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RECURRENCE, TRANSIENCE AND BOUNDED HARMONIC
FUNCTIONS FOR DIFFUSIONS IN THE PLANE?

BY Ross G. PINSKY
Technion—-Israel Institute of Technology

We give conditions for transience and recurrence for certain diffusion
processes in the plane which “look” recurrent in certain sectors and transient
in others. We also give conditions for the convergence of diffusion paths to
paths of the deterministic dynamical system corresponding to the first-order
part of L, the generator of the process. This in turn is related to the question
of existence of bounded harmonic functions for the operator L. Conditions
are given for the existence and nonexistence of bounded harmonic functions
for L.

1. Introduction. Let w = x(2), w € (, #, %, P,) be a diffusion process in
R? with generator

! Z d’ ib 1L +b
+ = - V.
T2, i 1=1a”dx de; D) dx; 2 ° v
The drift, b - v, may be written in polar coordinates as

clx) o+ dl2)

where

X X —Xo X
c(x) = b(x)( i ) and d(x) = b(x)( s )
From now on, we will write the diffusion in polar coordinates as (r(t), 8(¢)). We

shall assume:
(i) For sufficiently large r,

(o) < HOPD)

o
and

d(x )—fﬁl’”(—), for 8,k € R.

(i) v, € CY(S"), i =1,2,and vy, > 0.
(iii) 0 < p;, € C*%R*), liminf,  rép,(r) = o, for all &> 0 and
limsup, , r*p(r) =0,forall e <0, i=1,2.
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BOUNDED HARMONIC FUNCTIONS FOR DIFFUSIONS 955

(iv) If k <8 <1, then p = p,/p, satisfies p’ = O(r~") and p” = O(r="2)
as r — oo, where v, > max(1 + £ — §,(1 + §)/2) and v, > 1 + k.
(v) If B =20 <1, then p satisfies limsup,_,  p(r) < o0, p’ = o(r~!) and
p” = O(r~*2) as r » oo, where v, > 1 + k.
(vi) If 8 = —1, then limsup, , ,p,(r) < .
(vii) If § = 1, then p, =1.If § > 1 and k < 1, then p, = 1.
(viii) The coefficients a;,(= a;;) of the operator L, are bounded and Lipschitz
on R?, and the matrix a(x) = {a,,(x)} is positive definite for each x € R2.
(ix) b(x) is measurable and bounded on compacts.

A discussion of these conditions will be given at the end of Section 2. Without
loss of generality, we assume that (i) holds for r > 1.

We wish to investigate the transience and recurrence properties and the
invariant o-field for the above class of diffusion processes. For illustration,
consider for a moment the simple cases v, =0, § < 1, py(r) =1 and (1) y,(x) =
e > 0 or (2) v,(x) = —e < 0. (Of course, since v, = 0, these cases do not fall into
the above class although we could consider it to be the case & = o.) It is easy to
show that in case (1) the process is transient and in case (2) the process is
positive recurrent. In the transient case the process explodes if § < —1. Further-
more, in the transient case, it is easy to show that 8(¢) converges almost surely
as t — oo to a nonconstant limiting angle 4. As we will recall below, this implies
that nonconstant bounded harmonic functions exist for the operator L. In this
simple case, the corresponding deterministic dynamical system obtained by
looking only at the first-order terms is r’(¢t) = ¢/r°, ’(t) = 0, which has

f(t’ "0»90) = (r(}+8 + 8(8 + l)t)l/(l+8)’ o(t’ rO’ 00) = 00

as its solution starting from (ry, 6,) in the case § > —1. For § = —1 one obtains
7(2, 1y, 0,) = rge®, é(t, Ty, 0y) = 6, while if § < —1, one obtains 7(¢, ry, 6,) =
(r+ + (8 + 1)et)/C*D, (¢, 1r,, 6,) = 8,, and the solution runs off to infinity in
finite time. Since 0(¢) converges almost surely as ¢ & oo to a limiting angle, we
see that indeed the paths of the diffusion process converge to paths of the
corresponding deterministic dynamical system. Moreover, as we shall show, r(¢)
almost surely grows on the order #/*+® if §> —1, and exponentially if
8 = —1. If § < —1, the process explodes as we have already remarked. Thus,
r(t) almost surely possesses the same order of growth as the paths of the
corresponding deterministic system. In this paper, we will investigate these types
of properties for diffusions with coefficients as given above. In particular, note
that since y,(#) is allowed to vary in sign, it is not obvious whether the process is
recurrent or transient. Indeed, most general results on recurrence and transience
require that the coeflicients satisfy certain properties uniformly in the nonradial
variables [1]. This obviously does not hold in our case as the process will “look”
recurrent in certain sectors ({0: y,(8) < 0}) and transient in others ({8: v,(9) >
0}). The one general result we are aware of that does not require this, requires
reversibility [6]; our processes are not reversible.
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We will prove the following theorems concerning transience and recurrence:

THEOREM 1.1. Let

1 1 7(0)p,(r) d  v(0)p(r) 1 d
L_2L°+b'v_2L°+ rd dr+ rk rde’

for r = |x| > 1, where L,, b, v;, p;, 8 and k are as in conditions (i)—(ix) above.
Assume k < 6 < 1. We have:

@) If v = [&"(v1/7¥2)(0) dO < O, then the process is positive recurrent.

(b) If v = [E"(v./¥2)(0) d8 > 0O, then the process is transient.

(c) If y > 0, then the process explodes if and only if § < —1.

(d) If y> 0 and & > —1, then for each & > 0, there exists a t(w) > 0 such
that t/0+%%9 < p(t) < t/0*%9 for all t>t, almost surely [P,,]. If
limsup, , ,p(r) < o, then there exist A\y(w)> 0 and t,(w) >0 such that
r(t) < A tV/*® for all t > t,, almost surely [P, ;1. If liminf, p,(r) >0,
then there exist A(w) >0 and t(w) >0 such that r(t) > \,t¥/0+® for all
t > t, almost surely [P, ,]. In particular, if 0 < liminf,_ p(r) <
limsup, ,  p(r) < oo, then there exist A(w) >0, Ay(w) >0 and ty(w) >0
such that \t'/0*® < r(2) < Xpt"/**® for all ¢ > t,, almost surely [P, 4]. If
Yy>0 and 8§ = —1, then there exist a Ay(w)> 0 and for each N >0, a
tn(w) = 0 such that tN < r(t) < e’ for all t > ty, almost surely [P, ,]. If
lim inf, ,  p(r) > 0 [recall that if & = —1, then by assumption,
limsup, , ,p(r) < ], then there exist A(w) >0, Ay(w) >0 and ty(w) >0
such that eM' < r(t) < e for all t > t,, almost surely [P, 4].

REMARK. An explanation of the transience and recurrence criterion in (a)
and (b) can be made similar to the explanation given in Remark 1 following
Theorem 1.3.

THEOREM 1.2. Let L be as in Theorem 1.1. Assume 8 <1 and k > 8.
Consider 0(t) to be defined on R rather than on S'. Relax condition (ii) so that
Yo may vary in sign and only assume v, € C(SY), i = 1,2. We have:

(a) If v, < 0, then the process is positive recurrent.

(b) If there exists a 0, € S* such that v,(6,) > 0, then the process is transient
and © =lim,_, 0(t) exists and is finite almost surely [P, ,]. Moreover,
O mod 27 € {§ € S": y,(0) = 0} almost surely [P, ,], and

P.,(®€(6,—¢0,+¢)>0
for all ¢ > 0 and 6, satisfying v,(6,) > 0.

(c) If there exists a 6, € S* such that v,(6,) > 0, then if § > —1 the process
does not explode whereas if 8§ < —1 and v,(® mod27) > 0, the process does
explode.

(d) If there exists a 6, € S* such that v,(6,) > 0, then if v,(® mod2x) > 0,
r(t) satisfies the growth rates as specified in Theorem 1.1(d).

[t in (b) is the terminal time as defined at the beginning of Section 3.]
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REMARK. Presumably, P, ,(v,(® mod27) = 0) = 0, in which case the extra
condition in (c) and (d) above may be dispensed with.

The case § > 1 is more delicate and, unlike the case § < 1, depends on L.
Before stating our theorem, we need the following:

CALCULATION. In polar coordinates,

2 d2
Lo= L % g
becomes
d> e, d® e, d? e, d e d
Le=em* gt Tatar T @ T as
where

e, = a,,c0820 + a,,sin’f + 2a,,cos 0 sin b,
e, = a,,5in’0 + a,,cos20 — 2a,,cos O sind,
e; = —2a,,cos 0sin @ + 2a,,cos 0 sin 6 + 2(cos’d — sin’d)a,,,
e, = a,;8in’0 + a,,c0s20 — 2a,,cos 0 sinf,
es = 2a,,cos 0 sin @ — 2a,,cos 0 sin 6 + 2(sin?d — cos?0)a,,.
In particular, the e; are bounded on R2.
For the case § > 1, we will make the assumption that the q; ;» and hence the

e;; are functions of 6 alone. Also note that condition (vii) requires p, =1 if
d=1land p,=1if k< 1.

THEOREM 1.3. Let L be as in Theorem 1.1. Assume that the a,; are functions
of 0 alone. Assume 8 > 1 and let k be arbitrary.

Define

;, ifk<1,

Yz(a)
1 o[ e5(s) + 2vy(s) e r

G(0)= meXPL(T)dg’ ifk=1,

1 o[ e5(s) .

es(0) efoo (82(8) ) ® TR 1

and define

e,(0) —e,(0) +2v,(9), if 8=1,

H(6) = {e4(0) —e,(0), if 8> 1.
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Then:
(a) If ["H(0)G(8) db < O, the process is recurrent.
(b) If [2"H(6)G(0) d8 > 0, the process is transient.

REMARK 1. The conditions in Theorem 1.3 can be explained as follows:
Define

d .
‘72(0)%, if & < 1,
0) d? es(0
L= e2(2)d02+( (0 , 2(e’r)) , k=1,
ey(9) d? e;(0) d .
5 28 + TR if k> 1.

L, has been obtained from L as follows: First throw away all terms involving
differentiation in r. Then from among the rest of the terms which involve
differentiation in # alone, keep only those for which the power of r appearing in
their coefficients is maximal. Then ignore r by setting r = 1. Now consider the
process generated by L,. The density ¢(8) of its invariant probability measure
satisfies L,¢ = 0, where L, is the adjoint of L. One can check that the solution
to this (up to a normalization factor) is ¢(8) = G(0), where G(8) is as in
Theorem 1.3. Now consider for a moment a diffusion generated by a(r)(d?/dr?) +
b(r)(d/dr). 1t is well known that b(r)/a(r) <1/r (b(r)/a(r) = (1 + €)/r)
implies recurrence (transience) where ¢ > 0 is arbitrary. We can rewrite these
conditions as rb(r) — a(r) < 0 and rb(r) — a(r) = ea(r). In particular, if a(r)
does not depend on r, we may rewrite the transience condition as rb(r) — a > 0.
Now if we ignore differentiation with respect to 6 in the operator L, and, among
the remaining first-order terms, only consider those for which the power of r
appearing in their coefficients is maximal (i.e., those with r~1), we obtain the
operator

e,(0) d* N 94(0)

2 dr?

e(0) d* (o)1 4
2  dr? 2 rdr’

(0)) o 8=1,

if 8§ > 1.

Now consider the transience and recurrence conditions with

1 [/}
e, (0) _(64( ) + 71(0))’ iféd=1,
1 r 2
= and b(r) =
2 ¢.(6) i8> 1
2r ’ )

Since a does not depend on r, the conditions for transience and recurrence
become H(6) > 0 and H(0) < 0, respectively, where H(#) is as in Theorem 1.3.
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Since H depends on 6, the appropriate condition for transience or recurrence
ought to be that H(#) integrated against the “invariant” density for 6(¢), that
is, against G(#), should be positive or nonpositive, respectively. In fact, this is
exactly what Theorem 1.3 states, except for the fact that in (a), we have required
strict negativity.

REMARK 2. In Theorem 1.1, our method does not cover the case y = 0. This
is to be expected as can be seen from the following. As we mentioned above,
Theorem 1.1 works independently of L,. One way of obtaining y = 0 is by
choosing v, = 0, in which case 8 is irrelevant. Hence this case is covered by
Theorem 1.3 and, depending on L, can be transient or recurrent.

We now focus on the transient cases in Theorems 1.1 and 1.2 (that is, when
8 < 1) and consider whether the diffusion trajectories converge to paths of the
deterministic dynamical system obtained by looking only at the first-order
terms, and whether the invariant o-field is nontrivial, that is, whether noncon-
stant bounded harmonic functions exist for the operator L. We cannot expect
any of this to occur in the case 8 > 1. In this case, the drift in ‘the radial
direction is on the order 1/r and hence is no stronger than the radial drift for
d,-dimensional Brownian motion for some d,. But Brownian motion in any
number of dimensions has a trivial invariant o-field. We recall the correspon-
dence between nonconstant bounded L-harmonic functions and the invariant
o-field of the process generated by L. The process lives on @ = C([0, ), R?), the
space of continuous R2-valued trajectories on [0, c0). A set A C { is invariant if
{w € A} = {6,0 € A}, where 0, is the shift operator (d,w(-) = w(t + - )). If Y(w)
is a bounded invariant random variable, then A(x) = E,y(w) is bounded L-
harmonic and, conversely, if A(x) is bounded L-harmonic, then A(x(%)) is a
bounded martingale which converges almost surely to a limiting random variable
Y(w), and in fact A(x) = E ¥(w). Thus, the invariant o-field may be identified
with the class of bounded harmonic functions and nonconstant bounded L-
harmonic functions exist if and only if the invariant o-field for the process is
nontrivial [5]. We need only consider the transient case since the invariant
o-field is always trivial in the recurrent case.

In the next section, we first describe the deterministic dynamical system
corresponding to the first-order part of L, and then state our theorems concern-
ing nonconstant bounded harmonic functions and convergence of diffusion paths
to deterministic ones.

In Section 3, we collect some lemmas concerning recurrence, transience and
explosion for diffusion processes. In order to increase the readability and de-
crease the length of this paper, we will prove our theorems in the case p, = p, = 1.
The proofs of the theorems from Section 1 are given in Section 4 and the proofs
of those from Section 2 are given in Section 5. In Section 6, we outline the
modifications needed to prove the theorems in the more general context.

It has recently been brought to the author’s attention that convergence of
diffusion paths to deterministic ones has been studied for another class of
multidimensional diffusions by Clark [2].
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2. Convergence of diffusion paths to deterministic ones. We consider
the deterministic dynamical system

(- MR OB

where v; and p; satisfy conthlons (ii), (iii), (vi) and the first part of (v). (In what
follows, the y; are extended periodically from S! to R.) We will denote by
(P(t, ry, ), e, Ty, 0,)) the solution with initial condition (r,6,) at ¢ = 0.
Throughout this section we assume that § < 1, y = [Z"(y,/v,)(0) d8 > 0 in the
case k < & and that there exists a , with y,(6,) > 0 in the case k2 > §. By
Theorems 1.1 and 1.2 the diffusion will be transient.

PROPOSITION 2.1. There exists a p > 0 such that for ry> p and all — oo <
0, < oo, the solution (#(t, ry, 8,), de, 1y, 0,)) satisfies

(1xa) 4t 1y, 0,) is strictly increasing.
() lim,_, (¢, 7, 8,) = oo if and only if k < 8.
(¢) If k > &, then lim,_, 0(t, r,, 6,)mod 27 € {6: y,(8) > 0}.
(2) #(t, 1y, 0) =1, forallt > 0.
3) If 4(t + q, Ty, 0y) = de, 1y, 0,) + 27, for some q > 0, then #(t + q, ry, 0,) >
F(t, 1y, 65)-
(4)(a) If 8 > —1, then for each € > 0, there exists a t, > 0 depending on r, and
0, such that

£/ < p(t, 1y, 0,) < t/0H979 forallt > t,.

If limsup, ,  p,(r) < oo, then there exist A, > 0 and t, > 0 depending
on ry, and 0, such that #(t,ry,0,) <At/ for all t>t,. If
liminf, |, _p,(r) > 0, then there exist A\, > 0 and t, > 0 depending on r,
and 6, such that #(t, 1y, 0y) = A /*®, for all ¢t > t,. In particular, if
0 < liminf, |, p,(r) < limsup,_,  p,r) < co, then there exist A, > 0,
Ay >0 and t,>0 depending on r, and 8, such that A\ t/C+® <
P(t, 1y, 0p) < AotV U*D, forall t > t,,.

(b) If 6 = —1, then there exist a A, >0 and for each N>0 a t,y >0
depending on r, and 6, such that

tV < 7(t, 1y, 0,) < e, fort>ty.

If liminf, ,  p,(r) > O[recall that limsup, _, ., p,(r) < oo by assumption],
then there exist A, > 0, A, > 0 and t, > 0 depending on r, and 6, such
that

eMt < 7(t, 1y, 0,) < e, forallt>t,.

(c) If 6 < —1, then there exists a t,, < oo depending on r, and 6, such that
hmt—»t (2, 1o, 0p) =

Proor. By solving explicitly, it is easy to check that this is true for the case
¥, = k;, ¥ = k, and p, = p, = 1. More generally, one can solve explicitly in the
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case that y,, v,, p, and p, are step functions. By approximating the general v,,
Ys, p; and p, by step functions and taking a limit, we obtain a proof for the
general case. O

Now consider solutions with initial conditions (p, ) for —o0 < 8 < 00 and p
as in Proposition 2.1. By the standard uniqueness theorem for ODE’s, there
exists a unique solution emanating from (p, ) for each 6 € (— 00, ). Equiv-
alently, integral curves do not cross one another. To each integral curve
(7(t, p, ), 0A(At, p, 9), let T(p, 0) denote its trajectory, that is, the locus of points
((#(¢, p, 0), 0(¢, p, 0)), t > 0}. Note, for example, that by the periodicity of the
Y, (r,0,) € T(p,0) if and only if (r,8, + 2n7) € T(p,  + 2nx). Also, it is
important to observe that because y, may take on negative values, an integral
curve (#(t, p, 9), 0(t, p, 0)) may intersect the circle 7 = p numerous times or even
run along a portion of its circumference. If the integral curve (#(¢, p, 9), 0(¢, p, 0))
intersects r = p at some time t, and 6(t,, p, ) = 6,, then in fact
(F(t, p, 0,), O(t, p, 0,)) = (F(t, + t, p, 8), 8(ty + ¢, p,0)) for all ¢>0 and hence
T(p, 8,) € T(p, 8). Thus, the collection {T(p, ), —00 <8 < 0} of trajectories
starting at p may contain repetitions in the sense that T(p, 6,) C T(p, 8) for
6 + 0,. Note that, as a consequence of part (3) of Proposition 2.1, this inclusion
can never hold if |§ — 6,| = 2n7 for nonzero integer n.

We note the following fact, which follows from Proposition 2.1 and the above
discussions, as

PROPOSITION 2.2. For each point (r,0), r > p, —o0 < 8 < oo, there exists a
trajectory T(p, 0,) such that for some t, > 0, (#(ty, p, 0,), é(to, p,0y)) = (r,0).
This trajectory is unique in the sense that if T(p, 0,) also satisfies the above
statement, then either T(p, 8,) € T(p, 6,) or T(p, 6,) < T(p, 6,).

Now consider the function

U(r,0) = f

0

6 Y1 T P2
—(s)ds — | = (s)s®*1ds,
() ds = [125(s)

for r > 0and —o0 <6 < c0.

PROPOSITION 2.3.

(1) U is constant along integral curves starting from (p, ) for —oo <8 < oo.

(2) U(p’ 00) = U(p’ 01) lf and Only lf T(p’ 00) c T(p’ 01) or T(p’ 01) c T(p’ 00)'
Thus U(r, 0) “separates” trajectories.

(8) Given any U,, there exists an integral curve starting at (p,0) for some
0 € (— o0, ) such that U = U, along that integral curve.

PROOF.

(1) Obvious by differentiation.
(2) As in the proof of Proposition 2.1, one can show this explicitly in the case
that v,, v,, p, and p, are step functions. This is enough.
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(3) Since [#™(v,/¥2)(s) ds = y > 0, there exists a unique 8 such that U(p, §) =
U,. Then by part (1), U = U, along the integral curve starting at p and
this 6. O

We now return to our diffusion process and consider 6(¢) to be defined on R
rather than on S'. We will prove the following theorems:

THEOREM 2.1. Let L be as in Theorem 1.1. If k < 8, assume y > 0. If k > §,
assume there exists a 6, with v,(6,) > 0. For all r >0 and —o0 < < o0, we
have:

(@ If -1<8<1and 6 — 3(1 —8) <k <38, then almost every diffusion
path (r(t), 6(t)) converges as t —» o to a trajectory of the corresponding de-
terministic dynamical system in the sense that %(w) = lim,_, JU(r(t), 6(t)) ex-
ists and is finite almost surely [P, ,]. Furthermore, the distribution of %(w)
under P, , converges to the atom at U, as r and 8 go to infinity in such a way
that U(r, 0) —> Uy. That is P, o(%(w) € dx) = 8,(dx) as r and 0 go to infinity
with U(r, 0) —» U,.

() If -1<8<1 and k<8—51-08) or k=8—-11-8) and 0<
liminf, |, p,(r), then almost every diffusion path crosses every deterministic
trajectory infinitely often. That is, limsup,_,  U(r(t), 8(t)) = co almost surely
[P, 4] and liminf, , U(r(t), 0(t)) = —co almost surely [P y) If 6 = —1, the
same result holds with the additional requirement k > 8§ — (1 — 8) = —3..

(©) If 8 <1 andk > 8, then almost every diffusion path (r(t), 8(t)) converges
as t — t,, to a trajectory of the corresponding deterministic dynamical system in
the sense that U(w) = lim,_,, U(r(¢),0(¢)) exists and is finite almost surely
[P, 4] In fact,

(o) =j09“°’$(s)ds- flwﬁ—z—(s)ss‘k'lds,
2 1

where O(w) = lim,_,, 0(¢). Furthermore, the distribution of ©(w) under B,
converges to the atom at 6, as r —> o and 0 — 6, with v,(6,) > 0. That is,
P, o(B(w) € dx) = §(dx) as r > o0 and 8 — 6, with v,(6,) > 0.

REMARK. The above theorem may be interpreted as follows. If £ < & —
1(1 — 8), then the vector field in the 6-direction is large compared to the vector
field in the r-direction and, consequently, the spirals of the deterministic trajec-
tories wrap around tightly. If £ > 8 — ;(1 — §), then the spirals of the determin-
istic trajectories wrap around more loosely and there is more “space” between
the individual deterministic trajectories. In the former case, the noise of the
diffusion process prevents individual diffusion paths from settling down and
following particular deterministic trajectories. In the latter case, the noise can
operate in the “space” between individual trajectories and thus does not prevent
the individual diffusion paths from converging to deterministic ones.
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THEOREM 2.2. Let L be as in Theorem 1.1. Assume —1 <8 <1,k <4 and
y>0.If k<8 — (1 — 8), also assume § # —1. For allr > 0 and —c0 <0 <
00, we have

. 1 r(t) P2 S—k—1 Y
tlinolo 0(t)f ) —(s)s ds = o almost surely [P, ,].

In particular, if p = 1, then we have

fim o = YO R stourely [P.,], ik # 8
t_}rrolo 0(t) Py almost surely | P, 4 |, if ,
log r(t)

Y .
im = " 2 almost surely [ P, 41, if k = 8.

Concerning nonconstant bounded harmonic functions, we have:

THEOREM 2.3. Let L be as in Theorem 1.1. If k < 8, assume y > 0. If k > 6,
assume there exists a 0, with v,(8,) > 0. We have: )

(@ If 8<land k>8orif —1<8<1andk>0d— 31— 9), then there
exist nonconstant bounded harmonic functions for L.

Mo If -1<8<1, k<d—-(Q1-8)=20-1, and 0 <liminf, , p(r) <
limsup, _,  p,(r) < o, then there are no nonconstant bounded harmonic func-
tions for L.

REMARK 1. We believe that Theorems 2.1-2.3 also hold in the case § < —1,
the case of explosion. These theorems depend heavily on the growth rates in
Theorem 1.1(d). We believe, but have not been able to prove, that in the case of
explosion, analogous to Theorem 1.1(d), r(t) exceeds (¢, — £)'/*%+9) and is
dominated by (¢, — £)'/¢*%~9), for any ¢ > 0 as t — £, the time of explosion.
Using this, one can show that Theorems 2.1-2.3 hold in the case § < —1. The
reason that 8§ # —1 has been excluded for certain values of % in each theorem, is
that the exponential growth rates given in Theorem 1.1(d) are not sufficiently
precise to allow the analysis to work.

We make the following remark under the assumption 0 < liminf, , p,(r) < -
limsup, _, ,py(r) < co.

REMARK 2. Theorem 2.3 leaves open the question of nonconstant bounded
harmonic functions in the gap § — (1 -8)<k<8—31-9),if -1<d8<1
and in the half line 2 <6 — (1 - 8) —21in the case § = —1. We believe that
there is none in these cases. Let #(w) = %(w)mod y in the case that %(w)
exists and #(w) = 0, otherwise. Correspondmg to % are the equivalence classes
T(p,0), 6 €S*, of trajectories given by T(p, 0) = {T(p,0), —o0 < < 0,
6 mod 27 = 0}. We conjecture that 4 in fact generates the entire invariant
o-field. Note that by Theorem 2.1, if —1 < & < 1, then # is not almost surely
constant if and only if 2> 8 — ;(1 —8). If § = —1, then 4 is not almost
surely constant if 2> 8 — (1 —8) = —2 and is almost surely constant if
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—83=8-(1-8)<k<d—- ;1 —-0)= —2. The theorem does not cover the
case § = —1 and £ <8 — (1 — 8§) = —3. Thus, excluding the case § = —1 and
k < —3, our conjecture implies that there are no nonconstant bounded harmonic
functions if —1 <8 <1 and k2 < 8§ — (1 — 8). Our conjecture also implies that
convergence of diffusion paths to deterministic trajectories T' gives the minimal
Martin boundary for the process. To this end, one should consult the interesting
paper by Cranston [4] which was the impetus for the investigations of Section 2
and in which the entire invariant o-field and the Martin boundary are given for
certain two-dimensional diffusions.

REMARK 3. Theorem 2.3 in the case £ > & follows immediately from Theo-
rem 1.2 and its proof. In Theorem 1.2 we allowed v, to vary sign, thus Theorem
2.3 in the case £ > § also holds with no restriction on the sign of v,.

We now make some comments on conditions (i)—(ix) given in Section 1. Cases
where p, and p, are linear combinations of powers of logarithms and iterated
logarithms are covered by conditions (iii) and (iv). The most conspicuous excep-
tion to condition (iv) is the case of an oscillating p. For example, if p, =2 + sinr
and p, = 1, then condition (iv) fails. Yet it seems intuitive that Theorem 1.1
and, consequently, the theorems of Section 2 which depend on Theorem 1.1
should hold in this case. We believe that the theorems hold without condition
(iv). In terms of the stochastic differential equations we employ, this would mean
that certain integrals whose integrands change sign satisfy certain bounds due to
mass cancellation of positive and negative parts. Of course, this is very difficult
to prove directly. More generally, we believe that all the theorems should hold
without such rigid growth and decay rates as dictated by conditions (i)—(iii). The
case § > 1 (Theorem 1.3) is much more delicate. Condition (vii) allows the proof
given in the special case to work in the general case. The first part of condition
(v) guarantees that the order of magnitude of the drift in the d/dr direction does
not exceed that of the drift in the (1/r)d/d6 direction. In light of the dramati-
cally different behavior in the case k& > § as compared to k& < &, this condition is
natural. The requirement p’ = o(r~!) in condition (v) unfortunately excludes
certain combinations of logarithms. As in condition (iv), the decay rates of the
derivatives in condition (v) are probably not necessary. Condition (vi) is given to
preclude worrying about a possible borderline case of explosion. In condition (ii),
¥, > 0 is important in the case of 2 < 8 as can be seen from the fact that
transience or recurrence depends on the sign of y = [2"(y,/Y,)(0) d6. If v, is
allowed to change sign and & < 8, the behavior changes dramatically. To get an
idea of what would occur, see [4]. Similar behavior would occur in our context. If
k > 8, then as already noted, Theorems 1.2 and 2.3 go through even if y, does
change sign.

3. Transience and recurrence. In this section only, let
d 2 i d
L= )Y a,—— + b,—, witha,(=a;),
ij (ixl Chj =1 l(ix‘ 173 JU

i,j=1 i
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and b; continuous on R? Also assume a(x) = {a; (x)} is positive definite for
each x € R% We present several propositions concerning transience, recurrence
and explosion of diffusion processes in R? generated by an operator L as above
which we will utilize in the next section. Let 7, = inf{¢ > 0: |x(¢)| = r}. Let 7,
be the terminal time for the process. That is, 7, is the time of explosion if the
process explodes and 7, = co otherwise. For our diffusions, which are strictly
elliptic with bounded coefficients on compacts, transience (recurrence) is equiv-
alent to the condition P(7, < ) <1 [P(7, < ) = 1] for some r, > 0 and
some x € R? with |x| > r,. Positive recurrence is equivalent to the condition
E,1, < oo for some 7, > 0 and some x € R¢ with |x| > 7, [1]. We will use the
above equivalences to verify the four following propositions.

PROPOSITION 3.1. Let u € C%(R?) be bounded and satisfy Lu(x) < 0 for all
x with |x| > ry > 0. Also assume there exists an x, with |x,| > r, such that
u(xy) < inf,,_, u(x). Then the diffusion generated by L is transient.

PrOOF. Let x, be as in the statement of the theorem. Now u(x(¢ A 7)) —
J¢ " ™Lu(x(s)) ds is a local P, -martingale. Since Lu < 0 for |x| > Ty, and u is
bounded, u(x(f A 7, A 7,)) is a P, -supermartingale. Hence, E, u(x(¢ A 7,, A
7..)) < u(x,). Now assume x(¢) is recurrent, ie., P, (7, < o0) =1. Then ¢ A
To A T,, =t A 7, — 7, almost surely [P, Jas ¢ — oo, and by the boundedness of
u, we obtaln E, u(x('r ,)) < u(xg). This i is a contradiction since |x(, )| = ro and
inf u(x) > u(xo) 0

|x|=ro

Similarly, we can show

PropPOSITION 3.2. Let u € C*R?) satisfy u(x) > o as |x|—> o and
Lu(x) < 0 for x satisfying |x| > ry > 0. Then the process is recurrent.

ProposITION 3.3. Let u € C(R?) satisfy u(x) > oo as |x| > o and
Lu(x) < —e <0 for x satisfying |x| > r,> 0. Then the process is positive
recurrent.

ProoF. From Proposition 3.2, the process is recurrent, so 7, = co. Pick x,
with |xy| > r,. We have for N > |x,),

Exou(x(t AT A ’TN)) = u(x,) + ExO/
0

tAT, /\'rN u(x(s)) dg
< u(xy) — eE, (t A1, ATy)
or
Exo(t AT A 'rN) < s_l(u(xo) - Exou(x(t A T A ’TN))).

Letting N — oo and using the monotone convergence theorem and the fact that
u is bounded from below and then letting ¢ - co and again using the monotone
convergence theorem and the fact that u is bounded from below, we see that
E,r, <o.0O
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PROPOSITION 3.4. (a) Let u € C%(R?) satisfy Lu + Au < 0 for x satisfying
|x| > ry > 0 and some A > 0. Also assume inf u(x) > 0. Then if the process is
transient, it explodes.

(b) Let u € C*(R?) satisfy Lu — Au < 0 for x satisfying |x|>r,> 0 and
some A > 0. Also assume u(x) — oo as |x| = oo. Then the process does not
explode.

Proor. Pick x, with |x,| > r, and let u be as in (a). Then

e"("\’w’”’o)u(x(t AT, A "'ro)) _ ft/\fwm,oexs(Lu + }\u)(x(s)) ds
0

is a local P, -martingale, and it follows that

(3.1) Exoe"(""w"’ro)u(x(t AT, A 1-,0)) < u(xg).
Since the process is transient,
(3.2) Pxo( tl;l}'{.lot ATy AT, = ’Tw) > 0.

Now let ¢ = o in (3.1). Using (3.2) and the fact that inf u(x) > 0, we come to a
contradiction unless 7, < co. Part (b) is proved similarly. O

4. Proof of the theorems from Section 1. The diffusion matrix in polar
coordinates is given by

()

e -3

_ ! 2r
€= e e
2r r?

In this section and in the next one, we will be employing stochastic differential
equations. Hence, we need the unique positive square root ¢ of e, which will be
as smooth as e is since e is positive definite at each point. It is easy to see that
6,4, 0y, and ro,, are bounded as r — co. We will use this fact below. Recall that
we are giving our proofs under the assumption p, = p, = 1. Itd’s formula in
polar coordinates allows us to write the following stochastic differential equation
for f(r(t), 8(t)), where f € C3(R* x S'):

F(r(),0(8)) = £((0), 00)) + ['4(r(s), 8())(au(r(s), 6(s)) dBy(s)
+o15(r(5), 6(5)) dBy(s))
+ [1o(r(5), 0(s)) (o r(s), 0(s)) dBy(s)
+on(r(s), 0(s)) dBy(s))
+ [1i(r(s), 6(s)) ds,

where B(t) = (B,(2), By(t)) is a two-dimensional Brownian motion.
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Proor oF THEOREM 1.1. We have to break the proof into the two cases
k=20and k < 4.

(a) and (b) First assume k2 = & and y = [2"y,(5)/v,(s) ds > 0. We consider a
function u,(r,0) of the form u, = r~'f,(6) with f,(8) > 0. If we show that
Lu, < 0 for all sufficiently large r, we will have proved transience by Proposition
3.1. We have

Lu, = O(r~?) + r_z_s(_'Yl(a)fl(a) + Y2(0)f1’(0)).
Since 8 <1, we only need to pick f, € C2(Sl}_ satisfying —i(0)f(0) +
v2(0)f'(8) < 0. Solving —v,(8)f(8) + v5(0)f’(0) = 0 gives [(8) =
exp( [2(v,/v,)(s) ds). Now f(8) is not continuous on S!, but f,(0) =
exp( [8(v,/v,)(s) ds — (y/27)0) is, and in fact, f, € C*(S') and satisfies
—v1(0)f1(0) + vo(0) ' (0) = —(v/27)v(0)f,(0) < 0. For the positive recurrent
case, let u, = (rfy(0))™, where

10 = exp{ g0 = [Le(s) ) = (1,(0))

0 Y2

and m is a positive number satisfying m > 1 + 8. Then
Y
Lu, = O(r™~?) + mﬂ?z(”)fzm(e)"m_s_l

and we have Lu, < —¢ for large r and some ¢ > 0. By Proposition 3.3, the
process is positive recurrent. This proves (a) and (b) in the case § = k. Now
assume k < §. According to whether the transient or the recurrent case is being
considered, after trial and error we were led to the functions u, = r~( f,(6))"
and u, = r™(f,(6))™" with ¢ = k — § < 0, m a positive number satisfying m >
1+ 4, and f, and f, as above. We have

Lu, = — 2l72(0)( £,(8))”'r=27% + lower-order terms.
™
This proves (b) by Proposition 3.1. For u,, we have

Lu, = m%yz(ﬂ)( £,(0))™" rm=1-% 4 Jower-order terms.
This proves (a) by Proposition 3.3.

(c) If 8 > —1, the process does not explode. It is well known that explosion
can only occur if the drift is larger than linear. Now we show that if § < —1 and
y > 0, the process will explode. First take the case § = k. Let u = ¢ + (r~f,(6))’
with ¢ > 0and 0 < » < —8 — 1. Then for A > 0, we have

Lu+ Au = _V%Yz(o)fl"(é?)r""s‘l + e+ Arfr(0) + O(r~*72).

Since —» — 8§ — 1 > 0, we see that Lu + Au < 0 for all large r. By Proposition
3.4, the process explodes. If 2 < 8, one proceeds as above, using the function
u=c+r7*(f(0))™ with » as above and again, ¢ = k — 8. This proves part (c).

(d) To prove this part, we must treat the cases k =8 or £ < 8 and 8§ < 0 or
& > 0 separately. We will first prove completely the case 2 = § and 8§ > 0. Then
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we will comment on the other cases as we deem appropriate. Let u = rfy(6). We
have

L _
(4.1) Lu = ——r7"f,(8)7,(8) + O(r™).
Thus, we can find a ¢ > 1 and positive numbers ¢ and N such that
(4.2) er®<Lu<Nr% forr>ec.

(We pick ¢ > 1 because L only has the prescribed form for r > 1.) Let T =
sup{t > 0: r(¢) < c} be the last exit time from the region r < c. Define T = 0 if
r(t) > c for all ¢ > 0. Since the process is transient, T' < co almost surely [P, 4].
It6’s formula gives

u(r(2), 6(t)) = u(ro, ) + ['£:(8(s))(on(r(s), 0(s)) dB(s)
+o1s(r(s), 6(s)) dBy(s))
+ [r(5)1(8(5))(o1a(r(s), 6(5)) dBy(s)
+op(r(s), 8(s)) dBy()) + [Lu(r(s),6(s)) ds
= u(r(T), 6(T)) + my(8) = my(T) + my)
~my(T) + [Lu(r(s), 0(s)) ds,

for ¢t > T, where B(t) = (By(t), By(t)) is a two-dimensional Brownian motion on
a probability space (2, %, P),

my(t) = fotfz((’(S))(ou(r(S),0(8)) dB(s) + 015(r(s), 6(s)) dBy(s))

(4.3)

and
ma(t) = ['7(5)1(6(5))(012(7(s), (5)) dBy(5) + o(r(5), 8(5) dBy(5)).

We will use w to denote a point in Q. Now

(r(t)’ o(t)) = (r(t’ rO’ 00’ w)’ 0(t’ ro’ 00’ w))
is the solution to a stochastic differential equation. In the sequel, when we refer
to the measure P, , on (r(2), 8(t)) € C([0, o), R?), we will mean the measure
on (r(t, ry, 0y, @), (¢, ry, 8y, w)) induced by P. Pick » > 0 such that (1 + »)/2 <
1/(1 + §). Since m,(¢) and my(t) are time changes of Brownian motion, and
since all the coefficients in the stochastic integrals are bounded on R?, there exist
positive constants C,(w) and Cy(w) such that

[my(t) — m(T)| < C(w)t*2 + C(w), forallt> T(w)
and
|my(t) — my(T)| < Cy(w)t /% + Cy(w), forall t > T(w).
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Using this along with (4.2) and (4.3), we obtain for ¢ > T the inequality
P(T)1,(8(T)) = C(@)t0+"7% = C(w) + ¢ [17(s) ds
T

(4.4) < r(t)f,(0(t))
< r(T)1,(8(T)) + C(w)t3+"2 + C(w) + N j;r's(s) ds,
where C = C,; + C,. Let R(t) = [ftr~%(s)ds. Then r(t) = (R’(t))"'/? and the
right-hand inequality in (4.4) may be written as
£3(6(2)) < (r(T)£,(8(T)) + C(w)t@+72 1+ C(w) + NR(2)) R'(t).

In this inequality, replace the factor R’(¢) by (R’(¢) + (1 + »)/2N)C(w)t*~1/2)
which only makes the right-hand side larger. Integrating this new inequality
gives

[re(s)) ds |
< N1+ 8) (r(T)f,(8(T)) + C(w)t@+"/2 + C(w) + NR(t)

—N7Y1 + 8) (#(T) ,(8(T)) + C(0)TH+72 + C(w))" ™.

Let f, = min, g f,(8), replace the left-hand side above by f&(¢ — T'), and do
some algebra to obtain

R(t) = NY((r(T) £(8(T)) + C(0)TC+"72

)1+8

(4.5) +C(0))'™*° + N1 + 8)f&(t - T)
—N"Yr(T)f,(8(T)) + C(0)t@+"/% + C(w)).

Since (1 + »)/2 < 1/(1 + 8), there exists a constant k(w) > 0 and a {(w) > T
such that

)1/(1 +8)

[77%(s) ds = R(2) = k£/0*D, forall > .
T

The left-hand inequality in (4.4) may now be written as
r(t)f,(8(¢)) = r(T)f,(6(T)) — C(w)t "2 — C(w) + ekt/C+®  fort > t,.

From this, it is clear that there exists a A;(w) > 0 and a Zy(w) > ¢,(w) such that
r(t) = At/ for all ¢ > ¢,. This proves the lower bound. To get the upper
inequality, use the upper bound in (4.4) again. Write

j:r‘s(s)ds = szr‘s(s)ds + ];tr‘s(s)ds

and replace r(s) in the second term by A,s/*?, Since § > 0, this just makes
the right-hand side of (4.4) even larger. Upon integrating this term, one sees that
there exists a Ay(w) and a (@) = £,(w) such that r() < A,t/* for ¢ > ¢,.
Thus, A, t/0+ < p(t) < X, /0D for ¢ > t,. This completes the proof of (d) in
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the case 8 = k& > 0. Now consider —1 < & = & < 0. (4.4) still holds. We run into
a problem if we try to proceed exactly as we did in the above case. For this time,
at the point we would like to replace the factor R’(¢) by (R'(t) +
(@ + »)/2N)C(w)t®~V/%), the inequality goes the wrong way. We proceed
as follows. Consider (4.4) with » picked so that (1 + »)/2 < 1. Since & < 0,
r=%s) = 1 for s > T and thus [ir~%(s)ds > (¢ — T). Thus, the term t3+*/2 ig
a priori dominated by [£r~%(s) ds and we can rewrite (4.4) in the form

r(T)f(O(T)) = D(w) + 5 [77%(s) ds

< r(t)f,(6(t))
< r(T)f,(6(T)) + D(w) + (N + 1) j:r"s(s) ds,

for some D(w) > 0. The proof now proceeds more simply than in the previous
case since § < 0. For the case £ <8, we again consider separately the two
possibilities § > 0 or —1 < 8 < 0. We handle this situation similarly to the way
we treated the previous one. This time we apply Itd’s formula to u = r( f,(6))"™,
where, as before, ¢ = £ — 8 < 0. The two martingales that come up this time are

m,(¢t) = ./:( fz(o(s)))rq(S)(l + qri(s)log f,(8(s)))

X (013(r(s), 8(s)) dBy(s) + 015(r(s), 6(5)) dBy(s))
and

mo(t) = [ () (0(s))™ 7 1(8(5)) (a1a(r(s), 6(s)) dBy(s)

+05(r(s), 0(s)) dBy(s)).
Since g < 0, these martingales may be handled like those in the previous case. In
place of (4.1), we will have
Lu = %r‘s( £,(8))"'v,(8) + lower-order terms.

Everything else goes through exactly as in the previous case. This completes the
proof of Theorem 1.1. O

ProOF OF THEOREM 1.2. (a) Use u(r,6) = r™ for a positive number m >
1 + & and apply Proposition 3.3.
(b) Let 6,, n and & be such that y,(6,) > 0 and inflg_g | <,71(0) = & Let
Wopn={(r,0):7r>1,0,—n<8<6,+n)
and
Toy,n = inf{£ > 0: (r(2),0(2)) & W, ).

We now show that there exists an r, = r,(6,, 1, ¢) such that for r > r,,

ri?—-r19
(4.6) Pr,oo("'oo,n =) > T,

where g is any number satisfying 0 < ¢ < min(1 — 8, & — §).
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Let u(r,0) =1 —r=?)f(0), where 0 < ¢ <min(l1 — 8, % — 6) and f(0) =
292 — (0 — 6,)% Then

Lu=qr-7-'7%,(0)f(8) + lower-order terms,

and thus Lu(r,0) >0 for § € [0, — 0,0, + 7] and r > r/(6,,n,q), for some
r(6p,m,q). Let 7, =inf(t>0: r(t)=r;}) and let 7=1 A7 ,. Then
u(r(t A 7),0(¢ A 7)) is a P, y -submartingale for r > ry, giving us

E, ou(r(tAr),0(¢A7))=u(r,b,)=01-r9)29%

Without loss of generality, assume 1 — r; ¢ > 1. Then the above inequality gives
us
(1= {920, o (v < 1) + 2R, o> £) = (1~ )20
Letting £ — oo gives
r_q — r_q
R‘, 9, T = w) > 1—

r?

Since 7 < 7, ,, this proves (4.6). This shows that the process is transient. We
now show that if the process starts in W, , and 7 , = co, then in fact 6(¢)
converges to a limiting angle. For if 8(¢) does not converge to a limiting angle,
then we can find a 6, and 6, with §,— 6, =7, >0 and {6: |0 — 6,| <n,} C
(8 — m, 8y + m) such that

(4.7) 6(t) =9, i=1,2,

for arbitrarily large values of ¢ and, consequently, for arbitrarily large values of
r. Yet by (4.6),

rl_q(02a M1 q) -r?
rl_q(02a LI q)
This, coupled with the strong Markov property, shows that if 6(¢) = 6, for
arbitrarily large values of r, then with probability 1, (¢) is eventually larger
than 6,, contradicting (4.7). This argument, coupled with (4.6) shows that
P, ((®mod27 € (0, —¢,0, +¢)) >0forall r>0, —c0 <0 < 0, e>0,and 6,
satisfying v,(6,) > 0. We are left with showing that © exists with probability one

and that almost surely ® mod 27 € {8 € S*: y,(6) > 0}. We argue as follows.
Define

A,={0€8"y(0)>¢ and B,= {08 y(0) < —¢}.

Since the process is transient, it cannot eventually remain in B, for any & > 0,
where it “looks” like a recurrent process. In fact, the process cannot remain in
Aj§. For in this region, the drift in the r direction is

€y T €y
or r®” 2r°

The magnitude of the diffusion in the r direction is e, /2. In general, if one has a

P (19,0 = ®©) > , forr>r(6y,m,,q).
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diffusion a(d?/dr?) + b(d/dr), for b > 0, then the “magnitude” of transience is
given by b/a. In particular, for d-dimensional Brownian motion, this ratio is
(d — 1)/r. Let

e
dy= [sup—“(r,ﬂ) + 2,

r,0 €

where the brackets represent the greatest integer function. Then our ratio is no
more than (d, — 1)/r. Since d-dimensional Brownian motion for any d is
recurrent on Sd !, our process must leave the region {#: y,(8) < 0}. In fact,
then, the transience of the process, (4.6), and the argument following it can be
used to show that 6(¢) converges to a limiting angle in {6: 71(0) > 0}.

(c) As mentioned in the proof of Theorem 1.1(c), there is a chance for
explosion only in the case § < —1. We must show that if § < —1, lim, |  O(t) =
0, and v,(6,) > 0, then the process explodes. Say v,(6,) = 2¢ and pick 7 > 0 such
that |6 — 6,| < n implies y,(8) > e. Now compare this process with the process
generated by L, + ¢/r%(d/dr). This process can be shown to explode by Proposi-
tion 3.4 using u=c+r7”, for 0 <» < —8 — 1. Since our process eventually
remains in a region where y,(8) > ¢, it also explodes. Alternatively, one could
show explosion by the method we employ in (d) to find the growth rates.

(d) Say O(w)mod2w = 4§, Let ¢ and n correspond to 6, as in (c). Let
T, = sup{t > 0: |6(¢t) — 6y| = 8}, T, =sup{t: r(t) <1} and set T=T, v T,.
Now proceed as in the proof of Theorem 1.1(d), using the above T instead of the
T used there and using the function u = r rather than u = rf,(8). O

Proor oF THEOREM 1.3. We first handle the case k£ < 1, which is simpler.
Let u(r,0) = r™exp(rip(0)) for g=k—1<0, and p(f) and m as yet un-
specified. We have

L= [t P e 0) + Ze0) + u0)0 @)

+my(6)r™ 170 + O(r"““")}exp(r"p(lf)).

In order that Lu be nonpositive for all large r, we require
m(m —
( 5 Y e, (0) + e4(0) + v,(0)p’(8) <0, ifd>1
and
m(m - 1) .
— e+ e4(0) +15(0)p'(0) + mvy(8) <0, ifs=1.

We continue now under the assumption & = 1, the case § > 1 being handled
identically. We want
0) — e (0) —2v,(6 m? e, (0
(4.8) p(o) ( l( ) 4( ) ‘Yl( )) _ - l( ).
72(0) 2 7,(6)

Now in order to invoke Proposition 3.1 for transience or Proposition 3.2 for
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recurrence, we need m < 0 or m > 0, respectively. First consider m > 0, and
assume the assumption of (a), that

2 aney(0) — e,(8) +2v,(0)
= H(0)G(6) do = df < 0.
| v= [TH(0)G(8)d0 = [ =0
Then integrating the right-hand side of (4.8), we obtain
2
-m m? 2.e,(0)
n(m) = ——v—— fo 0! d

and thus n(m) > 0 for sufficiently small m. For such an m, let

m 031(0) — e (0) — 2v,(0) m? 9e,(0)
49 0) =— df — — do — —

Now, if e,,e, € CY(S'), then p(#) € C*S') and satisfies (4.8). This shows
recurrence. In the general case, a standard mollification procedure applied to p
works, since e, and e, are assumed to be Lipschitz. Similarly, if the assumption
of (b) holds, that is, » > 0, then n(m) > 0 for m < 0 and |m| sufficiently small.
Define p(8) by (4.9) for such an m. Again, if e,, e, € C(S"), then p(8) € C%S")
and satisfies (4.8). This shows transience. The general case is proved by mollifica-
tion. Now we turn to the case & > 1. Let u = r™p(8) with m and p(68) > 0 as yet
unspecified. We have

Lu = le,(8)r™ %(p” + g(8, m)p’ + h(6, m)p) + lower-order terms,

where
me3(0) + :5((00)) + 27,(0) . ifk=1,
#O =) mey(0) + ex(0) it k> 1
O T
and
m(m — 1)e,(8) +(7;l;4(0) + 2my,(0) , ife=1,
h(6,m) = >
m(m — 1)e,(6) + me,(8) if6>1
e0) | |

To prove the theorem, it suffices by Propositions 3.1 and 3.2 to show that under
the assumption of (a), we can find an m > 0 and a p > 0 for which p” + gp’ +
hp < 0, and, under the assumption of (b), we can find an m < 0 and a p > 0 for
which p” + gp’ + hp < 0. We consider the eigenvalue problem

(4.10) — (p” + g0’ + hp) = Np, with p(0) = p(27) and p’(0) = p'(27).
By the Sturm-Liouville theory, the eigenfunction p, (normalized so that
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/&% d = 1) corresponding to the smallest eigenvalue A, is strictly positive (see
[3], Chapter 8, Section 3). Thus, we can complete the proof by showing that
under the assumption of (a), Ay(m) > 0 for sufficiently small m > 0, and under
the assumption of (b), Ay(m) > 0 for m < 0 with |m| sufficiently small. Now by
the Rayleigh-Ritz variational formula, we have

(4.11) Ag(m) = inf [*eVC:m(p(8))*dB - [*"eV®-™n(0, m)p*() b,
peAJo 0

with A = {p € CY(S?): [§"eV® ™p*(0) d6 = 1} and V(8, m) = [Jg(s, m) ds. It is
clear from (4.11), or by inspection from (4.10) that A,(0) = 0. The corresponding
eigenfunction is py(#,0) = 1/ V27 . Also, since g and A are analytic in m, so are
Ao(m) and py(8, m). We will write Ao(m) = £%_,A ;m’ and

p(0,m) = =+ 3. (0)m

j=1
To complete the proof, we need to show that Ny(0) = A, > 0 under the assump-
tion in (a), and Xj(0) = A, < 0 under the assumption in (b). Plugging the power
series for py(#, m) and for A (m) into (4.11) and collecting terms shows that
1 27
A, =—— H(8)G(6)de.
\= =50 [THO)G()

This completes the proof. O

We remark that in the case ["H(6)G(6)d8 = 0, it is natural to consider
N§(0) = A,. However, after a somewhat involved calculation, one finds that in
this case A, < 0. Thus our method cannot handle the borderline case.

5. Proofs of the theorems from Section 2. Recall that we are assuming
P, = py = 1. We first give the

ProOF oF THEOREM 2.1. We have
9 Y1 r
U(r,0) = | —(s)ds — [ s® % 1ds.
(r,0) = [ (s)as - |

[Throughout this section, we refrain from integrating [/s®~*~!ds since in the
general case this term will be [/( p,/p,)(s)s® % ! ds and cannot be integrated.]
We will treat parts (a) and (b) of the theorem first; hence in what follows, it is
assumed that & < §. Applying Itd’s formula yields

U(r(¢),6(t))
= U(r,, 8,) + fO‘O(r‘*"“‘Z(S))dS
o) * Lt:_:(a(s))(om("(s)’ 0(s)) dB,(s) + 0y(r(s),8(s)) dBy(s))
— [[7 58 (7). 8(6)) dBy(8) + a(r(s), 8(s)) dBy(s)).

(The o;; and the Bj(t) are as in Section 4.) From Theorem 1.1(d), we have
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r(t) < Ay(w)t/C*® for large ¢ if 8§ > —1 and r(¢) < e for large ¢ if
8§ = —1. From this, one sees that the nonstochastic integral in (5.1) converges if
26 —k—1<0. Let

ma(8) = [744 () (ou(r(s), 0(5)) dBy(s) + o1(r(s), 6(s)) dBy(s))
and

my(t) = [

0 Y.

tY1

(0(3))(012(r(s) 8(s)) dBi(s) + 03(r(s), 8(s)) dBy(s)).
The variance processes of these martingales are
Vi(t) = [ 3(s)(ohi(r(s), 0(s)) + otu((s), 0(s))) s

and

mnfﬁmmwwmm%www)

Define 7,(t), i = 1,2, by V,(7,(¢)) = t. Then, as is well known, z,(¢) = m,(7(¢)) is
a Brownian motion up to time 77 (c0) = V,(o0). Since m(¢) = z,(17(¢)), to
show that m(t) converges as t > oo, it suffices to show that 7,7 '(c0) < co almost
surely. Recall that o,, is bounded and that ¢, and o,, are O(r ) as r - co.

Since 8 > k, we need only show that

(5.2) f r28-2k-2(5) ds < oo almost surely.
0

Using the asymptotic rates from Theorem 1.1(d) again, one finds that (5.2) holds
if 38 — 2k — 1 < 0. Since 8 > &, 30 — 2k — 1 < 0 implies that 26 — k2 —1 < 0.
Thus, if 38§ — 2k — 1 < 0, or equivalently, 2 > § — ;(1 — 8), then the right-hand
side of (5.1) converges. Thus,

() = lim U(r(1), 0(1))

exists and is finite almost surely [P, 4]. This proves the first contention in (a).
For the second claim in (a), we utilize the analysis in Theorem 1.1(d). We only
worked that out in detail for the case § > 0 and & = 8. Hence, we shall prove the
second claim in (a) for this case. The other cases are proven similarly, using the
corresponding analysis in Theorem 1.1(d). One should convince oneself by review-
ing the just completed proof, that it is sufficient to show that

limsup sup P, o( f T p28-2k-2(5) ds > e) =0, foralle>0.
rn—w feS! ’ 0

Now, lim,_, . 0(t) = oo almost surely, by the first part of (a) and the fact that

this is true for the deterministic trajectories. From this and from the transience

of the process, we can conclude that

lim sup B, ,(r(t) >c,forall0<t<c0)=1,

Tro—> 00 0ESI
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where c is as in (4.2). Thus it suffices to show that

limsup sup P,o,o(fwrﬁ‘”""(s) ds > ¢glr(t) > c,forall0 < ¢ < oo) =0.
rp—>ow feS! 0

Now consider the analysis from (4.3) to (4.5) under the condition r(¢) > ¢ for all
0 < ¢ < 00. Then ¢ = 0 and r(¢) = r,. (4.5) becomes

R(8) = N"(rfy(6,) + C())" ™ + N(1 + 8) ft)

—N‘l(r0f2(00) + C(w)td*72 + C("-’))~

Plugging this back into (4.4) and letting f,, = sup, s f2(8), we have
)1/(1+8)

1/(1+8)

r(t) 2 f 'N7((ro £2(8y) + C(0))" ™" + N(1 + 8) f ¢
(5.3) £ £ &€
+a1(1= 5 )roh@) — 11 (1+ @@ - o) i1 + ).

Replace fy(6,) by f, (= infy g1 fo(6)) on the right-hand side of (5.3) and call the
resulting expression 7(¢, 1y, w). What we have now is that for every 4, € S,
r(t) = r(t, ry, 0y, w) = #(t, ry, w), if r(t) = r(t, ry, 6, w) > ¢, for all 0 < ¢ < oo.
Recalling the remark about P and P, , which can be found between (4.3) and
(4.4), and noting that 26 — 2k — 2 < 0, we have,

P’°"’°(f0w’28_2k‘2(8) ds > er(t) 2 ¢,0<t< oo)

< P(fwf'”‘%‘z(s, Iy, w) ds > s)
0
and

00
limsup sup Pro.%(f r?-2k=%(g) ds > ¢r(t) 2 ¢,0 < t < oo)
rg— 00 0OES1 0

(5.4) -

< limsupP(f 7202025 1, w) ds > e).

rp— 0 0

But as 7(s, ry, w) is given by the right-hand side of (5.3) with f,(6,) changed to
fo» it is easy to see that the right-hand side of (5.4) is zero. This completes the
proof of (a). For (b), consider (5.1). First assume 8 # —1. Since r(¢) grows on the
order t'/1*% the nonstochastic integral in (5.1) grows on no larger an order than
¢@3-k=D/0+8) jf 9§ — k — 1> 0,and logt,if26 —k—1=0.1f26 —k—1 <0,
then this integral is bounded on (0, c0). The integrand in the variance process
Vy(¢) of the martingale m,(¢) is on the order r~%(¢). In terms of ¢, this integral is
on the order ¢®~1/(3*+1) Hence V,(c0) < oo almost surely and m,(t) converges
almost surely to a finite limit. The integrand of the variance process V (¢) of
m(t) is on the order r22-2*~2%(¢) or ¢@%-2k-2/1+% Hence, V,(¢) grows on the
order of ¢3%-2k-1/(1+9) jf 3§ — 2k — 1 > 0 and on the order of logt if 36 —
2k — 1 = 0 (by assumption 38 — 2k — 1 > 0). Recalling from (a) the relationship
between z,(¢), m(¢), Vi(¢) and 7,(t), we see that from the law of the iterated
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logarithm, m,(¢) will exceed ¢@2-2k-D/C0+8) [or (log ¢)'/2 if 36 — 2k — 1 = 0]
and dip below —¢G3-2k-D/@A+3) [or —(logt)'/? if 38 — 2k — 1 = 0] for arbi-
trarily large values of . Now
36-2k—-1 286-k-1
>
2(1+9) 1+68 °

since a little algebra shows this to be equivalent to § < 1. (b) now follows
immediately. For later use in the proof of Theorem 2.2, note that by the law of
the iterated logarithm, for 36 — 2k — 1 > 0, |m(¢)| will grow more slowly than
{33-2k-1/@0+3*1_ for any 5 > 0. In fact then, the right-hand side of 5.1 will
grow more slowly than this. Now consider the case § = —1. By assumption,
kE>8—-(1—-08)=-3. Thus 6 —k—2= —-3—k <0. Since r(t) grows ex-
ponentially, the nonstochastic integral in (5.1) converges. The integrand of the
variance process V,(¢) of the martingale m(¢) is on the order r~2(¢). Again, since
r(t) grows exponentially, V,(c0) < co almost surely and my(Z) converges. The
integrand of the variance process V (¢) of the martingale m(t) is on the order
r2%-2k-2(¢) By assumption, 286 — 2k — 2 = 38 — 2k — 1 > 0. Thus, V|(¢) grows
at least linearly and m,(¢) will infinitely often exceed /2 and dip below —¢/2
(b) for the case 8 = —1 now follows. For (c), there is not much to prove. The
existence of ®(w) was proven in Theorem 1.2. This coupled with the fact that
k > & shows that

%(w) exists and %(w) = fe(w)ﬁﬁ

0 Y2
That P, 4(8(w) € dx) = §;(dx) as r —> oo and 6 — 6, with y,(6y) > 0, comes
directly from (4.6). O

(s)ds — fwss_k'l ds.
1

PROOF OF THEOREM 2.2. Divide both sides of (5.1) by [/®s®~*~1 ds and call
the resulting equation (5.1’). Using the fact that [27(y,/v,)(s)ds =17, the
theorem will follow if we show that the right-hand side of (5.1’) goes to zero
almost surely as ¢ » oo. We know from Theorem 2.1(a) that if 2 > § — 3(1 — 9),
then the right-hand side of (5.1) is bounded, for a.e. w, and hence the right-hand
side of (5.1) goes to zero a.s. as t = oo. For £ < 8§ — (1 — §), we noted at the
end of the proof of Theorem 2.1(b) that the right-hand side of (5.1) grows more
slowly than ¢®@8-2k-1/@1+)*n for any 5 > 0. Now [[®Ps®~*~1 ds grows on the
order ¢(®=%/1+3 and

8-k 306—-2k-1
1+6 2(1 + §)

since this is equivalent to § < 1. Thus again, the right-hand side of (5.1’) goes to
zero a.s. as t — oo. O

For (b) of Theorem 2.3, we will need a couple of lemmas. If a path has the
property that there exist times ¢, < ¢, such that 6(f,) = 6(¢)) + 27 and
r(t,) = r(t,), we will say that the path makes a loop. Define the radius of such a
loop by inf, _,_,r(?).
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LEMMA 5.1. Let —1<686<1 and assume vy>0. If k<d—-(1-908)=
28 — 1, and 0 < liminf, |, p(r) < limsup, _, ,p,(r) < oo, then almost every
[P, 41 path makes loops with arbitrarily large radii.

ProoF. Define 7(t) by

ff(t) Y2(6(s))
rk+l(s)
Since y, > 0, 7(¢) is continuous in ¢ Since r(#) grows on the order ¢/0+®,

7(t) grows on the order t®+%/(®-H  (Consider the time changed process
(r’(v), 6'(t)) = (r(7(t)), 0(7(t))). The generator for this process is

ds = t.

i rk+1L= rk+1L N rk+1—8£i i
Y Y, 0 Y, dr  df
The new o-matrix is
pk+1)/2
o= "Y;TO.

It suffices to prove the lemma for (r’(t), 8'(t)). Let (7(¢), 6(t)) be the solution to
the stochastic differential equation

He) =g+ ['74020) 7 (6(s) ds
+ [(6u(#(s), 8(s)) dBy(5) + 6 7(5), 8(5)) dBy(s)),
0(2) = 8y + £+ [[(61a(F(s), 6(s)) dBy(s) + 6a(7(5), U(5)) dByfs)).
Since (7(-), 6(+)) has the same distribution as (r’(-), 8’(+)), it suffices to prove

the lemma for (7(¢), 0(t)). Call the probability measure associated with this
process P, 4. Let

M(1) = [(6u(7(s), 0(s)) dB(s) + 61a((s), 6(s)) dBy(s))
and

N(#) = [(6(F(s), 8(s)) dBi(s) + o((s), 6(s)) dBy(s))-
Note that there exist constants A,(w) > 0, Ay(w) > 0 and £(w) > O such that
(5.5) MEYC=R < () < A t/C-h ) forall t > ¢,.

This comes from Theorem 1.1(d), the growth rate on 7(¢) and the fact that
(r’(+), 6’(+)) has the same distribution as (7(-), 8(-)).
We now show that

(5.6) limsup sup |0(t,) —0(t,) — (¢, — ;)| =0 almost surely [f’ro‘,,o].

§—=00 ,t=2s
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The variance process for N(t) is
Va(e) = [[(63(#(s), 8(s)) + 65(7(s), 0(s))) ds

and &,,(7, §) and Gy,(7, §) grow on the order 7#*~/2, This combined with (5.5)
and the fact that § < 1 shows that Vj(c0) < oo almost surely [P ,8,] and hence
that N(t) is a convergent martingale. This is enough to give (5.6). Now define the
stopping time p(t) = inf{s > 0: 6(s) = 6(0) + ¢}. From (5.6) we have

(5.7) limsup sup |p(%,) —p(8) — (&, —t)|=0

§—>00 I,t>s

Define

1, if F(p(2n7 + 27)) > F(p(2nw)),
H,={ 0, if#(p(2n7+ 27))=7(p(2n7)),
-1, if #(p(2n7 + 27)) < #(p(2n7)).

Of course, Po o{H, = 0, for some n) = 0 so we can ignore the possibility H, = 0.
Let A= {H,=1,i0.} and let B= {H, = —1, i.0.}. Since the process is "tran-
sient, P ,0(A) = 1. We can prove the lemma by showing that P ,6({B) = 1. For
if both A and B occur infinitely often, then for infinitely many n we will have
#(p(2n) + 27)) > #(p@2nm)) and F(p(2nw + 47)) < F(p@nw + 27)).

Yet, for each n that this occurs, the only way the path can avoid crossing
itself (since it eventually must run off to infinity) is by “unwinding”, that is, by
having its #-component decrease by at least 27. By (5.6) such an unwinding can
occur only finitely often. This then shows that the path makes an infinite
number of loops and by transience, it must make loops of arbitrarily large radii.
We are left with showing P, ,(B)=1. By the strong Markov property, it
suffices to show that

(H,= —1,forsome n) =1, forall (r,,0,).

P, 4,
Let
S(8) =y + [F1%(s) 2(6(s)) ds
0 Y2
let
S, =8S(p(2n7 + 27)) — S(p(2n7)), n=0,1,2,...,
and let

M,=M(p(2n7 + 27)) — M(p(2nr)), n=0,1,2,....
Then we can write
r(p(2n7 + 27)) — r(p(2nw)) =S, + M,.

We need to show that P, ,(S, + M, <0, for some n) = 1.
From (5.5) and (5.7), there exists a ¢(w) > 0 such that

IS,| < cn®+1=8/CG-b  p=12....
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Let
S

M= it and §,=
n = prn/ec-R) AC O T TGELGGE-R)

Then for n > 1, we have |S,| < ¢(w)n**+1-20/@B-k) < ¢(w) since by assump-
tion, £ + 1 — 28 < 0. Thus,

13,0,,,0(8,, + M, < 0, for some n) > f’,o’oo(Mn < —c(w), for some n > 1)

\%

13,0,00( inf M, = — oo).

nx>1

To complete the proof, we will show that

130,90( inf M, = —oo) = 1.

r
n>1

Define {(t) by
[ A62(#(s), 0(s)) + 53(#(s), 8(s))) ds = ¢.

0
Then B(t) = M({(¢)) is a Brownian motion and M(t) = B(‘~(¢)). Note that for
each s > 0, {7(s) is a stopping time relative to the filtration {%,), ¢ > 0} to
which the Brownian motion B(t) is adapted. We have
. B(§ p(2n7 + 27))) — B({"(p(2n7)))

(6.8) M, = P+ D/C(E—F) .

From (5.5), (5.7), the fact that 62(7, §) + 6%(F, §) grows on the order #**! and
the fact that

¢ (p(2nm + 27)) — £ (p(2n7))
PERTIED (52(7(s), B(s)) + 63(7(s), 0(s))) ds,

p(2nm)
there exist cy(w) and ¢,(w) such that

(5.9) co(@)n*+D/G=k < =Y p(2nq + 27)) — ¢ Y p(2n7))

Now leave the above problem for a moment and consider the situation where a
sequence 1; <1, < --- of stopping times satisfying

contD/B=B) < < o pHD/G=R),

for constants ¢, and €1, is adapted to a Brownian motion %(¢) living on a
probability space ({, P). Then for any K >0,

Al . g(nn+l) _'@(nn)
(5.10) Pl inf — G, < —K| =1
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This follows directly from the fact that

ﬁ g(nn+l) - g(nn)
nk+D/8-k)

<—K)>s(K)>0,

where ¢(K ) is independent of n. To prove this inequality, we write

A g(nn+l) - B(nn) P B(Con(k+l)/(8_k))
LD/ R) -K|= n(k+1)/@(5—k)

XP{ sup —_I_B(s)— K }

<
0<5< (0~ co)ntk+D/@E=RY) n(E*+ D/@OED

< —2K)

>¢(K) >0,

where the two inequalities are a consequence of Brownian scaling. Returning to
our problem, let

&= {w: 3 constants co(w) and ¢;(w) such that ‘
co(@)n*+D/C=k < ¢=Yp(2n7 + 27)) — {~H(p(2n7))
< ¢(w)n®*V/C=k p > 1},
From (5.9), 15,0, s{€) = 1. Hence
(5.11) Pro,f’o( ;I?l—fan = - oo) = Pro,Oo( rllgfan = - oo|6").
Now (5.8), (5.10) and (5.11) show that
R‘o,9o( ;Izlfan == w) = 1’

This completes the proof of the lemma. O

Let = = C([0, ), R?), define Q, = P, y X P, 5 on = X 2 and denote points
in 2 X 2 by (w;, w,). Say that two paths w, and w, intersect at arbitrarily large

times if there exist sequences {s,} and {¢,} with s, - oo and ¢, > o0 as n = o
such that w,(s,) = wy(t,), n = 1,2,....Let &C 2 X = be defined by

= {(w;,w,) €2 X Z: w, and w, intersect at arbitrarily large times}.
LEMMA 5.2. Under the conditions of Lemma 5.1, Q, o(%/) = 1.

ProoF. Let C, = {w € 2: w makes loops of arbitrarily large radii} and let
C, = {w € 2: |w(t)] = o0 as t > co}. Then by Lemma 5.1, P, 4(C,) =1 and by
transience, P, 4(C;) = 1. Thus @, 4,(C, X C;) =1.But C; X C,c . O

We can now give the
PrOOF OF THEOREM 2.3. (a) First consider the case & > 8. Then O(w)

exists by Theorem 1.2(b). Let &(w) = ©(w)mod 27 and let g(8) be any bounded
measurable function on S! which is not almost surely constant (with respect to
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Lebesgue measure on S') on the set {6: y,(0) > 1}. Let H(r,0) = E, ,8(0(w)).
Then H(r, 8) is bounded and periodic of period 27 in 6 and is harmonic since
O(w) is an invariant random variable. That H is nonconstant comes from the
last statement in Theorem 2.1(c). In the case —1 <§<1and § - 31 - 9) <
k < 8, U(w) exists by Theorem 2.1(a). Let %(w) = #(w)mod y and let g(6) be a
bounded measurable function on S which is not almost surely constant (with
respect to Lebesgue measure on S'). Let H(r,0) = E, ¢8(27/v)%(w)). Then
H(r, ) is bounded and periodic of period 27 in 8 and is harmonic since %(w) is
an invariant random variable. H is nonconstant by the last statement in
Theorem 2.1(a).

(b) Say that h(r,0) is a nonconstant bounded harmonic function. Then
H(w) = lim,_, ,h(r(?), 8(?)) exists and is nonconstant almost surely [ P, ,]. [That
H(w) is nonconstant almost surely [ P, 4] can be proved using the strong Markov
property and the fact that h(r, §) = E, ,H.] Thus, there exists a number b such
that 0 < P, ,(H(w) > b) < 1and 0 < P, o(H(w) < b) < 1.Let D, = {w: H(w) >
b} and let D, = {w: H(w) < b}. Then @, o(D, X D,) > 0, where @, 4 is as in
Lemma 5.2. Now if w;, € D, and w, € D,, then w, and w, cannot intersect each
other at arbitrarily large times. Thus (D, X D,) N &= @&. This coupled with
Q. o(D; X D,) > 0 contradicts Lemma 5.2. Thus, there can be no nonconstant
bounded harmonic functions. O

6. Modifications in the general (p # 1) case. In this section we sketch
the modifications needed to prove the general case. For Theorem 1.1, first take
8 = k. In (a) and (b), we show transience and recurrence by replacing the test
functions u, = r~'f(8) and u,=r"f,(0) by u, =r (@) and u,=
r™( f(8))™P"). Conditions (iii) and the second and third parts of condition (v)
guarantee that Lu, < 0 and Lu, < 0 for large r. The first part of condition (v)
guarantees that u, is bounded as is required. For (c), to show explosion, we
replace the test function u = c+ (r7'f(8))" by u=c+ r*(f(60))”*™. The
above comments on the conditions again apply; now the operator is L + A. To
show the absence of explosion, we use condition (vi) and the original argument.
For (d), replace the test function u = rf,(6) at the beginning of the proof by
u = r( f,(8))?"). The rest of the proof follows similarly except for one problem in
the case 8 > 0. Recall from the proof, that the basic idea is to get an inequality
which, without the additional frills, looks like

(6.1) c+ sfotr‘s(s) ds<r(t)<c+ N'/:r‘s(s) ds.

Now, if § > 0, then as we saw, a Gronwall inequality type of analysis on the
right-hand inequality in (6.1) gives a lower bound on [{r~%(s)ds and such an
analysis on the left-hand inequality gives an upper bound on [{r—?(s) ds. Since
these inequalities go the wrong way, neither the right-hand nor the left-hand
inequality alone provides either an upper bound or a lower bound for
r(t). However, the two inequalities in tandem, provide both the upper and
the lower bound. Now in the case limsup,_,  p,(r) = o, the right-hand side
of (6.1) must be replaced by [{r~2*%(s)ds for arbitrary ¢ > 0 and in the case
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liminf, , p,(r) = 0, the left-hand side of (6.1) must be replaced by [{r=2%(s) ds
for arbitrary £ > 0. Thus, consider

(6.2) ¢+ jo r8-e(s)ds < r(t) < c + jo ‘r=3+¢(s) ds.

The right-hand inequality provides the bound

(6.3) ftr““‘(s) ds > ¢;t'/1*%=9  for some ¢, > 0,
0

while the left-hand inequality provides the bound

(6.4) ftr"s“(s) ds < c,t*/0+%+9  for some c, > 0.
0

To translate this into bounds on r(¢), we need inequalities like (6.3) and (6.4)
going the other way. Using Holder’s inequality, we have

: ‘ (8—e)/(8+¢)
fr"”‘(s)ds < t2e/(8+e)(fr—8—e(s) ds) .
0 0 ,

Combining this with (6.3) gives

b

s ¢ s (8—2)/(8+¢)
clt1/(1+s-e) < g2/ +e)(fr— _e(s)ds)
0

and then using (6.2) gives
r(t) = c+ ftr‘s‘e(s)ds > c§8+e)/(8—e)t(8—e—258+252)/((8—e)(1+8—e)) +e.
()}

As ¢ — 0, the exponent on the right-hand side above approaches 1/(1 + §). This
is exactly the inequality we want. Similar use of Holder’s inequality gives one the
corresponding upper bound.

For the case k < 8, replace u = r™(f,(6))" and u, = r™(f,(6))™ by u, =
r1(f(8) P and u, = r™(f,(6))™*P") and use conditions (iii) and (iv) to get
(a) and (b). For (c), to show explosion, replace u = ¢ + r~*(f,(6))""" by u = c +
r=*(£,(8))’"*P" and use conditions (iii) and (iv). For this theorem, from condi-
tion (iv) we need », > max(1 + £ — 8,(1 + k)/2) and », > 1 + k. To show the
absence of explosion, use condition (vi) and the original argument. For (d),
replace u = r(fy(8))" by u = r(fy(8))""?". The remarks above regarding (d)
apply here too.

Now consider Theorem 1.2. Part (a) is trivial and no adaptation nor condition
is necessary. For (b), the key estimate (4.6) goes through as before with no
changes; we rely on condition (iii). The proof of (c) goes through using conditions
(iii) and (vi). (d) goes through with the same test function u = r. The remarks
above concerning the proof of (d) also apply here.

Theorem 1.3 goes through as before without any changes, using condition (vii).
In fact, if the drift c¢(x) in the d/dr direction [or the drift d(x) in the (1/r)d/d6
direction] is o(1/|x|) as |x| = oo, then its specific form is immaterial and
conditions (i)—(vii) with respect to ¢ (or with respect to d) may be dispensed
with.
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The theorems of Section 2 in the general case follow from the general case
version of Theorem 1.1(d) and conditions (iii), (iv) and the first part of condition
(v). In conditions (iv) and (v), the condition on p” is not used. For Theorem
2.1(a) we need »;, > 1 + k — § and for (b) we need », > (1 + 8)/2. In Theorem
2.2, we need », > 8. Theorem 2.3(a) follows from Theorem 2.1(a). Condition (iv)
is not used in Theorem 2.3(b). It should be noted that although, given the
validity of Theorem 1.1(d), specific parts of certain conditions are not needed in
the proofs of the theorems of Section 2, they were used, at least implicitly, in the
proof of Theorem 1.1(d). Thus, they are required implicitly in the proofs of the
theorems of Section 2. For example, the stipulations on p”’ in conditions (iv) and
(v) are only required explicitly in the proof of transience—Theorem 1.1(b). Given
transience, (d) follows without any reference to p”, and given (d), the theorems
of Section 2 also follow without reference to p”’. Without the assumption
0 < liminf, , p,(r) < limsup, _, ,p,(r) < oo, the general version of Theorem
1.1(d) is weaker than the version in the special case p, = p, = 1 and causes a
problem in certain cases. This is why an extra condition concerning p, was
included in (b) of Theorem 2.3 and in the border line case of (b) of Theorem 2.1.
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