near the
flowline”; Figure 1 illustrates the following definitions. Given {x,, ¢ > 0} from
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FiG. 1. The region enclosed by dotted lines is C(F, ).

(1.2), define 7(r) = inf{t > 0; |x,| = r}. Later we make assumptions on b that
ensure |x,| is strictly increasing in £, so that we may define

(1.5) Wr) =%y
(1.6) n(x) = cos‘l(x 'l};(lljl) ),

or in words, 7(x) is the angle between x and the point y(|x|) on the flowline at
the same distance from 0.
We define a truncated conelike region about the flowline (see Figure 1) as

(1.7) C(#,4) = {x € R%: x| > #,9(x) < i)

for # > 0 and 0 < 4 < /2. Note that if {x,, ¢ > 0} is a ray starting from 0 then
C(#, %) is a bona fide cone.

The object of Theorem 2 is to state conditions on o and b in (1.1) to hold only
in the region C(#, f}) so that we get, with high probability,

(i) X, remains inside C(#, ) forever,
(ii) R,=|X,| » o ast— co,and
(iii) n,=n(X,) >0 ast— co.

We give now the five assumptions required by Theorem 2, together with brief
discussions of the nature of each.
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Al. Bounded variance. Let A(x) = o(x)a(x)". Then there exists a A > 0 so
that

(A1) x"A(x)x < A|x|2. v
This condition can be guaranteed by a time change of the diffusion so by itself it
entails no loss of generality.

A2. Lower bound on outward drift. Define

x7b(x)
b(x) = ,
(x) ]
the radial component of b(x). Then
(A2) b(x) = f(jxl),

where f(r) > 0 is regularly varying with index 8, —1 < § < 1. In the discussion
of the one-dimensional case we explained why we only consider this range.

A3. Nontangential flowline. For b, as given in A2,

b(y)

16(¥)I

This says the flowline intersects spheres about the origin with angle bounded
away from zero, and implies that the function ¢ — |x,| is strictly increasing.
Without this assumption, examples can be easily constructed where relatively
small random perturbations could cause X, to skip over significant portions of
the path of x,, in which case we would have no hope of showing X, ~ x,.

(A3) 2p>0 forall ye {x,,¢t>0}.

A4. Curvature of the flowline. Let xk(r) be the curvature of the flowline
{x;, t = 0} at |x,| = r, defined here as in elementary calculus by

d? dt d 2

azx (Eli)T + K(_d_tlxtl) N,
where T = x,/|x,|, N is a unit vector orthogonal to T, and x > 0. Then
k(r)
f(r)

This is essentially a smoothness condition on the flowline and is implied by, but
not equivalent to, the simpler one

10;b(x,)| < B(x,]) forl<i,j<d,t>0,

(A4)

-0 asr - oo.

where b, ..., b are the components of the vector b and
B(r)
f(r)

We investigate condition A4 more closely in Examples D and E.

-0 asr— 0.
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s By
B

a; = a(x,y) <0 a3 = a(y,x) >0

Fic. 2. Notice that T(x) = tan a(y, x) + tan a(x, y) > 0 even though b(x, y) + b(y,x) <0.

A5. Toe-in. The last and most important condition is that the drift vectors
b(x) have positive components in the direction toward the flowline. This is easily
formulated in two dimensions and when the flowline is a straight line through
the origin but gets more complicated in general; refer to Figure 2 to illustrate the
following definitions.

Recall the definition (1.5) of y(r) and abbreviate y(|x|) as y. Define II to be
the projection onto the plane containing 0, x, and y. Decompose I15(x) into its
orthogonal components b(x)e,(x) and b(x, y)e,(x, y) where e (x) = x/|x| and
e,(x, y) is the unit vector in this plane orthogonal to e,(x) pointing toward y
from x. Decompose I15( y) similarly into b(y)e(y) and b,(y, x)e,(y, x). Define
a(x, y) as the angle IIb(x) makes to x, oriented as is e,(x, y); likewise for
a(y, x). We define

T(x) = tana(x, y) + tana(y, x)
(1.8) _b(xy) | b(y,%)
b(x) b(y)

The toe-in condition, A5, is
(A5) T(x) > e(n(x)), wheree(n)l0asnl0

and is essential in that this is the driving force keeping X, near the flowline, i.e.,
making 7(X,) —» 0. In Example B we briefly discuss a situation where A5 fails
and indeed the conclusion of Theorem 2 does not hold.

With all of our assumptions introduced we can finally state
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THEOREM 2. Let X, be defined as in (1.1). Suppose assumptions A1-A5 hold
in the region C(#, 1)) for some # > 0,0 < % < w/2. Let 2(t) be the solution to the
ordinary differential equation z = f(z) with z(0) = 0 and f(r) as given in A2.
Let

7 =inf{t > 0: X, & C(#,7)).
Then for 0 < y < % we have
(i) Py (7= 00) > 1 as|X,| - oo uniformly in n(X,) <,

X,
(i) hgglfl(l)zl on {r= 0},
(iii) 1,20 ast—> owoon {r=o0}.

REMARK. If we have in addition, in C(#, ),

(A2’) b(x) < f(lx)),
where f is regularly varying with index 8’ < 1, and define w(¢) by w = f(w),
= 0, we get the additional r%ult

i’ lim su

( ) t— oop ( )
In particular, if f(r) ~ f(r) then |X,| has asymptotic growth rate equal to
2(t) ~ w(t).

The proof of Theorem 2 depends only on the semimartingale properties of X,
and hence o( X,) may be replaced by o,, a bounded predictable process on R%*<,
Although all of the bounds in the proof carry through in the same way, they
become more cumbersome to present without the aid of the function A(x) =
o(x)o(x)". This generalization can be checked by inspection and is therefore left
to the reader.

Kesten (1976) proved similar theorems for Markov chains on Z¢ with applica-
tions to birth-death chains. Theorem 2 is modeled after his results which
required essentially the same toe-in condition and in which the flowline x, was
replaced by a straight line and the radial drifts were bounded below and above
(0 < ¢ < b(x) < C). The proofs relied heavily on the latter two facts; in particu-
lar, the martingale bounds used were not sensitive enough to allow b(x) — 0.
Similar questions concerning a different class of diffusions are treated by Pinsky
(1987). :

<1 on{r=o00}.

2. Examples. To illustrate the theorem we will now consider a number of
examples. We assume throughout that o(x) satisfies Al and X, is well defined
for all starting points X, and therefore give only the drift functions b(x).

EXAMPLE A. THE SADDLE. Let

(21) b(x) = VR(xt - xf) = 27(x2 - =3) 3, ).

where F/ > 0 is regularly varying with index a. Let x, = (1,0) so that {x,, ¢ > 0}
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Fia. 3.

is the positive x, axis. Consider the cone {x: x, >0, |8(x)| <y} for some
0 < y < 7 /4. Clearly, inside this cone, we have

(2:2) f(x1) = C|x|F(|x[?) < b(x) < 2Ix|F’(jx|*) = f(|x]),

where C,12 as y |0 so condition A2 is satisfied for —1 <1+ 2a <1 or
—1 < a < 0. Since the flowline is the +x,; axis (see Figure 3) the nontangential
and curvature conditions A3 and A4 are trivially satisfied. Finally it is easy to
see from the formula above (by substituting x, = cx; and looking at the
(constant) angle b(x) makes to x along this ray) that the toe—in condition A5
holds so Theorem 2 implies that with positive probability,

(2.3) 6,=06(X,) - 0.
Applying the theorem and the remark for small y and letting y — 0, we get that
(2.4) R,= X ~ r(t),

where r(¢) is the solution to 7 = f(r).

Similarly, we can get 8, - =, R, ~ r(t) with positive probability. In fact it is
not difficult to show that X, follows either one or the other of these paths from
any starting point; for any X,,, X, must eventually enter one of the two cones

{16(x)| < v} or {|0(x) — 7| <y}
x?
x2 )’

where F’ > 0 is regularly varying with index a. (See Figure 4.) If we apply the

ExaMPLE B. Consider

(2.5) b(x) = vF(x} + x3) = 3F"(x} + x3)
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Fic. 4.

theorem with x, = (1,0) or (0,1) then as in Example A we can show that if
—1 <1+ 3a <1 then X, has positive probability of going to infinity in the
cones {|0(x)| < v} and {|6(x) — /2| < y} when 0 < y < 7 /4. Our result cannot
be applied to the flowline starting at (1, 1) but there is a good reason for this: X,
exits the cone {|6(x) — m/4| < y} eventually for any starting point within this
cone. Cranston (1983) proved a lemma to this effect on his way to defining the
invariant o field for a considerably smaller class of diffusions in R2, where
b(x) =1 and R? can be divided into (bona fide) cones within which we have
either toe-in or toe-out; T(x) < —e(n(x)). His argument can be generalized as
long as the lower and upper bound functions of b,(x) given in (A2) and (A2’) are
asymptotically comparable.

ExXAMPLE C. A THREE-DIMENSIONAL SPIRAL SADDLE. Let f(r) be regularly
varying with index —1 <8 < 1 and

ED,
||
with x, = (1,0,0), so that the flowline {x,, ¢ > 0} is the +x, axis. Note that
b(x) is the sum of a three-dimensional generalization of the saddle (Example A)
and a vector field of pure rotation about the x, axis (see Figure 5). We check first
the toe-in condition A5 by expressing the coordinates as

X, = rcosm,

(2.6) b(x) = {(xv —Xy, —%3) + &(x)(0, —x,, x2)},

(2.7) X, = rsinncosb,

x3=rsinysing,
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to get the unit vectors

X

T

e, = = (cos n,sinn cos #,sinn sin§),

(2.8) x|

e, = (sinn, —cosncos §, —cosnsinf),
where e,-e, =0 and e/(r) points from x toward the +x; axis. (We can
compute e, = v/|v| from v =2x X (e; X x), where e; = (1,0,0) and X denotes

the vector cross product in R3.) As described in the discussion of A5, we get the
components of b(x),

b(x) =b-e, = f(r)cos2n,
b(x) =b-e, = f(r)sin2n,

and because the flowline is on a straight line through the origin, the toe-in
function of (1.8) reduces to

(2.9)

b(x)_
b(x)

and so (A5) is satisfied with &(n) = 29 for § < 7/2.

Because of our choice for the flowline x,, conditions A4 and A3 are satisfied
trivially as in the previous two examples. Furthermore, since b(x)/f(|x|) =
cos 2m(x), (A2) is satisfied when % < m/4, as with the (two-dimensional) saddle
(Example A). Therefore Theorem 2 implies X, = oo along the tx, axis with
|X,| ~ r(t), the solution to 7 = f(r).

(2.10) T(x) =
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Note that the conditions A1-A5 require nothing whatsoever of the function
&(x); we only need the process X, to be well defined in the first place. The choice
of flowlines x, is very important here as it is clear that the curvature condition
A4 certainly need not be satisfied by any other flowlines without imposing severe
restrictions on g(x). Freidlin (1966) proved a theorem about existence and
uniqueness of solutions to the exterior Dirichlet problem for a special class of
diffusions which implies this result provided b(x) > c > 0 for large x and
8(x) < h(|x|) with A(r)/r integrable.

ExaMPLE D. A WIGGLY FLOWLINE. In the above examples, A4 was satisfied
trivially since the relevant flowlines were straight. In this example the flowline
oscillates and the process follows the oscillations. Suppose the flowline {x,, ¢ > 0}
may be written in polar coordinates as
(2.11) 6(r) =sinlog r.

This is all we need to define n(x) and the cones C(#, ) and to check conditions
A3 and A4. Then, for some 7, 9, we can fill in the drift vectors b(x) so as to
satisfy A5 and A2 with, say, f(r) = r?, for some —1 < § < 1.

If y(r) is the tangent of the angle the flowline makes to the radial outward
direction at distance r from 0, then it is easily verified that r6(r) = y(r), where
the dot denotes d/dr. We have 6 = (1/r)coslog , so |y(r)| = |coslog 7| < 1 and
the nontangential condition A3 is satisfied.

An easy but tedious calculation shows that the curvature of this flowline is

26 + ré + r26®  const.
<
(1 + r262)*? r
Hence «(r)/f(r)=r®"'—>0 for all —1<8<1 and A4 is satisfied, so by
Theorem 2, X, follows the oscillations of the flowline {x,, ¢ > 0}.

If log r is replaced with r? above, we see that A3 fails for 8 > 0 even though
A4 may hold for some —1 < § < 1. Similarly, if we consider examples where the
flows spiral out from the origin, A3 will fail unless 6(r) < ¢/r, which implies
they are exponential spirals; 6(r) < clogr. We also note that by a similar
triangles argument, if the flowline oscillates from one side of a cone to the other,

and A3 is satisfied, then the radial distance between successive intersections with
the cone must grow exponentially.

(2.12) k(r) =

ExaMPLE E. One last example, to illustrate the relevance of the curvature
condition A4, is constructed as follows. Let x,, = n® Join the points (x,,, 0) with 1
circles. The nth circle has radius x,,, — x, ~ an*~!; hence x, ~ (1/a)r@/*~V
and, with f(r) = rd,

x(r) _];rl/a—l—s’

i) " a |
s0 A4 requires 1/a —1 -8 < 0,0r, a > 1/(1 + 8).

This same inequality comes up in the proof of Theorem 1 [(3.16)], and denotes
the lower bound of a so that the radial bound process (with drift f(r)) exits the

(2.13)
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successive overlapping intervals [x,_,, x,.,] at x,,, for all n > N(w). For
smaller a the (d = 1) process exits at x,_; infinitely often and our proof breaks
down even though x, — co. Since 1/rk(r) ~ ar~/* — 0, these flowlines are
asymptotically straight in that (x,) — 0. The breakdown of the proof is due to
the way in which we control the stochastic drift term of cos n, and not that the
conclusion fails for « > 1/(1 + §). Similarly, regular variation is not required for
the conclusion of Theorem 1 to hold.

3. Proof of Theorem 1. Facts about regularly varying functions not proven
here may be found in Feller (1971), Section VIIL.8. Hereafter we shall write “f(x)
is regularly varying with index a” as “f(x) € RV(a)” and this means that f(x)
is continuous and, for a € R,

fex)
x~0 f(x)
Equivalently we may define RV(0) as above, otherwise known as the set of
slowly varying functions, and define f(x) € RV(«) iff f(x) = x°g(x) for some
g(x) € RV(0).

One fact about regularly varying functions is essential to both theorems and is
easily shown:

a

(3.0) c®.

LEMMA 0. Let 0 < f € RV(a). Then
() if [ f(u)du<oo then fwf(u)du € RV(a + 1);
0 r

(ii) if fo°°f(u)du — o then forf(u)du € RV(a + 1).

ProOF. In the first case, let
F(x) = [ f(y)dy;
x

then

Fle) [21(y)dy _ ef (o) dy

Fx) [PHy)dy  [Zf(y)dy
By the definition (3.0) of f € RV(a), for x large and y > x,

(1 —e)ef(y) <f(ey) < (1 +e)e*f(y),
which upon integration gives

(@ =e)e[“1(3)dy < [“He)dy< (1 +e)e[F(2) dy,

which rearranges to

wir  Flex)
(1-¢e**t< F(x)

where ¢ > 0 is arbitrary. Hence F(x) satisfies the definition (3.0) of RV(a + 1).
The second case works in the same way. O

< (1+e)e*,
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We prove Theorem 1 by establishing that, along some sequence of points
Y, — o0, each sample path X, eventually hits the points y, sequentially without
ever backing up to y, — 1. Also the transit time from y,_, to y, approaches the
transit time for the associated deterministic process x,. The first claim holds if
the points are spread out far enough apart, but the proof for the second claim
fails unless they are close enough together that the drift function b(x) is
essentially constant over the intervals [ y,_;, ¥,.,]. It turns out that the proper
growth rate for the sequence y, is

1

1+6°

First, we find the solution f(¢) to the ordinary differential equation (1.2) by
defining its inverse,

(3.1) ¥, = n® for some a >

(3.2) fY(x) = f% € RV(1 - 8) (by Lemma 0).

Then x(t) = f(¢ + [ (o)), and f(¢) € RV(L/(1 — 8)). Since b() > 0, we see
that f~Y(x) is strictly increasing, so f(#) and x(t) are as well.
Let M, be the martingale part of X,, given by

(3.3) M, = ['o,dB,.
0

Then the variance process of M, is (see Durrett (1984), Sections 2.4 and 2.5)
(3.4) (M), = [‘o2ds.
0

The condition that |o,| < C implies that M, grows at most like a Brownian
motion; for convenience we take, without any loss of generality, C = 1. We
define the hitting time of y, for X,,

(3.5) T,=inf{t>0: X,>y,},
and we begin by bounding the martingale M, for T, < t < T, ;.

LEMMA 1. For any stopping time T and positive constants K and e, let
A=AT,K,¢)
={|M,.r— My <K+etforallt>0; T < o0}.
Then P, (A% T < ) < 2exp(—2Ke).

Proor. Using the exponential martingale it is easy to show this (see Durrett
(1984), page 27) with T' = 0 and M, a Brownian motion. For finite stopping times
T, we define N,=M,, ,— M. By the optional stopping theorem, N, is a
martingale, and hence is a time change of a (different) Brownian motion W,. This
time change is given by its variance process, (N ),,

(3.6) N,= [lo.rdB,.r,

(3.7) (NY, = [o2 1 ds,
0
(3.8) M = MN>t.
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By hypothesis, 62, 7 < 1; hence (N ), < ¢ and
M, 7 — My| = IN| = |Wyyy| <K+ e(NY, < K +¢t,

with probability greater than 1 — 2 exp(—2Ke).
If P, (T = ) > 0, we apply the lemma with the stopping times T' A n to get
P, (A5T < n) <2exp(—2Ke) and let n > 0. O

We now define, for positive sequences K, and ¢, to be chosen later, the sets

(3’9) An = A(Tn’ Kn’ En),
(3.10) Qv= N A,.
n>N

For the moment we choose x, = yy for some large N; thus 7, =0, n < N. We
will prove that the conclusion of Theorem 1 holds on £, and that P, (y) — 1
as N — 0, using the Borel-Cantelli lemma.

LEMMA 2. If N is large, and x, = yy, then for n > N, we have
(i) onA,, T, ,<w and X,>y,, forT,<t<T,,"

Tn
(ll) andonQN, 'm—l <ry
for some postive sequence ry = 0 as N - 0.
Proor. Define, for n > N,
(3.11) b= inf  b(x),
In—1SX=<Ip41
(3.12) b,= sup b(x),
In-1SX=Yp41
(8.13) Ay, = Ypi1 = Yn

Since b(x) is regularly varying and y, = n* grows only polynomially fast, we
have b, ~ b, ~ b(y,) as n — oo. Estimating the diffusion equation for X, for
times after T,

t
(3~14) Xt+Tn = XT,, + Mt+T,, - MT,, + j(;b(Xs+T,,) ds,

we have, for 0 < ¢ <inf(¢> 0: X, 7 & [y,_1, Yps1l)s
(3‘15) yn - Kn - Snt + bnt < Xt+Tn =< yn + Kn + Snt + Bnt‘
Note that Ay, ~ an®~' € RV(a — 1) in n, and b(y,) = b(n*) € RV(ad). We

now choose K, and ¢, so that they are asymptotically dominated by Ay, and
b(y,), respectively. Let

1
1+8°
(3.17) K, =nf,
(3.18) e, = nf®,

(3.16) a>p>
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We now see from (3 15) that X, hits y,,+1 before y,_,, for n > N, N sufficiently
large, on An, proving (i). Also we have T,,,; < oo and, by solving (3.15) for ¢,
witht =T, , — T, we get

Ay, - K, Ay, + K,
3.19 —_x<T . .- T < —m—.
( ) bn+8n n+1 n bn_en

By our choice of K,, ¢, we see that for some sequence of numbers R, — 0 as
n — oo, on A, we have

(3.20) (1-R,)—2 ~T,<(1+R,)—2

b( ) < b( )

Sum the telescoping series startmg from N to get, on Q,

n—1 n—1
3.21 1-R <T,-Ty=T,< Z(1+R
( ) ng( k) b( k) N~ P k) b( k)
Take the sequence R, to be decreasing; then
Ay,
3.22 - R <T,<(1+R
( ) N)Zb( k) N)Z b( k)
Since b(x) is regularly varying, it is easy to see that
Ayk Yier AY
3.23 —_— ~ —
(329) TR
along any sequence y, of polynomial growth; thus, since
/°°_dZ_ Cw
b(y) ’
for some other sequence 7, = 0 as n — oo,
.Yn
3.24 —r <T,<(1+r

which may be rearranged to get (ii). O

Notice now that K., =n’, with » =81 +8)—1>0, by (3.16), so
2exp(—2K ,¢,) is summable. Lemma 1 and the Borel-Cantelli lemma imply that

(3.25) P, (A%i0, X, > 0) =0

and hence the sets £ (given by (3.10)) increase to the set {X, - o} as. as
n — oo.

We can prove rather easily now that X,/x(¢) —» 1 a.s. on {X, = o} by noting
first that in the proof of Lemma 2, equations (3.21) and (3.23) imply that T, is
asymptotic to x~'(y,) (expressed by (3.28)) on {X, —» oo} for any starting point
xo. In general, for regularly va.rying &, the mapping g preserves asymptotic
equivalence; x(t) is regularly varying so T, ~ x~(y,) implies x(T,) ~ = Xrp.
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Hence, for n > N(w) < o0, and for T, < ¢t < T, ,,

In-1 Yo+ _ Yn-1 < X, < Yn+1 _ Yo Yn+1

Ynir #(Tae1)  2(Toiy) ~ 2(¢) ~ =(T,)  x(T) 3

As n — oo, both sides of (3.26) go to 1, proving X, ~ x,. However, for applica-
tions we want the stronger result of Theorem 1, which is most easily obtained by

keeping all the hidden epsilons out in the open in the above argument, as follows.
Lemma 2 implies, on ,, with x, = yy,

(3.26)

(327) T, = (1 + ay(@))x™'(5,),
where a, < ry. Also, from (3.2),

(3.28) 7o) =10 — (o),
SO

2(T,) = (T, + (o))
= (1 + @) (3) — anf " (on))-

Since f~! is monotone increasing,

lan( £ () = £ (om))l < laalf (o),
and hence (3.29) implies

(3.30) x(T,) = f((1+a,)f ()

for some |@,(w)| < ry.

To see that regularly varying mappings preserve asymptotic equivalence,
let g € RV(a); then given 5 > 0, there exists an M > 0 so that for x > M,
l1—-n7<c<1l+n,

(3.29)

g(ex) ol <
&(x) ’
and hence, in fact, given ¢, choose 1 and then M to get
g(ex)
3.31 —1l|l<e forl—n<ec<1l+n.
(3:31) ‘ g(x)
Thus, since f is regularly varying,
(3.32) F(@+a,)f7(2)) ~ 1(£74(0)) = s
so for N large enough, we have
x(T,
(3.33) (Z.) -1l <e.
In
Now y, = Xr and, perhaps for N yet larger,
(3.34) LA P

In
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We plug (3.33) and (3.34) into (3.26) and solve to get the conclusion of Theorem
1, albeit with & replaced by 2¢ + ¢

Finally, we extend to general x,, which was chosen to be a y, for some N
only to avoid overly technical details in computing the estimates for the first
interval [ y,_,, ¥,.,] exited by X,. Given a and x,, let N = min(n:n* > x,). Set
YN = %o and yy_, = (N — 2)* The quantities b, and b, change only insignifi-
cantly for large N, hence all the above estimates hold for x, large enough, and
with e replaced by 2¢. O

4. Proof of Theorem 2. Let R, = |X,| and 5, = n(X,) as defined by (1.6). In
brief, we show first that as long as X, stays inside the cone C(#, %), R, ~ r(¢) by
Theorem 1. We use this to estimate the martingale part of n, (we actually use
cos 1, for the calculations) and find that the martingale “runs out of gas,” i.e., it
converges to a finite limit and hence the drifts dominate and X, indeed remains
inside the cone, and 5, = 0. The proof comes in three parts: In the first we get
the lower bound we need on R, and also prove (ii). In the second part we
compute some formulas and estimates for cos n,, which we use in the third part
to prove (i) and (iii). Throughout this section, A(x) = o(x)o(x)" is the d X d
matrix of second-order coefficients for the generator of X,, as mentioned in (Al).

PrOOF OF (ii). Applying Itd’s formula to R, we get

(4.1) R, = |X)| + N+ [5(X,)ds + [h(X,)ds,
0 0

where
XJo(X,)
tAs s

(42) N,= [ =g dB.,

which is a martingale with variance process given by (see Durrett (1984),
Sections 2.4 and 2.5)

T

(49) = [T

b.(x) is the radial component of the drift term b(x) for X,, and

(4.4) h(x)= —L(traoeA(x) - xTA—(:)f—)
2|x| |x|

is the “stochastic drift” for R,, i.e., the drift term due to the quadratic variation
of X,.
We define a process Z, on R* by

(4.5) Z,= 1% + N+ [ '1(2,) ds

and establish, with 7 = inf(¢ > 0: X, & C(#, 7)),
(4.6) R,>Z, O0<t<n.
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Since A(x) is positive definite, A,(x) > 0; hence f(|x|) < b(x) + A,(x), the drift
term for R,. It seems that there should be a simple comparison theorem that we
could apply here to get (4.6), but unfortunately I haven’t been able to find one
that works as stated for non-Markovian processes; however, the proof of Theo-
rem 1.1 of Ikeda and Watanabe (1981), Chapter 6, works in the following
simplified form. Without loss of generality, f(r) is Lipschitz continuous with
Lipschitz constant K;

(Zt - Rt)+ = j:lf(zs) - br(Xs) - hr(Xs)ll(Zs>Rs} ds
< [tlf(zs) - f(Rs)Il{Zs>Rs) ds

(4.7) )
< Kjo|Zs — Rl .R,ds

-k[(2,-R)" ds=0,
()
since

a(t) < Kfo‘a(s)ds

together with « > 0 and « continuous implies that a = 0.

We now apply Theorem 1 to get a lower bound on the process Z,, We
characterize the function z(¢) by its inverse, which satisfies (by Lemma 0 of
Section 3),

4.8 t(z) = eRV(1 -6
(48) (2) f f( j €RV(L-9).
We can represent solutions 2 with 2(0) = r, > 0 by 2(¢) = 2(¢t + 2~ (r,)). By Al,
X'A(X,)X
(4.9) ol = ‘—(EL‘- <A,
R;

so (see Durrett (1984), Section 2.11) there is a unique one-dimensional Brownian
motion W such that, for some continuous o, consistent with (4.9), we may rewrite
(42) as

(4.10) N,= ['o,dW,.
0

Since f € RV(8), we can apply Theorem 1 to the process Z, to get
(4.11) Py(Z, > 2(t + 271X ]),0 < t < 7) 2 1 — p(1X,)),

where p(r) — 0 as r - oo. We also get Z, ~ 2(t) as ¢t — oo, which together with
(4.6) proves (ii) of Theorem 2. O

Having considered lower bounds we now prove the remark to Theorem 2
referring to the upper bound on R,. We note, by Al, that A, (x) < C/|x|, so

h,(x)/f(jx]) = 0. Compute w from f and Z from
fo=f+sup{h(x): x =r,x € C(#,4))
as in (4.8), and define Z, from f, as in (4.5). Since f ~ f,, we have w ~ Z and the
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above arguments now give Z, > R,, 0 < ¢ < r, with Z, ~ Z(t) ~ w(¢). O

Some estimates for cos n,. Applying Itd’s formula to cos n, we can write

(4.12) cosn, = cosn,+ M, + C,+ D, + E,,
where
(4.13) M, = [V cosn(X,)"o(X,) dB,

0

is a martingale with variance process (see Durrett (1984), Sections 2.4 and 2.5)
given by

(4.14) (M), = [)tv cos n( X,) A(X,)v cosn(X,) ds,
(4.15) : C = fo 'V cosn(X,)"b(X,) ds

and

(4.16) D,+E,= fo‘Hcosn(Xs) - A(X,) ds,

where (Hcos 7);; = d,0,cos 0, the matrix of second partial derivatives of cos 7,
and Hcos 7 - A is the matrix dot product formed by componentwise multiplica-
tion and summing; for example,

xxT- A=Y x'x/A;;=x"Ax.
y
We bound M, by writing it as a time change of a (pathwise uniquely defined)
Brownian motion, W,, given by (see Durrett (1984), Section 2.11)
M, = Wiy,
Using the exponential martingale it is easy to show (Durrett (1984), page 27)
that for K, ¢ > 0,

(4.17) P(W)| <K + etforall > 0) > 1 — exp(—2Ke),
and hence
(4.18) P(M,| < K + &(M),, t >0) > 1 — 2exp(—2Ke).

We now bound (4.14), for 0 < ¢ < 7. To facilitate computations, write (as in
A5) for x € R%: r = |x|, y = y(|x|), 7 = 7(x), and A = A(x) = o(x)o(x)". Recall
the definition (1.5) of y(r) =x,,, where r(t) = |x,|, and x, is the flowline
starting at x, of £ = b(x), and the definition (1.6) of 7(x). When we differentiate
cos 1 we get

(4.19) Vcosn=%+(Q—2cosn)%,
where

T
(4.20) Q=Q(x) == o)

y'o(y)’
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and hence,
1 y'A 1 2y"Ax
(v cosn)"Av cosn = -’3-}'721 + ﬁ(Q — 2cos 1) yrz
(4.21)
1 o XTAx

+ ﬁ(Q — 2cos ) ot
Using A3 we get, for x € C(#, %),

lxTo(y) 16(y) 1
(4.22) Q| = < -

lx[16() b(y) ~ p
and this with Al implies (recall 0 < cosn < 1)

C

(4.23) I((V cos 1) Av cos n)(x)l < —r—;,

for C, = A(3 + 1/p)% Hence, on the set (see (4.11))
(4.24) Q, = {R, > 12(t + 271(X,)),0 < t < 7}
for 0 < t < 7, we have

(My, < [C,R;*ds
0
< fot4Clz(s + z‘1(|X0|))_2 ds

(4.25) =ft_—il-z—1(|Xo|)4clz(s)—2ds
27 (|1 XD

< f°° 4C 2(s) 2 ds
2711 X,

= h(27%(1X,l)),

where

(4.26) h(t) = 4le°°z(s)_2ds.

We establish some asymptotic properties of 2(¢) and A(t). By (4.8) and some
basic properties of regular variation,

(4.27) 2(t) € RV(IITS)

and hence, by (4.26) and Lemma 0 of Section 3,

-1-96
(4.28) h(t) € RV( — )
and

(4.29) h(z7Y(r)) € RV(-1 - 9),

which goes to zero like a negative power of r as r — oo.
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We finally bound M, with high probability by plugging (4.25) into (4.18);

{(IM)| <K+ eM),, t>=0} NQ,
(4.30) _
c {IM) <K + eh(27(X,])),0< t <7} N Q,,

so if we choose
1/3

K = h(z274(X,l)) ",

_ —2/3
€= h(z 1(|Xo|)) ’
then for the set

(4.31) Q, = (M) < 2h(2"(X,)))"”*, 0<t< 7}
we have
(4.32) Py, (2, N 95) < 2exp(—2h(271(X,1)) ).

We estimate the probability of @, N @, using (4.6), (4.11) and (4.32),-
c _ -1/3
(433) Py ((2,n9)°) <p(Xl) + 2exp(—2h(271(X,D) 7).

Both quantities on the right-hand side go to 0 as |X,| — oo, which is what we
want; we will be showing 7 = o on this set. We now bound the other terms of

(4.12) on this set.

The expression for Hcos 7 is lengthy and uninteresting by itself, so we will

only present
(4.34) Hcosn - A(x) = D(x) + E(x)

broken up into the terms included in D, and E,, respectively. Let &’(y) denote

the matrix of first partial derivatives with entries 9 jbi( ),
(«7T - Qy")b'(y)b(y) x"Ax

(4.35) | D(x) =

(¥™5(y))’ r*
_ 1 1b(y)l 2b(y)"Ax
B =2 %0) O

1 () \*_ |x"Ax
(4.36) +ﬁ[8cosn —4Q - ( 5.(2) ) Q] 2

1 yTAx

+ ﬁ[traceA(Q —2cosm) — 6 -2 ]

We define
(4.37) D,= ['D(X,) ds,

and similarly for E,.
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We apply Al, A3, (4.22), and the fact that 0 < cosn <1 to see that for
x € C(#, %),

(4.38) |E(x)] < Cyr~2

for C, = A(6 + 2d + (6 + d)/p + 1/p?), so by the same calculations as in (4.25)
we get,on £,,0 <t <,

C.
t
(4.39) IE) < ['C,R;ds < h(27(1X)-

1

We estimate D(x) by first noticing that the vector b’(y)b(y) is the accelera-
tion of the curve x, at |x,| = r. Let s, denote the distance along this curve from
x, to x,; then §, = |%,| = |b(x,)| = |b(y)|, where t = &(r) is given by r(¢) = |x,.
We can express this acceleration vector in the following familiar form:

(4.40) &= 8T+ «(s,)'N,

where unit vectors T and N are just the Gram-Schmidt orthonormalization of
(%,, £,). We note that T = b(y)/|b(y)| and decompose x and y in terms of this
new basis: xp =x- T =x"b(y)/|b(y)|, and similarly for y;, x5y = x - N, and
yn =2+ N. We have for x € C(#, %),

(x - (xa/ye) ) (5T + (r)s2N) x"Ax
22,,2 2
S:Yr r

D(x) =
(4.41)

Yr¥N ~ X1IN x"Ax
= 3 k(r) 2

Yt

Note that

_ y'b(y) _yo(y)/r _ B(y) i
T T V2T e

Using (A3) b(y)/|b(y)| = p > 0 we get yp > pr. Since |x| = |y| = r we have

YrXN — XTIN 2
— | < 5
yr pr
and therefore, for x € C(#, %),
k(r
(4.42) D)l < € (r L

where C; = 2)A /.
The term C, given by (4.15) is the controlling term that drives 7, to zero. We
use the toe-in function T(x) defined in A5 (1.8) which can be calculated in terms
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of x, y, b(x), and b(y),

b,(x, y) N b,(y,x)
b(x) b()
y'b(x) — (cosn)x™d(x)  x"b(y) — (cosn)y™b(y)
(sinn)x"b(x) (sing)y™(y)

1 (yTb(x) x"b(y)

xTb(x)  y'b(y)

T(x) =

(4.43) -

; —2cosn).
sing

For x € C(#, %),

(v o8 )"b(x) = 5 [57(x) + (@ ~ Zeos m)xTb(x)]
x'b(x) [yTb(x)  xTb(y)
(4.44) = [be(x) + Yb(y) 2COS'I]j|‘
= siny b,(rx) T(x)

PrOOF OF (i) AND (iii). Define, for some 0 < ¢ < y < 4, the (non-Markov)
time

(4.45) S, =max{0 <s <t q,<c}
(we take S, = 0 if 0, > c for all 0 < s < ¢) and write
(4.46) cosm, = cosng,+ M,— Mg + E,— Eg + C,— Cg,+ D, — D,

For each path in Q; N @, with |X,| sufficiently large we show 7, <% for
0<t<r If §,=1t then we must have 7, < ¢ < f; otherwise 0 < S, < ¢ and

Mg, = Mo OF C SO
Y+

A

<1

(4.47) s, < v <
By (4.31), (4.39), and (4.29) we see, for |X,| large enough, on &, N Q,, 0 <t <7,

C
IM, — Mg + |E, — Eg| < 4h(27(X,]))"” + 222h(27Y(1X,l))

C
(4.48) '
Y+ .
< cos — COoSs 7.
By (4.44) and the toe-in condition, A5,
b(x :
(4.49) (v cosn)"b(x) > siny ( )e(n) >0,

r
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so by (4.37) and (4.42), since n, > cfor S, < s < t,
o KB ]B(X,)
°b(X,) | R,
By A2 and A4, since R, > |X,|/2 for 0 <s <, for |X,| large enough the
integrand in (4.50) is positive.
Putting (4.46), (4.47), (4.48), and (4.50) together we get, for some ¢, &, > 0,
Y+

(450) C,—Cs,+D,— Dg > f t[e(c)sinc -
S,

COS 7, > COS Ng, — COS + cos 1

(4.51) Y+
> CcOSyY — cos 5

+ cos )

> cos i + g,

and hence 1, < f) — &,,0 < t < 7. Since R, > |X,|/2 > F, X, never exits the cone
C(#,%) on €, N Q, which with (4.33) proves (i).

By conclusion (ii) and (4.26)—(4.28) we know that R;? is integrable along
(almost) any path in {7 = oo} since 2(¢)~% is. This and (4.25) imply that
(M), —» (M), and hence M, > M_, a finite random variable on the set
{T = o0}; similarly, E, » E_ by (4.39). We now bolster the previous argument a
little to get (iii).

The key fact is that (4.45) S, = ¢ infinitely often, for otherwise the integrand
in (4.50) will eventually be greater than const. b(X,)/R, and hence the term
D, — D, + C, — C, of (4.46) will be unbounded, which is impossible since the
other terms of cos 7, (4.48) are bounded. We see this by calculating log R,, using
It6’s formula and (4.1),

¢b(X,) tdN, 1 .d(N),
R, ds+f0Rs——2—f0 Rz

The latter two integrals converge since R;? is integrable; note that the second
term is a martingale whose variance process is —2 X the third term, which is
convergent by Al and (4.3); also (4.9), (4.10). Since log R, = oo, the first integral
must diverge.

Given 0 < ¢ < 0 < ), and given a sample path X, in {r = oo}, we can choose
T so large that for any ¢t > T, |M,— M_| + |E,— E_| < cosc — cos0; also
S, > 0 and hence cosng, = cos ¢, and (see (4.50)) D, — D + C, — Cg, > 0. Now
(4.46) becomes

(4.53) cosm, > cosc — (cosc — cos @) + 0 = cos 8,

(4.52) logR,— log R, =
0

and hence 7, < 0,¢t > T. Since 0 < ¢ < 8 < ) were arbitrary, this proves 7, — 0.
O
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