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A LAW OF THE ITERATED LOGARITHM FOR SUMS OF
EXTREME VALUES FROM A DISTRIBUTION WITH A
REGULARLY VARYING UPPER TAIL

By ERricH HAEUSLER AND DAvID M. MasoN!

University of Munich

Let X;, X,,... be independent observations from a distribution with a
regularly varying upper tail with index @ greater than 2. For each n > 1, let
X, n < +++ <X, , denote the order statistics based on Xj,..., X,,. Choose
any sequence of integers (k,),.; such that 1<k, <n, k, - oo, and
k,/n = 0. It has been recently shown by S. Csorgé and Mason (1986) that
the sum of the extreme values X, * +X,,_4,, n» when properly centered
and normalized, converges in dlstnbutlon to a standard normal random
variable. In this paper, we completely characterize such sequences (&
for which the corresponding law of the iterated logarithm holds.

n)nzl

1. Introduction and statements of results. Let F be a distribution func-
tion with F(0 — ) = 0 and with regularly varying upper tail, i.e., assume
(1) 1-F(x)=x"°L(x), x>0,
for some 0 < @ < oo and a function I which is slowly varying at infinity. Let

Q(s) =inf{x e R: F(x) >s}, 0<s<]l,
Q(0) = Q(0 + ) denote the corresponding quantile function. Then (1) is equiv-
alent to
(2) Q1 —s)=s"YL(s), O0<s<l,
where L is a function which is slowly varying at zero; cf. de Haan (1975),
Corollary 1.2.1, 5., or Seneta (1976), Lemma 1.8. _

Consider a fixed 0 < @ < oo and slowly varying function L. Let X,, X,,...,
be independent and identically distributed random variables with a common
distribution F, and for each n>1, let X, ,< --- <X, , denote the order
statistics based on X|,..., X,,. S. Csorgo and Mason (1986) have shown that if

2 < a < oo, then for any sequence (k) »1 of positive integers such that &, > oo
and k,/n — 0 one has

(3) An(a’ kn)_ { Z n+l—j,n nl"‘(kn/n)} _’9 N(O’ 1),
where

wkym) = [ Q(s)ds,
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and
Non'/2(ky/n)"* "L (ko /1)
2 1/2
dN=|—«——
Aa,k,) = and N, ((a—2)(a—1)) , fora>2,
12
(n/k"/ns‘lL2(s) ds) , fora =2,
1/n

whereas for 0 < a < 2 the sum of the upper %, extreme values when properly
centered and normalized converges in distribution to a stable law with index a.
(Here and throughout all limits are to be understood as n tends to infinity if not
stated otherwise.)

Given the asymptotic normality of the sum of the upper %, extreme values in
the case a > 2, it is only natural to suppose that with perhaps further restric-
tions on the sequence (k,), ., the law of the iterated logarithm should also hold.
We will show that this is indeed the case when a > 2. Our main result is as
follows: ‘

We introduce the normalizing constants

a,(k,) = N,(2nloglog n)"*(k,/n)""*""/*L(k,/n)
= N,(2kloglog n)"*Q(1 — k,/n)
and impose the following monotonicity restrictions on &, and %,/n:

(4) k,~a,l o
and .
(5) k,/n~ B, 10,

for some sequences (a,,), ., and (8,), », of positive numbers. We cannot assume
that the sequence of positive integers (&,,), ., satisfies &, 1 c0 and &,/n | 0, since
such a sequence does not exist.

THEOREM 1. Under (1) for any a > 2 and sequence of positive integers
(k,)n 1 satisfying (4) and (5) the following three statements are equivalent for
any fixed integer k > 1:

) T n* (1 = Flay(k,))" < oo,
n=1
(7) an(kn)_an+1—k,n -0 a.s.,
and
ky,
(8) limsupan(kn)_l{ 2 Xn+1—j,n - n“"(kn/n)} =1 a.s;
n- o0 =k

also whenever (6), (7), or (8) holds

k'l
9) liminfan(kn)_l{ Y X1 jin— np(kn/n)} = -1 a.s.
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In addition, the following three statements are equivalent for any fixed integer
k>1:

(10) i n*1 - Flay(k,)))* = o0,

(11) limsupa,(k,) 'X,,,_ —hn= 00 a.s.,

" me

(1) lmsuwa,(k,)" { % Xporosin nu(kn/n)} —® as.

The case a = 2 requires a separate analysis and will be considered elsewhere.
No law of the iterated logarithm exists in the case 0 < a < 2; see Einmahl,
Haeusler, and Mason (1985).

Under the conditions on F given in Theorem 1, if &, is chosen to be the
integer part of na where 0 < a <1 and 1 — a is a continuity point of @, then an
application of Theorem 4 of Wellner (1977) yields a law of the iterated logarithm
for X, ,+ -+ +X,_, ,. The assumptions of his theorem fail when &, satisfies
4) and ). For related work on the law of the iterated logarithm for various
types of trimmed sums the reader is referred to Griffin (1985), Haeusler and
Mason (1987), Hahn and Kuelbs (1985), and Kuelbs and Ledoux (1984, 1987).
Also for results on the law of the iterated logarithm for X,_, ,, see Hall
(1979b). ,

To see the meaning of condition (6), fix a > 2 and a sequence (k,),.,
satisfying (4) and (5). In order that there exist an integer £ > 1 so that (6) holds
it is necessary and sufficient that

(13) n = liminf (log %,,) /loglog n > 0.
n—o

If (13) is satisfied, then (6) holds for all £ > 2/((a — 2)n). This follows by the
same method of proof as given in Lemma 6 in the next section. Consequently, if
(k,), > is such that

(14) (log k,,)/loglogn — 0
holds, then (12) is true for all integers k > 1. In this situation one has a stability

result for the sums X,,,,_ , + *+- +X,,;_; , For this, replace in a,,(kn) the
constants N,(2loglog n)l/ 2’by any other sequence of constants b, 10, ie., set

an(kn’ bn) = bnk}z/2Q(1 - kn/n)
THEOREM 2. Under (1) for any a > 2, any sequence of positive integers

(k,)n 21 satisfying (4), (5) and (14) and any sequence of constants b, 1 o the
following three statements are equivalent for any fixed integer k > 1:

(15) Y Y1 - Flay(k,, 5,)))" < oo,

n=1

(16) an(kn’ bn)_an+l—k,n -0 a.s.,
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and there exists a sequence (c,), -, Of centering constants such that

ky
(17) an(kn’ bn)_l{ E Xn+l—j,n - cn} -0 a.s.
J=k
If (17) is true, then one can choose c, = nu(k,/n).
In addition, the following three statements are equivalent for any fixed
integer k > 1:

o0
(18) Y n* 1 - Fla,(k,, b,))" = o,
n=1
(19) lmsupa,(k,, b,)  Xps1_pn=00 a.s.,
n—oo

and for any sequence (c,), -, of constants

(20) limsupa,(k,, b,) "

n-—oo

=00 a.s.

k'l
Z Xn+1—j,n —Cp
Jj=k

REMARK. Whenever @ is such that for some constants 0 < A < co and
- <a<0, A— Q1 —s)=s"12(s) and the sequence k, satisfies (4), (5)
and (13), the same method used in the proof of Theorem 1 shows that (8) holds
with 2= 1. If F is in the domain of attraction of a Gumbel extreme value
distribution, (8) also holds with 2 = 1 and appropriate normalizing and centering
constants for such sequences k,. For this, see Deheuvels, Haeusler and Mason
(1986).

2. Proofs. The proofs of Theorems 1 and 2 will be split up into a sequence
of lemmas. Qur first lemma is an immediate consequence of Lemma 3 in Mori
(1976) and is contained in Theorem 4 of Hall (1979a). We restate it here for
convenience.

LEMMA 1. Let (x,),., be a sequence of positive constants such that x,, T .
Then for any integer k > 1 and distribution function F satisfying (1)
=)
Yt (1= F(x,) < oo iff 27%p00 0,20 as.

n=1

and

0
Y kY1 - F(x,))* =0 iff limsupx;'X,,, 4 ,= a.s.
n=1

n—oo

Lemma 1 does not directly prove the equivalence of statements (6) and (7),
and statements (10) and (11), since a,(k,) need not be nondecreasing. Let -

a, = N,(2a,loglogn)?Q(1 - B,).
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Notice that a, 1 o and a, ~ a,(k,) by (4) and (5), and hence by (1)
1 - F(a,(k,)) ~ 1 - F(a,).

Thus, statements (6), (7), (10), and (11) are equivalent to the corresponding
statements with a,(%,) replaced by a,. Lemma 1 is then applicable and the
equivalence of the forementioned statements is proven. The same reasoning
applies to the proof of the equivalence of (15) and (16), and of (18) and (19),
respectively.

Next we will show that (6) and (7) imply (8) and (9), which is the major part of
the proof of Theorem 1. From now on we will be concerned with the behavior of
the quantile function @ and not with that of the distribution function F. Let
U,U,,..., be a sequence of independent uniform (0, 1) random variables. For
any 1nteger nx>1,let U, -+ < U, , denote the order statistics and G,
denote the nght-contmuous empmcal dlstnbutlon function based on U, .. U,,.
The two sequences (X, )nzl and (Q(U,)),, >, are equal in law and consequently
thetwoprocesses(Xk wl<k<nn>21)and (QU, ,):1<k<n,n=>1)are
also equal in law. Therefore, w.lo.g. we may assume X, , = Q(Uk ») for all
1 <k <nand n > 1. Then, we can write

an(kn)_l{ E n+l-—j,n np’(kn/n)}

J=k+1

= an(kn)_l{nfv"'h’"Q(s) dG,(s) - nﬂ(kn/n)},

n—kp,n

which by two integrations by parts equals
au(ka) "' [ (s - Gi(5)) d@ (s)
1-k,/n

k[P —
+an(kn)_1nf1 k"/(

n—ky,,n

)dQ(s)

@) 4o (k) n [ (s~ 1) dQ(s) + an(k)n /;‘k/ "S dQ (s)

n—k,n n—k,n

—ay(k) 0 Q(s)ds

= (k) ' [ (5 = G(5)) dQ(S) + Byt Byt By By

In the above integrals and in all subsequent integrals that appear in the proof
of the theorem, we use the following integral conventions:

For a right-continuous function r, a left-continuous monotone function /, and
0 <a,b<1 we write

r(s)dl(s), ifa<b,

[re)as)={ "
“ —f[b )r(s)dl(s), ifb<a,
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and for a right-continuous monotone function r, a left-continuous function /,
and 0 < a, b < 1 we write
I(s)dr(s), ifa<bd,

fbl(s)dr(s) = (@8
@ —/(b ]l(s)dr(s), ifb<a.

,a

Thus if both r and ! are monotone functions, the usual integration by parts
formula holds:

/ ’r(s) di(s) = r(b)U(b) — r(a)l(a) - / °U(s) dr (s).

We will first show that under (7) foreach 1 < i < 4 wehave A; , — 0 as. The
following two lemmas are simple consequences of the Karamata representation
theorem for slowly varying functions.

LEMMA 2. Let (x,),5, and (¥,),>, be two sequences of positive constants
such that x,, = o(y,) and y, = 0. Then x BL(x,) = o(¥EL(%,)) for any B > 0.

LEmMMA 3. Let (x,),.; be a sequence of positive constants with x, — 0.

(i) Fora <y < o and 0 < d < 1 we have for all largenandall 0 < u < x,,,

Q(L - u)/Q(1 — x,) = d(u/x,)” "
(ii) For 0 <y <aand 1 < d < oo we have for all largen and all 0 < u < x,,,

Q(t - u)/Q(1 — x,) < d(u/x,)”".
LEmMA 4. We always have A, , — 0.

ProoF. Applying Theorem 1.2.1 in de Haan (1975) we obtain

ak'? (210g] )" 1/2 (k/n)l/z_l/aL(k/n)
T (@-DN," B8 G ) L n)

which converges to zero by Lemma 2 since k/k, » 0and 1/2 —1/a > 0.0

A,

LEMMA 5. Whenever (7) holds, A, , — 0 a.s.

PrRooOF. We have
Ag .l < ka,(k,) " {Q( - k/n) + QU,_, )}

Now
0< kan(k )—IQ(Un—k n) = kan(kn)_lQ(Un+l—k,n)
_ka(k) n+1-— kn_>0 a.s.
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by (7), and by Lemma 2

-1/2

ka,(k,) Q1 — k/n) = V2N ! (k/n)*"V°L(k/n)

* (kn/n)* "V L(ky/n) e

(2loglog n)
O

LEMMA 6. Whenever (7) holds,

0
Y nla k= 92(loglog n) "2 < w0
n=1

for all a < y < o, whence
(22) (loglogn)/a, » 0 and (loglogn)/k, - 0.
Proor. Fix a <y < o0 and 0 < d < 1. On the event
{dUy/B,) ™" > N,(2a,l0glogn)"*} = 4,
we have ,
0 < Uy < (Ny/d)"(2a,loglog n) "B, = 0(1)B, < B,
for all n large, so that Lemma 3(i) implies-
P(Q(l -0)>a,)
= P(Q(1 - U))/Q(1 — B,) > N,(2,loglog n)"”*)
> P(A,) = P(U, < (N,/d) " (2a,loglog n) ""*,)
~ (N/d) " "2n"Y(21oglog n) ">,
Observe that P(Q(1 — U,) > a,) =1 — F(a,). Thus, since a, 100, we see by
Lemma 1 that statement (7) is equivalent to

¥ n+1P(Q(L - U,) > a,)" < co.

n=1

This combined with the above estimate implies the first assertion of the lemma.
From this, observing that «, 1 00, we obtain

(log n)/( a*r=2/2(oglog n)’k/z) -0,
which implies (22). O

LemMMA 7. Whenever (7) holds, A; , — 0 a.s.

ProOF. According to Theorem 2 in Kiefer (1972) we have
limsupn(l - U,_, ,)/loglogn =1 as,

n—oo

whence 1 — 2n~oglogn < U,_ &, » With probability one for all large n and,



LIL FOR SUMS OF EXTREME VALUES 939

consequently,

- (1-8
A, | < a,(k,) 'nlim 1-5)dQ(s
8,0l < a,(k,) Tnlim [0 (1) dQ(s)

= an(kn)_ln!sii%{SQ(l —8) — 2n"oglog nQ(1 — 2n " 'loglog n)

- Q(s)d(1 - s)}

1—-2n"lloglog n
< an(kn)—ln/:n“loglog nQ(l _ S) ds,

where the last bound is justified by the fact that (2) holding with a > 1 implies
8Q(1 — 8) > 0as 8 |0, and @ > 0. Applying Theorem 1.2.1 in de Haan (1975) we
see that the last expression is

~ a,(k,) }(2n""oglogn)'~"/*nL(2n""loglog n)a/(a —1)

21/%a(2n"'loglog n)/*"Y*L(2n""oglog n)
N(a - 1)(k,/n)"**L(k/n)

In view of (22), Lemma 2 implies that this last term converges to zero. O
LEMMA 8. Whenever (7) holds, A, ,, = 0 a.s.

ProoF. Notice that since for s in the closed interval formed b‘y U,—,, » and
1-k,/n, |1 — Gy(s)— k,/n| <|1 -G, - k,/n)— k,/n|, we have

nlG(1 - ko/m) = (1= ky/m)] |@Q = ka/n) — Q(Uns,, )|

|A4, nl < Na_

(2k,loglog n)"? Q(L — k,/n)
By Theorem 3.2 in Csaki (1977) we have
lim sup ( —-—-n—)l/2 sup m
(23) now \2loglogn | i00ncociontloglogn (8(1 - 5))"”
=22 a5,

hence in view of (22)

limsup ann(l - kn/n) - (1 - kn/n)l < 912
n— oo (2kn10glog n)l/2 B

a.s.

It remains to show Q(U,_, ,)/Q( — k,/n) > 1 as. On account of (2) this
follows from 1 — U,_, , ~ k,/n as.; cf. Theorem 4 in Wellner (1978). O
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From (21), (7) and Lemmas 4, 5, 7 and 8 we obtain with probability one
an(kn)— { z n+l—j,n n”’n(kn/n)}
- Ui-t,n
= a,(k,) 'n [ """ (s = G,(s)) dQ(s) + o(1).
1-k,/n

n.

It remains to show

(24) limsupa,(k,)” n/ whe + (5= G (s))dQ(s) =1 as.

n— oo

The first step in the proof of (24) is

LEMMA 9. There exists a finite constant ¢, depending only on 2 < a < ©©
such that forall 0 <7 <1

H(7) = limsupa,(k,) 'n

n—oo

Urton (s = G,(s))dQ(s)| < cg?*" /% a.s.
—rk,/n .

The proof of Lemma 9 will require the following result:

LemMA 10 [Einmahl and Mason (1988)]. Let (x,),-; be a sequence of
constants such that 0 < x, < n foralln > 1 and x,, 1 . If for an integer k > 1
and some 0 < v < 3

(25) Z -1 —2v(k+1)/(1 2")(loglogn) (k+1)/(1- 2v)< 0,

then
limsupK,(x,) <2 a.s,

n—>oo

K (x,) = (”)( ” )1/2 wp 108 sl

loglogn 1-x,/n<s<U,_; , (1 - 3)1/2_"

where

Proor oF LEMMA 9. Fix 0 < 7 < 1 arbitrarily. As in the proof of Lemma 7
we have with probability one, 1 — 2n~'loglogn < U,_, , for all large n, and,
consequently, by (22) almost surely 1 — tk,/n <1 - 2n"'loglogn < U,_,, ,.
Thus we have for any 0 < » < } with probability one for all large n

an(ks)™'n) [0 (s = G,(5)) 4@ ()
(26)
— G - 1/2—-v
RN e T SRR 11

For 0 <» <1/2 — 1/a an integration by parts and Theorem 1.2.1 in de Haan
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(1975) yield after some routine manipulations
2 tk,\V2"1a"v 1k
1 1/2—v n n
1- d! ~—|— Ll —|.
fl_fk,,/n( ) Q(s) a—'2—2aV( n ) ( n )
Substituting into the right side of inequality (26) we find with probability one
21/2
N,(a -2 — 2av)

H(r) < /212 limsup K ,(k,,).

n— oo

From (4) we conclude 1 — 27a,/n <1 — 7k, /n and (n/7k,)’ < 2(n/1a,)’ =
2'**(n/21a,)” for all large n, which implies that

(27) limsupK ,(7k,) < 2'*” limsup K ,(27a,,).
n— oo n— oo

The proof of Lemma 9 will be complete if we show that there exists a 0 < » <
1/2 — 1/a such that (25) holds with x, = 2ra,, since by Lemma 10 this implies
that the lim sup on the right side of inequality (27) is less than or equal to 2 with
probability one, which with a fixed » depending only on a gives the desired
estimate:

H(r) < 2%2%*"1/2-1/2/(N,(a — 2 — 2av)) as.

To see that (25) is in fact true with x, = 27a, for an appropriately chosen
0 <v<1/2 — 1/a, observe that

2v(k+1) a-—
v11/2-1/a 1 —2p T2

a-2 . k(y—2)
g k= lm—

2(k+1)>

and

. k+1
lim
v11/2-1/a 1 — 2v

k+1)> 2k = lim 2k
=3 +)>2 _711:14112.

So for y > a sufficiently close to @ and » <1/2 — 1/a sufficiently close to
1/2 — 1/a we have 2v(k + 1)/(1 — 2v) > k(y — 2)/2 and (k + 1)/(1 — 2v) >
vk /2, which for large n implies

n—la;2v(k+ 1)/(1'2")(10g10g n)-(k+ 1/1-2v) < n“la;k(7’2)/2(loglogn)—yk/z.

We see that (25) now follows from Lemma 6. O

Next we prove for all 0 < 7 < 1 that

M(r) = lmsupa,(k,) 'n [ " 1 (s - G,(s)) dQ (s)
(28) n— oo I—k,,/n
=M% as.,

where M, =1 - (a — )" %% + (a — 2)7'"/2 > 0.
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To prove (28), let 0 < 7 < 1 be fixed. For A > 1 and I > 1 put m, = [A'] where
[x] denotes the integer part of x. Obviously, m;,_, < m, for all large /, and
m; > oo as Il — oo. For large enough n, let the integer [’ be defined by
m;._, < n < m,;, where for notational convenience the prime is used to indicate
the dependence on n. Then we have

anlln) 0 [ (s - Gils)) dQ(s)

= a,(k,)'n /1 e/ (s - G(s)) @)

—k,/n
+a,(k) [ g (s - G(5)) dQ (o)
ra k) [T k(s - G(s) d@(s)

my_y my_y

= (+R; ,(A)) + (£4,(A)) + (£R;,,(N)).
At first we show

LEmMA 11. For all A > 1 we have

limsup |R, ,(A) + R, ,(A)| < 2¥2N;W/2-V(N/2 - 1) a.s.

n— oo

Proor. From k,/n — 0 and k,/loglogn — oo [cf. (22)] we obtain for any
0 <7<1 and for all large n the inequality n 'loglogn <1 — 'i-‘k,,/n <1-

n~'loglog n. Analogously, from &, _/m;,_, =0, km,, My~ B, 2B, ~
a,,/n, and a,/loglogn — oo it follows for any 0 <7<1 and all large n that

n~lloglogn <1 — 'rkm, /my_y <1-— n‘lloglogn With 7= 1 or ¥=1 this
means that the regions of integration occurring in R, ,(A) and R, (M) are
contained in the interval (n‘llog log ,1 — n~'loglog n) for all large n. Further-
more, we have for all 0 < 7 < 1,0 <7 < 1 and all large n the inequalities

1- ’F.Bm,,_,(l +7)<1-7B,1+7)<1-7k,/n
<1-#,01-9)<1-78,,(1-1)
and
1- 'FBm,,_,(l + 'q) <1- 'ka[,_‘/ml,_l <1- '?Bm,/(l - n).

For =1 or 7= this means that the reglons of integration occurring in
R, (M) and R, (M) are also contained in the interval (1 — B, _ (1 + 1),
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1 — #B,,(1 — n)) for all large n. Thus for all large n we get the estimate
|R1,n(x) + R2,n(x)| )
|Ga(s) — s|

<a,(k,) 'n sup 7

n~lloglog n<s<1—n"'loglog n (8(1 - s))

X{/l—ﬁm,,(l—m (1 - )2 dQ (s)

1-By, _A+m)

o [T ) (1-s)" dQ(s)}

1-18,,,, (1+1)

_ _1( n )1/2 sup |Gn(s) - Sl
¢ \2loglog n n”'loglog n<s<1-n"'loglog n (s(1 - s))1/2
1 1-B,,1-mn) 1/2
D — ™ 1-s dQ (s
B2~/ °L(B,) {fl—ﬁm,,_,<1+n>( )7 aR(s)
+/1 By, (1= n) _ s)1/2 dQ (s)}
B ,(1+n)

by definition of a,(%,) and (4) and (5). For 0 <7< 1,0 <7 < 1, and all large n
we have

1 1= B, (L—m) 1/2
— ™ 1-s dQ (s
AL R a8 dR ()

1':'1/2—1/a(1 + 7’)1/2 B'L{? e {(1 ) l/a( Bmt/ )_1/‘1 L(;(]‘ - n):Bm,/)

B>V B, _, L(8,)
L(%B,, (1 +m))
-1+ 1/a mz/ EZn-
=16
From (4) and (5) it follows that
<fﬂa_~_mu_n_.,"‘m_ul My
B Bn my_, kn my_, a, my _,

and, for n replaced by m;, 1< 8,, /B, <@ + oQQ))m;/m;_, > A. Analo-
gously, 1> 8, /B, =1+ o(1))m,_ l/m,, — A7L Consequently, since L is
slowly varying at zero,

L(#(1 -n)B,,)/L(B,) »1 and L(7B,, (1+m))/L(B,) -1,
so that we arrive at

limsupZ, < 7241 + n) N/ (1 ) YN/ = (14 m) V.

n—oo
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Using this estimate for ¥ = 7 and 7 = 1 and combining it with (23) we obtain
limsup [R; ,(A) + Ry ,(M)]

n—oo
< 22NZHL+ ) N1 — ) TN = (14 9) T s,

Since 0 < 5 < 1 is arbitrary, this implies the desired result. O
It remains to deal with +A4,(A). We will show

| LEMMA 12. For any ¢ > 0 there exists a A\, > 1 such that for all1 <X <A,
limsup(+A,(A)) < MY% + 4¢ a.s.

n-— oo

Proor. For all large n we write

n

+A,(N) = a, (k) Y (££(, 1)),

i=1
where for i,/ > 1

£8(0, 1) = [T 1 (5 - 10 4(U) dQ (5)5

1 _km,_l/ml— 1

here we suppress the fixed parameters A > 1 and 0 <7 <1 in +£(i, 1) for
notational convenience, and for further notational convenience &(Z,1) will
denote either +£(i,1) or —£(i, 1). For fixed [, the random variables £(i, 1),
i > 1, are independent and identically distributed with mean zero,
1£G, )| < QL — 1k, /m,_,) and

(29) Var(¢(i, 1)) = fll"’“'"'-/”"-l fl“’k""--/""-‘(sA t — st) dQ (s) dQ (¢).

_km,_l/ml—l _km,_l/m!—l

We need to know the asymptotic behavior of Var(£(i, 1)) as [ gets large. For
0 <u<1weset

o®(u) = fl“’"f‘_‘u’"(s At— st)dQ(s)dQ(t).

-u Y1
Integrating this out by parts gives
o’(u) = [7TQe) dt ~ 291~ u) [ "1 ~ 5) dQ(s)
1-u 1-u
#ruQ(1 - ru) - uQ(t - w)* - (17701 - 8) dQ (5))
1-u

Analyzing the behavior of the summands on the rh.s. as u |0 by means of
Theorem 1.2.1 in de Haan (1975) leads to

(30) o2(u) ~ N2M,u'~%°L(u)® asu 0.
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From (4) and (5) we get
a,(k,) ~ a, = N,(2a,loglog n)"*Q(1 - B,)
(31) > N,(2a,,, loglogm,_,)"*Q(1 -8, )

= am,/_l - aml/_l(k"”/_l)°
Fix now ¢ > 0 and A > 1. Then
P(+A,(A) = M}? + 4ei0.in n)

- P( i £(i,1’) = (M}/? + 4¢)a,(k,) i.0.in n)

i=1

which by (31) is

p
< P( max Y £(i,1') = (M}? + 3¢)a,,, (k,,_)io.in n)
my_<psmy ;4

P \
< P( max Y &(i,0) = (MY? + 3€)am,_l(km,_l) i.0.in l).

l<p<my;_;

Of course, our aim is to apply the Borel-Cantelli lemma so that we have to
bound

P
P= p( max Y £(i,1) > (MM? + Ss)aml_l(kml_l))
l<p<m, i=1

for all large / by the summands of a finite series. Using (29) and (30) we find for
all large [

my 1/2
B,= (M}?+ 3€)am:_l(kmz_1) - (2Var( Y £(i, l)))

i=1

k 1/2-1/a
= 2m,_loglogm, ;)% 2=t L| 2=
a( 1—110g log 11) m,_, m,_,

m

1/2
X {M}/2 + 3¢ — M}/Z( ! ) (loglog m,_,) (1 + o(l))},

-1
which since m;/m,_, - A and loglog m;_; - o is
k 1/2—-1/a )
~ N,(M}/? + 3¢)(2m,_,loglog m,_l)l/z(ﬂi) L(k)
my_, my_,
Consequently, for all large [ we have
k 1/2-1/a
B, = N,(M}/? + 2¢)(2m,_,loglog m,_l)‘/z(ﬂi) L(ﬂ—) =c(l, ¢).
m;_, my_,

Therefore, Lévy’s inequality, cf., for example, Loéve (1977), pages 259-260,
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together with Bernstein’s inequality, cf. inequality (8) in Bennett (1962), imply
for all large

Pis 2P| T4G,1) 2 elt, )| = 2exn(~p(0, 0),
where -
p(l,€) = c(l, 5)2/{2m1"2(km,_,/ml—1) + 2¢(1, e)Q(l - 'rkml_l/m,_l)}.
From (22) and (30) we get as [ — oo
c(1,¢)Q(1 - ”km,_,/mz—1)/(mz°2(km,_,/mz—1)) -0
and
e(l, 6)2/(2m102(kml_l/m,_1)) ~(1+ 2e/M,1/2)2)\‘lloglo'g m;_,,
whence
(1, ) ~ (1 + 2¢/M2)’\~Yoglog m,_, ~ (1 + 2¢/M%)*\~"log(1 — 1).
This implies for all large [
P < 2(1— 1) /MmO

For given ¢ > 0 and A > 1 close enough to 1 one has (1 + ¢/M}/?)2A~! > 1, so
that the sum over the bounds on the r.h.s. is finite. This concludes the proof of
Lemma 12. O

For ¢ > 0 fix A, > 1 according to Lemma 12. Then for all 1 <A <A, by
Lemmas 11 and 12 with probability one
M*(7) < limsup|R, ,(A) + R, ,(A)| + limsup (+£A,(}))

n— oo n—= o0
< 2%2NIN/2-Ve(N/e — 1) + MY/2 + 4e.

Since the Lh.s. of this inequality is independent of ¢ > 0 and A > 1 we get by
letting A tend to one first and then letting ¢ tend to zero that almost surely
M *(1) < M!/2. Thus we have proven the < -part of (28).

We now turn to the > -part and show for any 0 < ¢ < M}/2/2 with probabil-
ity one M *(1) > M}/ — 2¢. For this, fix 0 <e < M!%/2 and A > 1 and put
m, = [N]for I > 1 as before. Writing

. 1-1ky,/m
(i, 1) = [ "+ (s~ 1p0,(U) dQ (s),
l—km’/ml
my_,
£ 8., = X (x1(i,1)
i=1

and
my

tT= X (£0(,1),

i=m;_;+1
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we have
- 1-7k,,/
(b)) T [T 2 (5 Gp(s)) dQ (5)

l—km‘/m,

= amz(kmz)_l(isl—l) + am,(km,)_l(i'Tl)‘

For notational convenience we will write n(i, l) = +(i, 1), S;_, = £S,_,, and
T, = +T,. For fixed [, the random variables 7(i, I), i > 1, are independent and
identically distributed with mean zero, In(i, I)| < @1 — Tk,,/m,;) and
Var(n(i, 1)) = 0%(k,,/m,), where o is defined as in the proof of Lemma 12. At
first we show

LEMMA 13. For all € > 0, there exists a A, < oo such that for all A > X\,
P(S,_1 < —eaml(kml) i.0. inl) =0.
ProoF. Applying Bernstein’s inequality to —S;_,; we obtain for all large [
P(S,_, < —ea,(ky,)) ‘
< exp{—ezaml(kml)z/(2ml_102(kml/m,) + 2ea,, (b, )Q(1 - ”'km,/mz))}-

As in' the proof of Lemma 12 we get that the argument of the exponential
function on the r.h.s. behaves like

—(Ae?/M, )loglog m, ~ —(Ae?/M, )log 1
as [ > oo. Since Ae2/M, > 1 for big enough A we get

ip(sl—l < _eam,(km,)) < 0
=1

for all such A, and the assertion of the lemma follows from the Borel-Cantelli
lemma. O

Next we show

LEMMA 14. For all 0 < ¢ < M}/?/2, there exists a A, < o such that for all
A>A,

P(T,> (MY? - ¢)a,,(k,,) i-0.inl) = 1.

Proor. Since
m;

1—1k,, /m
T,= dir" (s - 1[o,s](Ui)) dQ (s)
i=my;_,+1 l_kml/ml
is a function of U,, .y...,U,, the variables T}, /> 1, are independent.

Hence the assertion of the lemma follows from the second Borel-Cantelli lemma
provided that we show

(32) g:l P(T, > (M2 - e)aml(kml)) =00
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for all large enough A. For this, we shall employ one of Kolmogorov’s exponential
inequalities which for our purposes reads as follows: Let X,,..., X, be indepen-
dent random variables with mean zero,

n
st= ) Var(X;)>0 and |X, <ecs,, fori=1,...n.
i=1
For any y > 0 there exist constants u, < oo and 7, > 0 depending only on y
such that if u > u, and uc < 7, then

(33) P( i X, > usn) > exp(—u®(1 + v)/2).

i=1
For a proof the reader is referred to Burrill (1972), Theorem 13-7C or Stout
(1974), Theorem 5.2.2.

We can apply (33) for all large ! to the independent and centered random
variables n(m,_, + 1,1),...,m(m,, 1) and to

m -1/2
w=u(t) = (M - e)am,<k,,,,)( 5 Var(a(s, z») |
i=m;_;+1
since for
c=c(l) = QO — thy,/m)(m, = my_)) " Vo(ky, /m)) "
we have

m 1/2

In(i, )] < C(l)( Y Var(n(i, l))) :
i=my;_,+1

and furthermore by elementary computations using (30)

(34) u(l) ~ 27%(1 — e/MM?)(A /(A — 1))/ *(log 1)"* > o0,

and by (22), u(l)c(l) - 0 as I - 0. Therefore, for any y > 0 being fixed, we
have for all large /

P(T,> (MY? - ¢)a,,(k,,))
> exp(—u(l)2(1 +7) /2) > [~ A-e/M5A /A= 1)1 +2y)

in view of (34). For 0 <e <M!?%/2 we can -choose a y >0 such that
(1 — ¢/M}?)®(1 + 2y) < 1. Then we have (1 — ¢/M}?)%(1 + 2y) X
(A/(A = 1)) <1 for all large A which implies (32) and concludes the proof of
Lemma 14. O

We have for 0 < e < M!/%2/2and A > 1
P(M*(7) > M}? — 2¢)
> P(S;_, + T, = (MY - 2¢)a,,(k,,) i-0.in 1)
> P({T,> (M} - ¢)a,,(k,,) i-0.in I
n{s,_, > —¢a,,(k,,) eventually in [ })
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Lemmas 13 and 14 show that for fixed ¢ and large enough A the probability on
the r.h.s. equals one, yielding the > -part of (28). Thus (28) is proven.

Since the r.h.s. of the estimate given in Lemma 9 converges to zero as 7 | 0 and
since M}!/?2 -1 as 70, (24) follows from Lemma 9 and (28) in an obvious
fashion. Thus we have shown that (7) implies (24). Therefore, (7) also implies (8)
and (9).

The following lemma will show that (8) implies (7), and (11) implies (12).

LEMMA 15. For any integer k > 1

kn
(35) limsupan(kn)_l{ Y Xoi1jin— nu(k,,/n)} < o0 a.s.
=k

implies (7).

PROOF. For n>1 set a,= N,a,(2loglogn)/?Q(1 — B,). Then a,k,)/
a, ~ a,'/%? - 0 so that from (35)

k,
limsupa;fl{ Y Xoi1-jn— ny(k,,/n)} <0 as.

n-— oo J=k

Furthermore, by Theorem 1.2.1 in de Haan (1975) we obtain

a
a,’,‘lnu(k,,/n) ~ m(z loglog n)—l/2 - 0.

Combining the last two facts and taking X; , > 0 into account we obtain
k,
a7 ' Y X, ;.0 as,
j=k

in particular,
a, ' X,i1 4,0 as.
Since the sequence a, is nondecreasing, we can apply Lemma 1 to obtain

f n* 1P(Q(1 - U,) > a2)* < w,

n=1

and from this it is easy to see that

o0
(36) Y n la ¥ D(loglogn) ** <

n=1

for all @ <y < o0 using the arguments as in the proof of Lemma 6. Fix
2<d <aandl<d< . On the event

(@1 - U) > a,} = (QU - U)) > N,(2a,loglog n)"*Q(1 - B,)},
we have Q(1 — U,) > @(1 — B,) for all large n, and, consequently, 0 < U, < 8,.
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Lemma 3(ii) therefore implies
P(Q(1 - U)) > a,) = P(Q(1 - U})/Q(1 - B,) > N,(2a,loglogn)'”)
< P(d(Ul/Bn)_l/s > N,(2a,loglog n)1/2)
= 27%%(N,/d)"*B,(e,loglog n) """
~27%%(N_/d) °n~'a;%/2*}(loglog n) *’?,
whence for any m > 1 and all large n
n™"'P(Q(1 - U,) > a,)™ < Kn"'a;™®/2=D(loglog n) ~™?,

for some finite constant K being independent of n. For fixed y and 8§ and all
large enough m the r.h.s. of this inequality is dominated for all large n by the
summands of the series in (36), hence

S P(QL - U) > a,)" < oo
n=1

for all large m. Since the sequence a,, is nondecreasing, Lemma 1 yields
a,'X

n+l—-m,n -0 as.
for all large m. Since a,, ~ a,(k,), this means that (7) is true for all large m. Fix

such an integer m > k. Then

kn
an(kn)_l{ Z Xn+l—j,n - n”‘(kn/n)}

Jj=k

ky

> an(kn)_l{ Z Xn+1—j, n n""(kn/n)} + an(kn)_IXn+l—k, n
j=m

since X; , > 0. We have already shown that (7) implies (8) and (9). Using this

result for m instead of %2 we see that the first summands on the right side of this

inequality are bounded with probability one. Consequently, if we were to assume

(11), we would obtain

ky,
nmsupan(kn)“{ S Xporon nu(kn/n)} - as,
n—oo J=k

which is in contradiction to (35). Thus the limsup in (11) must be finite almost
surely. But since (6) and (7) are equivalent, and (10) and (11) are also equivalent,

we then must have (7), as desired. O

Lemma 15 finishes the proof of Theorem 1.

Next we will complete the proof of Theorem 2. For this, assume first that (15)
holds for some integer £ > 1. Replacing N,(2loglog n)!/? by b, in the proof of
Lemma 6 yields

0
Z n—lk;k(-y—Z)/2bn—ky <
n=1

for all @ <y < oo, hence k,*¥=2/2p—k]og n — 0, so that because of (14) we
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must have
(37) kZ/b, > 0.

To verify (17) with ¢, = nu(k,/n) it is enough to show that there exists an
integer [ > k& with

kn
an(k,,, bn)_l{ Z Xn+1—j,n - np(kn/n)} -0 as,
j=1
since (16) implies
-1 ,
an(k)v bn)_1 E Xn+l—j,n -0 a.s.
j=k

Applying Theorem 1.2.1 in de Haan (1975) we obtain

@, (ky, b,) " np(kn/n) ~ ak/?b; /(@ — 1) = 0
because of (37). Furthermore

. ,
n k X
k ,b -1 X o< n n+l-I,n .
a,(k,, b,) jgl n+l—j,n bL/? b;l;/zk;ﬁQ(l —k,/n)

Now by (37) we have %,b, /2 > 0, whereas by an application of Lemma 1

X1/ (bY2R/*Q(1 — k,/n)) > 0 as.
for all large enough /. Thus (17) is established. It remains to demonstrate that

ky,
(38) . limsupa,(k,, b,) '| © Xpi1-jn—Cp| <00 as.
n— oo j=k

for some sequence of constants (c,), »; implies (15). Our first step will be to show
that the constants c, can be replaced by nu(k,/n). Since b, 1 o, the central
limit theorem (3) implies

kn
an(kn’ bn)_l{ E Xn+1—j,n - np‘(kn/n)} ~p 0.
j=1
As remarked in S. Csorgd and Mason (1986) the variables

k-1
QL-1/n)"' Y X1 jm n=12,...,
j=1

converge in distribution, so that necessarily
k-1
-1
an(kn7 bn) . E Xn+1—j,n —p 0
j=1

because by &, — oo and Lemma 2

Qu-1/n) 1 (1/n)/*"V°L(i/n)

1
an(kn’ bn) b_n (kn/n)l/2_l/aL(k"/n)
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Thus

ky,
an(kn’ bn)_l{ Z Xn+l—j,n - n"'(kn/n)} _)P 0,
J=k
which combined with (38) implies that the sequence
(an(kn’ bn)_lln""(kn/n) - cnl)nzl

is bounded. Hence in view of (38) we have

kn
(39)  limsupa,(k, 8) 7| X Xpirjn— nulky/n)| < o0 as.
. Jj=k

n—oo

Now repeating the proof of Lemma 15 with a, = N,a,(2loglog n)2Q(1 — B,)
replaced by a/, = a,b,0(1 — B,) shows that (39) implies (15) which concludes the
proof of Theorem 2.
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